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Abstract

We study stabilization targets: common environmental policy recommen-
dations that specify a maximum probability of an environmental variable ex-
ceeding a fixed target (e.g. limit climate change to at most two degrees C above
preindustrial). An emissions policy (e.g. greenhouse gas emissions abatement)
affects the environmental variable. Previous work generally considers stabiliza-
tion targets under certainty equivalence. Using an integrated assessment model
with uncertainty about the sensitivity of the temperature to greenhouse gas
(GHG) concentrations (the climate sensitivity), learning, and random weather
shocks, we calculate the optimal GHG emissions policy with and without sta-
bilization targets. We characterize the range of feasible targets and show that
in general, climate change has far too much uncertainty and inertia to be
controlled with the precision implied by stabilization targets.

We calculate the welfare cost of stabilization targets. We find that the
stabilization targets have three welfare costs. First, the targets are inflexible
and do not adjust to new information about the climate system. Second,
the target forces the emissions policy to overreact to transient shocks. Third,
the commonly proposed target temperature is lower than the unconstrained
optimum under certainty. Total welfare costs are on the order of 5%, of which
one quarter is caused by inflexibility and overreaction, effects present only in
a model with uncertainty.

∗We would like to thank seminar participants at FordhamUniversity, the University of Miami and
the 14th Occasional Workshop on Environmental and Resource Economics, University of California
at Santa Barbara for useful comments and suggestions.



1 Introduction

Stabilization targets are common environmental policy recommendations that spec-

ify the maximum allowable change of some environmental variable tied to pollution

emissions. The most common application is in climate change policy. For exam-

ple, many atmospheric scientists and policy makers recommend limiting greenhouse

gas (GHG) concentrations so that the global mean temperature rises by at most

2◦C above its preindustrial level. Stabilization targets call for limiting temperature

changes to reduce the likelihood of irreversible and catastrophic climate change, or

to prevent the temperature from changing more than an amount deemed harmful to

society.1 Once the target is specified, economists calculate the least-cost way to stay

under the target.

However, a stabilization target is not feasible when the the environmental vari-

able is subject to random shocks or is a function of uncertain parameters. Indeed,

random weather shocks and uncertain parameters, such as the sensitivity of the cli-

mate to GHG concentrations (the climate sensitivity), will cause the target to be

exceeded in any period with positive probability. Of course, learning reduces un-

certainties over time, which allows some fine tuning of the emissions policy as the

variable approaches the target. Nonetheless, slow learning and strong inertia in the

climate makes fine tuning difficult. We show that even if GHG emissions are imme-

diately and permanently reduced to zero, enough inertia exists in the climate so that

the global mean temperature will exceed 2°C with 15% probability. An alternative

is probabilistic stabilization targets, which instead require that the environmental

variable stay beneath the target with a given probability.2 Probabilistic stabilization

targets are feasible for a given temperature if the allowable probability of exceeding

the target is sufficiently high. In general, however, we show that climate change

has far too much uncertainty and inertia to be controlled to the degree assumed by

probabilistic stabilization targets: uncertain parameters cause the temperature to

drift to levels for which the target is either non-binding, or infeasible.

Using an integrated assessment model of the climate and economy with Bayesian

1Stabilization targets are also relatively straightforward to communicate to the public.
2One can think of a standard stabilization target as a special case of a probabilistic target where

the probability of exceeding the target is set to zero. Therefore, we will henceforth without loss of
generality consider only probabilistic targets.
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learning and random weather shocks,3 we calculate the welfare cost of stabilization

targets. We show that probabilistic stabilization targets cause three welfare losses.

First, the target may be set lower than the average temperature resulting from the

optimal emissions policy without the target. This welfare loss is present even if

the temperature is certain. For example, Nordhaus (2007) calculates the welfare

loss of restricting the temperature to 2°C under certainty, relative to an optimal

unconstrained policy of a little over 3°.

The second welfare loss is new to this paper and is present only when the tem-

perature is a function of uncertain and/or random variables such as the climate sen-

sitivity and weather shocks, and the model does not assume certainty equivalence.

As new information arrives, the optimal temperature changes. For example, if the

temperature turns out to be very sensitive to GHG concentrations, then achieving a

given temperature requires more abatement expenditures. Since the cost of meeting

a given temperature rises, and the benefit is unchanged, the optimal temperature

rises. By definition, however, the target temperature does not change with a stabi-

lization target. Therefore, an additional welfare cost ensues because the stabilization

target is inflexible.

The third welfare loss is also new and present only with uncertainty. We show

that stabilization targets force overly stringent policy responses to transient shocks.

For example, when a random weather fluctuation causes the environmental variable

to exceed the target, stabilization expenditures must rise in response. However, the

environmental variable naturally reverts back to the target as the shock dies out.

Therefore, the stabilization target forces a costly policy response that provides only

a relatively mild benefit of causing the environmental variable to return to the target

more quickly than would occur naturally.

We show that stabilization targets cause a welfare loss of about 5%, of which 25%

is due to inflexibility and overly stringent responses to transient shocks. Further, this

result is relatively insensitive to the maximum probability of exceeding the target.

There is a long history in the environmental economics literature of evaluating the

welfare costs of sub-optimal policies. However, most previous work either compares

market with inefficient, non-market based regulation (see for example, Stavins 1993),

or evaluates whether or not a given sub-optimal policy improves welfare relative to

3See Kelly and Kolstad (1999a) for a survey of integrated assessment models.
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a baseline without the policy (see for example, Portney, Parray, Gruenspecht, and

Harrington 2003). In contrast, the welfare losses we focus on arise solely due to

uncertainty. Indeed, under certainty one could always choose a temperature target

high enough so that no welfare loss ensues. However, with uncertainty stabilization

target become inflexible, causing welfare loss.

Stabilization targets are ubiquitous in climate change policy. Policy makers rec-

ommending a 2◦C stabilization target include the European Commission (2007), the

Copenhagen Accord (2009), and the German Advisory Council on Global Change

(Schubert et al. 2006). Many atmospheric scientists (Hansen 2005, O’Neill and Op-

penheimer 2002) also advocate for the 2◦C limit; Hansen in particular is a vocal

advocate. Other climate-related stabilization targets are also common. For exam-

ple, the German Advisory council recommends limiting sea level rise to at most 1

meter and ocean acidification to at most 0.2 units of pH below its preindustrial level.4

Economists (Nordhaus 2007, Richels, Manne, and Wigley 2004) then compute the

least cost GHG emissions path which stabilizes the climate at 2◦C under certainty.

However, it is well known that parameters of the climate system are uncertain. For

example, the climate sensitivity, which measures the elasticity of the global mean

temperature with respect to GHG concentrations, is notoriously uncertain (Inter-

governmental Panel on Climate Change 2007, Kelly and Kolstad 1999b). Therefore,

following the least cost pathway calculated under certainty can, under uncertainty

actually result in climate change which exceeds the target by a considerable mar-

gin.5 Indeed, a branch of the literature focuses on the likelihood of meeting current

targets for various emissions scenarios proposed by policy makers, or what emissions

paths satisfy the target for various values of the climate sensitivity. For example,

Hare and Meinshausen (2006) and Keppo, O’Neill, and Riahi (2007) compute tem-

perature changes for various emissions scenarios; Harvey (2007) proposes allowable

4Some authors refer to a policy which stabilizes GHG concentrations at a particular level as a
stabilization target (see for example den Elzen, Meinshausen, and van Vuuren 2007). Policy groups
such as 350.org also favor a target GHG concentration. Since carbon cycle uncertainties are smaller
than uncertainty in climate models, our results are less applicable to GHG concentration targets.
Nonetheless, our results make clear that a fixed GHG target is not optimal because optimal GHG
concentrations change with the resolution of uncertainty.

5Paradoxically, stabilization targets evolved as method of dealing with uncertainty in integrated
assessment models. The idea was to propose limits on temperature changes which, if exceeded,
would cause damages high enough so that uncertainties in the cost of abatement and other param-
eters are less relevant.
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CO2 emissions paths for different ranges of the climate sensitivity. One robust result

from the aforementioned studies is that emission paths following the upper bound-

ary of emissions scenarios are less likely to meet targets than those which follow the

lower boundary. The above research provides an important first step in estimating

the range of feasible probabilities of exceeding the target, given current information.

Here we take the next step and consider stabilization targets with uncertainty and

learning.

Implementing a stabilization target with uncertainty is non-trivial. For any given

emissions policy time path, a possibility exists such that the climate sensitivity will

be high enough so that the temperature exceeds the target. We show that controlling

temperature to the degree implied by a stabilization target often requires a very high

emissions abatement rate. For example, we find that if the climate sensitivity is such

that a doubling of GHGs causes a 3.9°C temperature change, rather than the prior

estimate of 2.8°C, the planner must raise the abatement control rate from 33% to

68% as early as 2015.

Uncertainty makes controlling the temperature more difficult. Learning, by re-

ducing uncertainty, allows the planner to more easily stay within the target by quickly

reducing emissions if new information indicates the climate sensitivity is higher than

previously thought. Therefore, learning allows the planner to move closer to the

target, and still remain below the target with the same probability. However, Kelly

and Kolstad (1999b), Leach (2007), and Roe and Baker (2007) show that learning

about the climate sensitivity is a slow process, due in part to the random weather

fluctuations. Therefore, the optimal near term policy is similar to the case without

learning. Our model has Bayesian learning about the climate sensitivity, and random

weather fluctuations. We find that learning moves the optimal target under uncer-

tainty closer to the target under certainty, but the effect is marginal since learning

is slow.

Lorenz, Schmidt, Kriegler, and Held (2012) and Schmidt, Lorenz, Held, and

Kriegler (2011) debate the magnitude of the value of information which allows more

precise control of the climate with probabilistic stabilization targets. These studies

use frameworks where learning occurs once and emissions paths are adjusted once.

Here learning is Bayesian and incremental: beliefs about unknown parameters and

decisions based on beliefs adjust each period as in Kelly and Kolstad (1999b). We
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show that a stabilization target increases the value of information, because the plan-

ner avoids accidentally exceeding the target, which is costly since once the target is

exceeded, abatement expenditures must rise to bring the temperature back to the

target.

Our integrated assessment model computes both the cost of emissions abatement

and the damages from higher temperatures. Therefore, we can calculate the welfare

cost of a stabilization target. We find that the expected welfare cost of stabiliza-

tion targets is about 5%, and can increase to 14% or more depending on how the

uncertainty resolves. The welfare cost is not sensitive to the choice of the maximum

probability of staying under the target. The probability of exceeding the target in

any period depends mostly on factors such as the resolution of the uncertainty and

the climate inertia, and is affected very little by the current emissions. Therefore,

the probability of staying under the target tends to be either zero or one and the

maximum allowable probability has little effect.

Other authors compute optimal emissions paths under certainty which keep tem-

peratures below a threshold, beyond which specific irreversible and disastrous con-

sequences occur. Keller et al. (2005) propose emissions paths which prevent coral

bleaching or the disintegration of ice sheets. Kvale et al. (2012) propose emission

paths which limit ocean level rise and acidification. Additionally, Bruckner and

Zickfield (2009) compute emission paths that reduce the likelihood of a collapse of

the Atlantic thermohaline circulation. The aforementioned studies employ the tol-

erable windows approach, an inverse modeling method that asks: in order to limit

GHG concentrations or warming below a threshold at all future dates, how should

emissions be controlled in every period moving forward?6 Models with irreversibili-

ties that compute emissions paths under certainty overestimate optimal emissions if

the climate system is uncertain, because under certainty no insurance motive exists.

While we do not specifically model irreversibilities, our model combines convex dam-

ages with uncertainty. Therefore, the planner insures against very high damages by

pursuing a conservative emissions policy.

6An exception is Lemoine and Traeger (2013), who consider various climate tipping points in an
environment with uncertainty and learning.
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2 Model

We consider an infinite horizon version of the Nordhaus DICE model (Nordhaus

2007). In the DICE model, economic production causes GHG emissions, which raise

the global mean temperature. Higher temperatures reduce total factor productivity

(TFP). The social planner chooses capital investment and an emissions control rate

to maximize welfare. Our model has four differences from the DICE model. First,

we use an annual time step rather than the 10 year step in DICE. Second, we use

the simplified model of the atmosphere/climate due to Traeger (2012), in which

the ocean temperature changes exogenously and GHG concentrations immediately

mix evenly in the atmosphere. Third, the model is stochastic, with an uncertain

climate sensitivity and random weather shocks that obscure the effect of GHGs

on temperature. The planner learns about the uncertain climate sensitivity over

time by observing temperature changes. Fourth, we impose stabilization targets to

ascertain their effects on welfare, temperature, and economic growth. Sections 2.1-

2.2 describe the economic and climate models briefly (refer to Traeger 2012, for a

detailed discussion).

2.1 Economic system

The global economy produces gross output, Q, from capital K and labor L according

to:

Qt = A (t)Kγ
t L (t)1−γ . (1)

Here variables denoted as a function of t, such as L (t) and TFP, A (t), grow exoge-

nously. Appendix A.1 gives the growth rates for all variables which change exoge-

nously over time. Variables with a t subscript are endogenous.

An emissions abatement technology exists which can reduce emissions by a frac-

tion xt at a cost of Λ (xt) = Ψ (t)xA2

t fraction of gross output. Here Λ is the cost

function and Ψ (t) is the exogenously declining cost of a backstop technology which

reduces emissions to zero. Further, increases in global mean temperatures above

preindustrial levels, Tt, reduce TFP by a factor 1/ (1 +D (Tt)), where D (Tt) = b1T
b2

is the damage function. Therefore, output net of abatement spending and climate
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damages, Yt, is:

Yt =
1−Ψ (t) xa2

t

1 + b1T
b2
t

A (t)Kγ
t L (t)1−γ . (2)

Let Ct be consumption and let capital depreciate at rate δk. Then the resource

constraint is:

Yt = Ct +Kt+1 − (1− δk)Kt. (3)

Period utility is constant relative risk aversion:

u =
c1−η − 1

1− η
. (4)

The discount factor for future utility is exp (−δu), where δu is the pure rate of

time preference.

2.2 Climate System

Current period GHG emissions, Et, from production depend on the planner’s choice

of control rate xt, the emissions intensity of output σ (t), exogenous emissions from

land use changes, B (t), and gross global output:

Et = (1− xt) σ (t)Qt +B (t) . (5)

The stock of GHG equivalents, Mt, depends on current period emissions and the

natural decay rate of GHGs into the biosphere and ocean. Let δm (t) denote the

decay rate (which changes exogenously) and MB denote the stock of GHGs during

pre-industrial times. Then Mt accumulates according to:

Mt+1 −MB = (1− δm (t)) (Mt −MB) + Et. (6)

We normalize GHG stocks relative to pre-industrial. Let mt ≡
Mt

MB
, then:

mt+1 − 1 = (1− δm (t)) (mt − 1) +
Et

MB
. (7)

Radiative forcing of GHGs, Ft, increases the temperature:

Ft+1 = Ω log2 (mt+1) + EF (t) . (8)
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Here EF (t) is forcing from other sources, which grows exogenously.

The global mean temperature evolves according to:

T̂t+1 = T̂t +
1

α

(

Ft+1 −
T̂t − Γ

λ̃
+ ξ

(

Ô − T̂
)

(t)− Γ

)

+ ν̃t+1 (9)

Here T̂ and Ô denote the absolute global atmospheric and oceanic temperatures in
◦C, respectively; α is the thermal capacity of the upper oceans; Γ is the pre-industrial

atmospheric temperature; ξ is a coefficient of heat transfer from the upper oceans to

the atmosphere; ν̃t ∼ N(0, 1/ρ) is the random weather shock; λ̃ is the uncertain cli-

mate sensitivity. We assume the ocean-atmosphere temperature differential changes

exogenously.

The climate sensitivity λ̃ describes how sensitive the atmospheric temperature

is to GHG concentrations, and is the subject of great uncertainty. Not only is the

climate sensitivity unknown, but the shape of its uncertainty is unknown.

Let ∆T2× be the steady state atmospheric temperature deviation from pre-industrial

time resulting from a doubling of GHG concentrations, also relative to pre-industrial

levels. Then:

∆T2× = Ωλ̃. (10)

Since the climate sensitivity is uncertain, ∆T2× is also uncertain. Stocker, Dahe, and

Plattner (2013) estimates that ∆T2× is most likely to lie somewhere between 1.5◦C

and 4.5◦C. The initial mean of the prior distribution is 2.8, taken from the mean of

estimates in the atmospheric science literature (Roe and Baker 2007).

Let Tt = T̂t − Γ and Ot = Ôt − Γ be the current deviations from pre-industrial

temperatures, β̃1 = 1 − 1/λ̃α denote the climate feedback parameter, β2 = 1
α
, and

β3 = ξ/α. The climate system simplifies to:

Tt+1 = β̃1Tt + β2Ft+1 + β3 (O − T ) (t) + ν̃t+1. (11)

Since λ̃ is uncertain, the climate feedback parameter is also uncertain. The climate

feedback parameter is increasing in λ̃. For example, if GHG induced warming reduces

ice cover, which reduces the amount of sunlight reflected back into space (the albedo

effect), causing still higher temperatures, we have a positive feedback (higher β̃1 and
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λ̃).7 The climate feedbacks and therefore the climate sensitivity is highly uncertain

(Stocker, Dahe, and Plattner 2013).

2.3 Learning

Assume the planner has prior beliefs that the climate feedback parameter is drawn

from a normal distribution with mean µt and precision ηt. The weather shock ν occurs

at the beginning of each period, before the control rate is chosen. We combine the

two uncertain terms in equation (11) and denote the sum H̃:

H̃t+1 = β̃1Tt + ν̃t+1. (12)

Since H̃t is the sum of two normally distributed random variables, it is also normally

distributed with mean µtTt and variance σ2
H̃

= T 2
t /ηt + 1/ρ. The planner observes

Ht+1 = Tt+1 − β2Ft+1 − β3 (O − T ) (t) at the beginning of t + 1 and updates beliefs

of β̃1. Bayes’ Rule implies that the posterior distribution of β̃1 is also normal, with

mean and precision:

µt+1 =
ηtµt + ρHt+1Tt

ηt + ρT 2
t

, (13)

ηt+1 = ηt + ρT 2
t . (14)

Perfect information implies that µ = β̃1 and η = ∞. The information set used by

the planner to select xt includes µt.

2.4 Recursive Problem

The planner chooses emission abatement each period to maximize social welfare.

W = max
kt+1,xt

E

[

∞
∑

t=0

exp (−δut)Ltu

(

Ct

Lt

)

]

. (15)

Let k ≡ K/
(

LA
1

1−γ

)

denote normalized capital per productivity adjusted person

(Kelly and Kolstad 2001, Traeger 2012) and the same for y, and s = [k, T,m, t, µ, η].

The recursive version of the social planning problem is:

V (s) = max
k′,x∈[0,1]







u (c) + β (t)

∞
∫

−∞

V [s′]N

(

µT,
T 2

ηt
+

1

ρ

)

dH̃







, (16)

7Other feedbacks include changes in cloud cover and water vapor.
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subject to:

T ′ = β2F
′ + β3 (O − T ) (t) + H̃ ′, (17)

F ′ = Ω log2 (m
′) + EF (t) , (18)

m′ = 1 + (1− δm (t)) (m− 1) +
E

MB
, (19)

E = (1− x) σ (t)A (t)
1

1−γ L (t) kγ +B (t) . (20)

µ′ =
ηµ+ ρH̃ ′T

η + ρT 2
, (21)

η′ = η + ρT 2. (22)

t′ = t+ 1. (23)

Equation (16) condenses the double expectation over β̃1 and ν̃t+1 into one expectation

over the random variable Ht+1. Appendix A.1 gives the equations which govern the

evolution of variables that change exogenously over time. Therefore time, t, is a state

variable. The discount factor accounts for growth in population and productivity.

Because the growth rates change over time, the normalized discount factor β (t) is

not constant, but is exogenous.

In the model, two state variables, t and η, are non-stationary. Therefore, the

computational solution replaces the precision η with the variance 1/η, and replaces

time with a bounded, monotonic increasing function.8 Table 1 gives parameter values

and definitions for the above problem.

2.5 Stabilization Targets

The probabilistic stabilization target is a constraint on temperature which satisfies:

Pr (Tt+1 ≥ T ∗) ≤ ω, ∀t. (24)

A pure stabilization target is a special case of equation (24) with ω = 0, if ω = 1 the

constraint is always satisfied. In period t a single constraint exists which restricts

the probability that Tt+1 ≥ T ∗.

8See for example, Kelly and Kolstad (1999b) or Traeger (2012).
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The stabilization target is effectively a constraint on the control rate x, since x

affects Tt+1. Rewriting the left hand side of (24) gives:

Pr (Tt+1 ≥ T ∗) = Pr
(

β2Ft+1 + β3 (O − T ) (t) + H̃t+1 ≥ T ∗

)

, (25)

= Pr
(

H̃t+1 ≥ T ∗ − β2Ft+1 − β3 (O − T ) (t)
)

, (26)

= 1− NCDF





(T ∗ − β2Ft+1 − β3 (O − T ) (t)− µtTt)
√

T 2
t

ηt
+ 1

ρ



 . (27)

Here NCDF is the cumulative distribution function of the standard normal distribu-

tion. Let:

Pt+1 ≡ β2Ft+1 + β3 (O − T ) (t) + µtTt, and (28)

σH,t ≡

√

T 2
t

ηt
+

1

ρ
(29)

be the mean and standard deviation of Tt+1, respectively, then:

Pr (Tt+1 ≥ T ∗) = 1−NCDF

[

T ∗ − Pt+1

σH,t

]

. (30)

Constraint (24) is therefore equivalent to:

NCDF

[

T ∗ − Pt+1

σH,t

]

≥ 1− w, (31)

T ∗ − Pt+1

σH,t

≥ NCDF−1 [1− w] , (32)

Ft+1 ≤
1

β2

(

T ∗ − β3 (O − T ) (t)− µtTt − σH,t · NCDF−1 [1− w]
)

, (33)

xt ≥ 1 +
MB

σ (t)L (t)A (t)
1

1−γ t kγ
t

(

1 + (1− δm (t)) (mt − 1) −

exp

{

log (2)

Ωβ2

[

T ∗ − β3 (O − T ) (t)− µtTt − σH,t ·NCDF−1 [1− w]

]})

.(34)
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xt ≥ PC (st, T
∗, ω) . (35)

Here PC is the right hand side of (34). A stabilization target is therefore equivalent

to a minimum control rate.

Let θ denote the Lagrange multiplier on the probabilistic constraint. The recur-

sive version of the problem, which includes the probabilistic constraint, is then:

V (s) = max
k′,x∈[0,1]







u (c) + θ

[

x− PC (s, T ∗, ω)

]

+ β (t)

∞
∫

−∞

V [s′]N (µT, σH) dH̃







,(36)

subject to equations (17)-(23). In period t, the planner anticipates facing constraints

in periods t + i, which restrict the probability that Tt+i+1 ≥ T ∗ for all i = 1, 2, . . ..

Therefore, constraints in period t on the probability that Tt+i+1 ≥ T ∗ are not nec-

essary, since the planner anticipates choosing a control rate in t + i such that these

constraints are satisfied.

3 Feasibility

3.1 A Feasible Constraint

Assuming emissions cannot be negative, constraint (35) may not be feasible; the set

of x ∈ [0, 1] which also satisfy (35) may be empty, violating a necessary condition for

the existence of a maximum. The problem is not feasible when PC (s, T ∗, ω) > 1,

since the maximum control rate is one. This occurs when the temperature rises

close to or above T ∗. In this case, given the inertia of the climate, even a control

rate of 1 cannot reduce the temperature enough to satisfy the constraint. Feasibility

is also affected by ω: as ω → 1, the planner is allowed to exceed the target with

high probability, and so the model has a feasible solution even if the temperature is

relatively high.

To solve infeasibility problem while keeping with the spirit of a stabilization
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target, we assume that x = 1 is always feasible.9 That is, we use:

V (s) = max
k′,x∈[0,1]

{

u (c) + θ

[

x−min {PC (s, T ∗, ω) , 1}

]

+

β (t)

∞
∫

−∞

V [s′]N (µT, σH) dH̃







, (37)

subject to equations (17)-(23).

Problem (37) always has a feasible solution. Further, when the probabilistic

constraint is accidently exceeded due to a large random weather shock or an unex-

pectedly high realization of β1, the planner must return as quickly as possible (by

setting x = 1) to the range where PC < 1. This is in keeping with the idea that

exceeding the target carries risk of high damages and should be avoided.

3.2 Tightness of the Constraint

Here we calculate probabilities in period t + i, ωmin
t+i and ωmax

t+i , which are the proba-

bilities of exceeding the target when the control rate is set to 0 and 1, respectively,

for all i, conditional on current information. Values of ω between ωmin
t+i and ωmax

t+i are

feasible policies from periods t to t+ i. For ω > ωmax
t+i , the constraint is non-binding

at period t + i, since the planner can set xt+i = 0 for all periods up to t + i and

still expect to satisfy the constraint. Conversely, any value of ω < ωmin
t+i implies

PC (st+i) > 1, even if the control rate is set to one immediately for all periods up

to t + i. Further, by doing this exercise we glean intuition about how ω affects the

control rate, which helps to explain the results in the next section. The tightness of

the constraint may equivalently be controlled by altering T ∗, but we assume here T ∗

is a given policy.

The highest possible probability for which Tt+1 ≥ T ∗ occurs with a zero control

rate. In this case, we have from (19):

Emax
t = σ (t)A (t)

1

1−γ L (t) kγ
t +B (t) , (38)

9Other options are possible, but less attractive. Ignoring infeasible constraints is not attractive
because the planner would have an incentive to push the climate change as close as possible to T

∗

in the hope that the climate will go over the target so that the constraint can be ignored. The
other option would be to include a penalty function for going over T ∗. However, a penalty for high
temperatures already exists (the damage function), so it is unclear what the penalty represents.
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mmax
t+1 − 1 = (1− δm (t)) (mt − 1) +

Emax
t

MB
, (39)

Fmax
t+1 = Ω log2

(

mmax
t+1

)

+ EF (t) . (40)

Next, from (17):

Tmax
t+1 = H̃t+1 + β2F

max
t+1 + β3 (O − T ) (t) , (41)

We can then calculate ωmax as:

ωmax
t+1 = Pr

(

Tmax
t+1 ≥ T ∗

)

, (42)

ωmax
t+1 = Pr

{

H̃t+1 ≥ T ∗ − β2F
max
t+1 − β3 (O − T ) (t)

}

, (43)

ωmax
t+1 = 1−NCDF

(

T ∗ − Pmax
t+1

σH,t

)

, where (44)

Pmax
t+1 ≡ µtTt + β2F

max
t+1 + β3 (O − T ) (t) . (45)

Since the difference between the target and the expected temperature in period

t + 1 under maximum emissions is not infinite, we have immediately from (44) that

ωmax < 1.

Analogously, the minimum probability of exceeding the constraint occurs when

the control rate is one.

Emin
t = B (t) , (46)

mmin
t+1 − 1 = (1− δm (t)) (mt − 1) +

Emin
t

MB
, (47)

Fmin
t+1 = Ω log2

(

mmin
t+1

)

+ EF (t) , (48)

Tmin
t+1 = H̃t+1 + β2F

min
t+1 + β3 (O − T ) (t) , (49)

ωmin
t+1 = 1− NCDF

(

T ∗ − µmin
t+1

σH,t

)

, (50)

µmin
t+1 = µtTt + β2F

min
t+1 + β3 (O − T ) (t) . (51)

From (44) and (50), current emissions have only a small effect on the probability

of exceeding the target. First, current emissions are small relative to concentrations
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that have built up over centuries. Second, the forcing equation is logarithmic, further

limiting the effect of current emissions on the current temperature. Indeed, near

term temperatures are largely a function of inertia in the climate and total GHG

concentrations.

The set of probabilities achievable with an interior control rate expands over

time, since the planner can lower future temperatures via a sustained reduction

in emissions. On the other hand, the uncertain climate feedback parameter has a

multiplicative effect over time. Therefore, future temperatures are more uncertain

and therefore are more difficult to control. We can calculate ωmin
t and ωmax

t over

time for the given parameter values via Monte Carlo simulation. Figure 1 plots the

results.
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Figure 1: Probability of exceeding T ∗ = 2◦C, given various emissions policies. The
graph is the fraction of 1000 simulations, each of which draw random realizations of
β1 (from the prior distribution) and νt, for which the temperature exceeds the target
in the given year, for the given control policy.

For the first period, the probability of exceeding 2°C is nearly zero. Hence the

current probabilistic constraint is non-binding for almost any ω. Given current in-
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formation, however, there exists an approximately 15% chance that the 2°C target

will eventually be exceeded, even with an immediate, permanent drop to zero emis-

sions. Therefore, values of ω < 0.15 are infeasible given today’s information. An

immediate, permanent, 75% drop in endogenous emissions below 2005 levels violates

the constraint for any ω < 0.36.10

Figure 1 also shows that a zero emissions policy can eventually overcome the

inertia in the climate and reduce the probability of exceeding 2°C to near zero. A

policy of zero emissions over time will slowly return the GHG concentrations to

preindustrial levels (see equation 7).

The planner can choose an emissions policy over a period of decades such that

most probabilistic constraints may be eventually satisfied with interior control rates,

given current information. Nonetheless, the planner has little control over the climate

on a year-to-year basis. Therefore, regardless of the emissions policy, in any given

period the planner will likely find the probabilistic constraint to be either non-binding

or infeasible. To see this, we compute the optimal unconstrained policy, and then

simulate the unconstrained solution assuming the prior is correct. Figure 2 plots the

unconstrained solution, along with the probabilistic constraint.

10An immediate 75% drop below 2005 emissions is a far stricter policy than, for example, a 350
ppm GHG target or the Kyoto agreement of 7% below 1990 levels.
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Figure 2: Probability of exceeding T ∗ = 2◦C, and unconstrained optimal policy, true
∆T2× = 2.8. The unconstrained optimal policy is the average of 1000 simulations
using the solution to (16). The probabilistic constraint sets ω = 0.5.

Figure 2 shows the probabilistic constraint will bind in 2035 if the unconstrained

optimal policy is implemented and the true climate sensitivity equals the prior. No-

tice, however, that the probability of exceeding the constraint is essentially zero in

years up to 2034, and then nearly one after. Once the temperature is sufficiently

close to the 2◦C maximum, climate inertia causes the temperature to exceed the

target with probability one regardless of the abatement policy.

Further, higher values of the climate sensitivity imply the temperature has more

inertia. If instead the true value of the climate sensitivity turns out to be relatively

high, then it is very likely that climate inertia will cause the temperature to exceed

the constraint, even if emissions immediately and permanently drop to zero.

It is also clear that altering the probability of exceeding the constraint, ω, will

have little effect: for most of the state space, the probability of exceeding the target is

either zero or one, so it is irrelevant if the constraint allows the target to be exceeded

with probability 0.5 or 0.6. This intuition provides a foundation for many of the
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results in the next section.

4 Results

4.1 Optimal policy and uncertainty

Appendix A.3 details the solution method. Here we analyze how the optimal abate-

ment policy varies with the probabilistic target and the uncertainty. Figure 3 plots

the optimal abatement policy for two different true values of β1: a high value in which

a doubling of GHGs causes a steady state temperature change of ∆T2× = 3.9◦C, and

the prior for which ∆T2× = 2.8.
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Figure 3: Emissions control rate for ∆T2× = [2.8, 3.9], unconstrained and constrained
with ω = 0.5. Mean of 1500 simulations.

In both cases, the probabilistic constraint increases the abatement rate. The

constraint increases the abatement rate initially as the planner must begin reducing

emissions immediately to prevent the target from eventually being exceeded. The

initial abatement rate with the probabilistic constraint is 31%, in contrast to the
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unconstrained initial abatement rate of 24%. As new information arrives, when

∆T2× = 3.9, the planner updates the prior and therefore must increase the abatement

rate to meet the target. With ∆T2× = 3.9, the constrained planner must dramatically

increase the abatement rate to 68% by 2015. In contrast, when ∆T2× = 2.8, the

constrained planner has more time to slow the climate inertia, and the abatement

rate is only 33% in 2015.

The difference between the constrained and unconstrained control rates in 2010-

2060 is much greater when ∆T2× = 3.9. When ∆T2× = 3.9, the optimal steady

state temperature rises. Since the planner estimates the climate is more sensitive

to GHG concentrations, the expected future temperature increases. Therefore, the

abatement expenditure required to keep the temperature at a given level increases,

but the benefits are unchanged. In contrast, by definition, the probabilistic constraint

employs a fixed target. Therefore, the difference between the unconstrained and

constrained policies rises with ∆T2× because the constraint is inflexible: T ∗ and ω

cannot adjust as new information arrives.

Figure 4 plots the average temperature changes for the above two cases.
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Figure 4: Temperature change for ∆T2× = [2.8, 3.9], unconstrained and constrained
with ω = 0.5. Mean of 1500 simulations.

When ∆T2× = 2.8, the unconstrained optimal temperatures cross the target in

about 30 years. Therefore, the planner has more time to slow climate change and

can spread out the increase in the control rate. In contrast, when ∆T2× = 3.9,

the unconstrained temperature crosses the target in only 14 years. Therefore, in the

constrained case, the abatement rate must rise more quickly to keep the temperature

below the target. Notice the unconstrained optimal temperature rises when ∆T2×

is higher as the planner responds to the higher required expenditure to keep the

temperature at a given level by letting the temperature rise more. However, the

target stays fixed at 2°C.

Next, we examine how abatement policy and the temperature respond to changes

in the probability of exceeding the target, ω. We solve the model (37) for various

values of ω, and simulate each solution 1500 times. Figure 5 reports the mean

abatement control rate for each solution, assuming the true value equals the prior.
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Figure 5: Optimal constrained abatement policy. Each curve is the mean of 1500
simulations, with true ∆T2× = 2.8 and the reported value of ω.

In Figure 5, ω = 1 corresponds to the unconstrained optimum. The abate-

ment rate drops over the period 2005-2010. Kelly and Tan (2013) show that, while

overall learning the climate sensitivity is a slow process, the planner can rule out

extreme values of ∆T2× relatively quickly if the true value is close to the prior.

Therefore, learning quickly eliminates one motivation for early abatement- to insure

against potentially extreme values of the climate sensitivity. The control rate then

rises over time as abatement becomes less expensive, uncontrolled emissions rise due

to economic growth, and wealthier future households are more willing to purchase

abatement.

The constraint forces x significantly higher, and the control rate rises as the

maximum probability of exceeding the target (ω) becomes smaller. Nonetheless,

the maximum probability of exceeding the constraint has only a small effect on the

optimal abatement rate. From Figure 2, the probability of exceeding the constraint

is zero or one over most of the state space, so the constraint changes little with ω.

Figure 6 shows the temperature change for the same simulations as Figure 5.
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Figure 6: Optimal constrained temperature. Each curve is the mean of 1500 simu-
lations, with true ∆T2× = 2.8 and the reported value of ω.

The unconstrained optimal maximum mean temperature change is about 3.1°C,

so the 2° target is about 1.1 degrees too stringent, on average.11 Smaller values of

ω imply a smaller maximum mean temperature change. At ω = 0.25, the maximum

mean temperature change is 1.8°C. The temperature is changing randomly with

each simulation, so to keep the probability of exceeding 2° below 25% requires a

temperature below 2°. The weather shock is mean zero, therefore the probability of

exceeding 2° is 50% when the temperature is at the target.

However, the maximum mean temperature in general is not very sensitive to ω. As

shown in Figure 2, for most of the temperature range, the realization of the uncertain

climate sensitivity causes the temperature to exceed the target with probability one

or zero irrespective of ω. If the climate sensitivity is sufficiently high, the temperature

exceeds the target with probability one, causing zero emissions regardless of ω. If the

climate sensitivity is sufficiently low, the cost of reducing the temperature becomes

11Our model is based on the Nordhaus DICE model, which has no tipping points, irreversibilities,
etc. Other models with these features may feature smaller optimal maximum temperature changes.
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inexpensive and the unconstrained optimum falls below 2°C. In this case, emissions

equal the unconstrained optimum regardless of ω. Therefore, much of the distribution

of uncertainty over the climate sensitivity results in emissions which are independent

of ω. Anticipating that future emissions and utility will be likely independent of ω,

the planner sets near term policy also largely independent of ω.

In addition, learning narrows the uncertainty eventually and the weather shocks

have a standard deviation of only 0.11°C. Therefore, if all uncertainty is resolved,

ω = 0.25 corresponds to a maximum mean temperature of 1.93°C, whereas ω = 0.5

corresponds to a maximum mean temperature of 2°C, a small difference.

Figure 6 represents an ideal case where learning confirms the prior. Choosing

the true ∆T2× randomly from the prior distribution results in 25% of simulations

exceeding 2° when ω = 0.25. For example, Figure 7 plots average temperature

change over time as a function of ω when ∆T2× = 5.12

12Weitzman (2009) using IPCC data assigns prior probability that ∆T2× ≥ 5 = 0.07.
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Figure 7: Optimal constrained temperature. Each curve is the mean of 1500 simu-
lations, with true ∆T2× = 5 and the reported value of ω.

The mean optimal unconstrained temperature change rises to 3.77°C, indicating

the optimal unconstrained policy is sensitive to climate sensitivity. The mean opti-

mal unconstrained temperature change increases because when the climate is more

sensitive to GHG concentrations, the abatement expenditures required to keep the

temperature at a given level rises, but the benefits are unchanged. In contrast, the

target is by definition inflexible and does not vary with the resolution of uncertainty.

The mean maximum temperature change falls with ω as in Figure 6, but is not very

sensitive to ω. Notice that when ∆T2× = 5, on average the temperature exceeds

the target for about 15 years, regardless of ω. From the planner’s point of view,

∆T2× = 5 is unexpectedly high, so this case is one realization in which the 2°C

limit is crossed. Integrating over all possible realizations of ∆T2× yields simulations

which exceed the target with probability equal to ω. Once the target is exceeded,

the planner must set x = 1 until the temperature returns to the target. Therefore,

the planner incurs an additional welfare cost here in that the planner must return to

the target faster than is optimal.
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4.2 Welfare Loss

The probabilistic constraint at least weakly restricts the choice set for the planner,

and therefore must result in a welfare loss.13 Our interest is how the welfare loss

varies with ω and how uncertainty affects the welfare loss.

Figure 8 graphs the welfare loss as a percentage of the welfare of the unconstrained

problem, ω = 1.
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Figure 8: Welfare loss as a function of ω. The graph plots 1 − v (s0;ω) /v (s0, 1),
where v is the solution to (36), as a function of ω.

From the graph, the unconstrained problem has no welfare loss, and welfare loss is

nearly constant in ω. Welfare loss is about 5% of the unconstrained policy, regardless

of ω. For most of the state space, the probability of exceeding the target is either

zero or one regardless of ω, and so the optimal temperature paths do not vary much

13We are following, for example, Nordhaus (2007), who imposes a 2°C constraint a version of the
model with no uncertainty, and then calculates the welfare loss. Other authors use CEA and replace
the damage function with the probabilistic constraint. The motivation for reducing emissions then
arises from the constraint, rather than the damage function. To the extent that these are different,
using CEA would only add to the welfare loss calculated here.
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with ω. Nonetheless, the welfare loss increases slightly as the constraint becomes

more restrictive (ω falls).

Figure 9 plots the welfare loss for various true values of ∆T2×.
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Figure 9: Welfare loss as a function of ω and the true ∆T2×.

Welfare loss increases with the true value of ∆T2×, rising to 14% or more when

∆T2× = 5.

When the arrival of new information indicates the climate sensitivity is higher

than expected, the unconstrained planner learns that the cost of keeping the temper-

ature at a given level has risen. The planner increases abatement in response to the

higher expected damages. Nonetheless, the high climate sensitivity implies temper-

ature is on a higher trajectory. In contrast, the constrained planner must increase

abatement still further, to keep the temperature on the same trajectory despite the

high climate sensitivity, because the constraint does not change. Therefore, for high

∆T2×, the constraint has a welfare loss because the constraint is inflexible.

We can decompose the total welfare loss into a welfare loss caused by the target

being set too low under certainty (as in Nordhaus 2007), a welfare loss caused from
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inflexibility of the constraint (new here), and a welfare loss caused by the probabilistic

constraint over-reacting to transient shocks (new here).

Let x̂ (s) be the optimal unconstrained abatement policy derived from v (s, 1, T ∗).

Note that x̂ is independent of T ∗ since ω = 1. Further, let T (x̂ (st) , st, β1, νt) be a

temperature path associated with the optimal unconstrained policy. Finally, let:

T̂t = E [T (x̂ (st) , st, β1, νt)] , (52)

T̂ = max T̂t. (53)

So T̂ is the maximum over time of the mean temperature path. If the target was

T ∗ = T̂ , then the constraint just binds on average, and any remaining welfare loss is

due to inflexibility and over-reaction. That is:

Loss =
V (s0; 1, T

∗)− V (s0;ω, T
∗)

V (s0; 1, T ∗)
, (54)

=
V (s0; 1, T

∗)− V
(

s0, ω, T̂
)

V (s0; 1, T ∗)
+

V
(

s0, ω, T̂
)

− V (s0;ω, T
∗)

V (s0; 1, T ∗)
, (55)

= Loss, target too low + Loss, inflexibility and over-reaction. (56)

Calculating the above losses, we find that about 25% of the loss is due to inflexi-

bility of the constraint and over-reaction to transient shocks. Therefore, uncertainty

exacerbates the welfare cost of probabilistic targets.

5 Conclusions

In this paper, we evaluated the common policy recommendation of a 2°C temperature

limit in the context of an integrated assessment model with uncertainty and learning

about the climate sensitivity. Because climatic processes are still highly uncertain

and subject to inertia, it is difficult to envision controlling the climate to the precise

degree implied by the 2°C target. Indeed, we show that even with an immediate

reduction of all GHG emissions to zero, the temperature eventually exceeds 2°C

27



with probability 0.15. Further, we show that as uncertain climatic processes evolve,

the temperature randomly moves to a place where the 2° target is either impossible

to satisfy or is satisfied even with no abatement. Our results therefore cast doubt on

how workable a stabilization target is in an uncertain environment.

Further, we show that stabilization targets induce 3 welfare losses: first, the

stabilization target may be too low on average, inducing a welfare loss even in a model

with certainty. Second, with uncertainty, as new information arrives the optimal

temperature path adjusts. Because the stabilization target is by definition inflexible,

adhering to a stabilization target causes welfare loss. Third, as the climate randomly

evolves over time, the temperature will exceed the target for at least some periods.

In this case, the planner must set an excessively high control rate to immediately

return the temperature back to the target. We show that the welfare loss from all

the causes is on the order of 5%, at least 25% of which occurs only with uncertainty.

Our model may be extended in a number of ways. We could consider other targets

such as limit GHG concentrations to 350 ppm or limiting sea level rise or ocean

acidification. Our results will also likely extend to regulations other than climate

change. For example, some fisheries regulations try to achieve a particular stock of

fish, even though fish stocks are affected by many uncertain processes other than the

size of the catch. One may envision stabilization targets as providing some welfare

benefits outside the current model. For example, they could serve as a commitment

device to induce firms to invest in irreversible abatement capital.

Stabilization targets are easy to convey to the public in that a 2°C temperature

limit is easier to understand than, for example, a particular carbon tax. Since dam-

ages are a function of temperature, it is also easier to understand the impacts of 2°C

temperature limit. However, one must use caution in that a stabilization target may

convey the false impression that we have precise control over an uncertain climate

and that our understanding of the optimal temperature change will not change as

new information arises.
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A Appendix

A.1 Exogenous variables

The DICE model includes many variables which change exogenously over time. Fur-

ther, unlike DICE, we assume the ocean temperature also changes exogenously to

reduce the state space. Reducing the state space from seven to six variables sig-

nificantly reduces the computation time. Traeger (2012) presents a deterministic

DICE model with exogenous ocean temperature. Therefore, we take the evolution of

the exogenous variables directly from that study. For completeness, they are listed

below. We refer the reader to Traeger (2012) for details.

Population growth:

L (t) = L0 +
(

L̄− L0

)

(1− exp [−gLt]) . (57)

TFP growth:

A (t) = A0 exp

[

gA,0
1− exp [−δAt]

δA

]

. (58)

Backstop cost:

Ψ (t) =
σ (t)

a2
a0

(

1−
1− exp [gΨt]

a1

)

. (59)

Emissions intensity of output:

σ (t) = σ0 exp

[

gσ,0
1− exp [−δσt]

δσ

]

. (60)

Exogenous emissions:

B (t) = B0 exp [−δBt] . (61)

Decay rate of GHGs:

δm (t) = δ̄m +
(

δm,0 − δ̄m
)

exp [−δ∗mt] . (62)
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Exogenous forcing:

EF (t) = EF0 + 0.01 (EF (100)− EF0) ·min {t, 100} . (63)

Heat uptake from ocean:

O (t) = max
{

∆T1 +∆T2t+∆T3t
2, 0
}

. (64)

Discount factor:

β (t) = exp

[

−δu + (1− η) log

(

A (t+ 1)

A (t)

)

+ log

(

L (t+ 1)

L (t)

)]

. (65)

A.2 Tables
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Parameter Description Value
L0 Initial population 6514
L̄ Steady state population 8600
gL decline rate in population growth 0.035
A0 Initial TFP 0.0058
gA0 Initial TFP growth rate 0.0131
δA Decline rate in TFP growth rate 0.001
γ Capital share 0.3
δk Depreciation rate of capital 0.1
η Coefficient of risk aversion 2
δu Pure rate of time preference 0.015
gΨ Backstop cost growth rate -0.005
a0 Initial backstop cost 1.17
a1 Backstop cost parameter 2
a2 Cost convexity 2
b1 Damage function parameter 0.00284
b2 Damage function convexity 2
σ0 Initial emissions intensity 0.1342
gσ,0 Initial growth rate in σ -0.0073
δσ Decline rate in emissions intensity growth 0.003
B0 Initial exogenous emissions 1.1
δB decay rate in exogenous emissions 0.0105
MB Pre-industrial GHG stock (gigatons) 590
δ∗m decay rate in GHG decay rate 0.0083
δ̄m steady state GHG decay rate 0.01
δm,0 initial decay rate 0.014
EF0 Initial exogenous forcing -0.06
EF100 Exogenous forcing at t = 100 0.3
Ω Forcing coefficient 4.39
α Ocean heat uptake 0.2295−1

ξ Heat transfer coefficient from the ocean 0.07
∆T1 Ocean Temperature Parameter 0.7
∆T2 Ocean Temperature Parameter 0.02
∆T3 Ocean Temperature Parameter -0.00007
k0 Initial capital per TFP adjusted person 3.6261
T0 Current air warming above pre-industrial 0.76
m0 Current GHG stock, relative to pre-industrial 1.371
µ0 Mean of climate feedback prior distribution 0.65
η0 Precision of climate feedback prior distribution 0.13−2

ρ Precision of weather shock 0.11−2

Table 1: Description and values of model parameters.
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A.3 Solution

We solve the model by forming a grid of values for the state space, and then assuming

v takes the form of a cubic spline with continuous first and second derivatives. The

model can then be solved by assuming an initial spline, optimizing at each grid point,

and then using the solution to update the parameters of the spline.14

Once the model converges, we obtain the optimal decision rules, x (s) and k′ (s).

We then simulate the model using the decision rules and the transition equations

(17)-(23). The algorithm is:

1. Draw a true value of the climate feedback parameter β∗

1 from N [µ0,
1
η0
].

2. Given s0 compute x(s0) = x0.

3. Given x0, s0, β
∗

1 , and a randomly drawn weather shock ν0,, compute s1 from

transition equations.

4. Repeat steps (2)-(3) for np years.

5. Repeat steps (2)-(4) ns times with different draws for ν and β1.

6. Compute means over all simulations to get the expected value of each variable

in each time period.

The above algorithm gives the expected value of each variable conditional on the

prior distribution for β1. In some cases, we fix a value for β1 and vary on ν across

simulations. In this case, we obtain the expected value of each variable conditional

on β1.

14Kelly and Kolstad (1999b) give a detailed explanation of this solution method, except they use
neural networks rather than splines.
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