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Irreversibility and Learning in Global Climate Change Problem:
Linear and Single-Quadratic Models

1. Introduction

The concept of "irreversibility effect" is originally proposed by Arrow and Fisher (1974) and Henry
(1974). They have demonstrated that, for a binary-choice or linear utility model, if there is
uncertainty about the costs/benefits of the action choices and if one of the binary choices is
irreversible, a decision maker would find it beneficial to err her decision away from the irreversible
choice when there is a possibility of learning about the uncertainty in the future compared to the
case when there is no future learning. The "irreversibility effect" is regarded to be a distinct, though
related, feature from risk-aversion.

Subsequent literature has tried to extend the concept of "irreversibility effect" to non binary-choice,
non-linear model. It is found that the "irreversibility effect" always holds in the intertemporally
separable model, but may not hold universally when the model is intertemporally non-separable. A
number of sufficient and necessary conditions have been proposed to identify the criteria when the
"irreversibility effect" would hold (Epstein 1980; Freixas and Laffont 1984; Ulph and Ulph 1995;
Kolstad 1996; Ulph and Ulph 1997; Gollier et al. 2000; Narain et al. 2003)

This paper applies a modified version of Epstein's Theorem to a very simplified model of global
climate change problem. The results show that the conventional conception of the "irreversibility
effect" does not always hold even in the most simplistic cases (linear and single-quadratic models).
This indicates a fundamental flaw in the "irreversible effect" framework.

This paper argues that the key to better understanding of the issue is to recognize that the current
definition of "irreversibility effect" does not necessarily have anything to do with irreversibility per
se (Epstein 1980; Ulph and Ulph 1995; Ulph and Ulph 1997). The focus of the current definition of
"irreversibility effect" is on the intertemporal effects of future learning, not the effects of
irreversibility itself. Moreover, the intertemporal characteristic of the "irreversibility effect" also
implies that we need to take both types of intertemporal dependencies – i.e., constraint-dependency
and function-dependency – into consideration in our analysis.

This paper proposes a new framework in addressing the question based on two new concepts:
"learning effect" and "irreversibility bias". The paper illustrates how the "learning effect when no-
constraint" and the "irreversibility bias on the learning effect" work in creating the "learning effect /
irreversibility effect" in the irreversible case. Utilizing a special characteristic of the linear and
single-quadratic models, a simple approach that can be used to readily identify the direction of
"irreversibility bias" in these models is proposed. The results show that the direction of
"irreversibility bias", as well as the direction of "learning effect / irreversibility effect", is much
more dependent on the functional assumptions of the model than currently expected in the literature.
This indicates the importance of the functional dependency mechanism in influencing the direction
of "learning effect / irreversibility effect".

The rest of the paper is organized as follows. Section 2 describes a general model and the standard
definition of “irreversibility effect”. Section 3 and 4 explain the simplified model of global climate
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change problem and the methodology in analyzing the “irreversibility / learning effect”. Section 5
discusses the results of the analysis from the “irreversibility effect” perspective as well as the
inconsistencies found in the results. The new framework is proposed in Section 6. Detailed analysis
of two single-quadratic models is presented in Section 7 to illustrate how the new framework
operates. Section 8 discusses a simple approach (Simple Analysis 1) that can be used to identify the
direction of the “irreversibility bias” in linear and single-quadratic cases. Section 9 provides a
conclusion.

2. General Model and the Definition of "Irreversibility Effect"

Consider the following general two-period optimization problem (following Epstein, 1980):

(1) { }{ }
1 1 2 2 1

/ 1 2( )
[ ( , , )]Y Z Yx C x C x

J Max E Max E U x x Z
∈ ∈

 =   

where x1 and x2 are control variables for the two periods. C1 and C2(x1) are convex subset of the real
number line representing the permissible choices of x1 and x2, respectively. Z is a random variable
representing the uncertainty in the utility function. The true value of Z becomes known at the end of
period two. The decision maker, however, gains some knowledge about Z through the observation
of another random variable Y (an experiment) at the beginning of period two, before she makes her
decision on x2.

Y and Z are assumed to be discrete random variables with possible realizations (y1,…,yn) and
(z1,…,zm) respectively. Let q and r denote the decision maker's subjective probability vectors of Y
and Z, i.e., qj = Pr(Y=yj) and ri = Pr(Z=zi). After learning about Y, the planner updates her
expectation about Z following Bayes' Rule. Π denotes the posterior probability distribution after the
planner learns about Y (πij = Pr(z=zi| y=yj) and πj = (π1j,…,πmj)).

For simplicity, consider only the following two extreme experiments:

1. Full Learning (L): This is the case when Y = Z and the learning of Y would reveal all the
information of Z. Specifically, this means that n = m, πij = 1 when i = j and πij = 0 otherwise.
2. No Learning (NL): This is the case when Y and Z are perfectly independent and the learning of Y
reveals no information of Z. Specifically, this means that πij = ri for all j.

Also consider two possible sets of constraints on x1 and x2:

1. No-constraint Case (NC): C1 = {x1 ∈ ℜ} and C2 = {x2 ∈ ℜ}
2. Irreversible Case (IR): C1 = {x1 ∈ ℜ} and C2 = {x2 ∈ ℜ | x2 ≥ x1}.

Let x1
L-NC, x1

NL-NC, x1
L-IR, and x1

NL-IR denotes the optimal solutions of x1 for the full-learning & no-
constraint, no-learning & no-constraint, full-learning & irreversible, and no-learning & irreversible
cases, respectively. According to the literature, the "irreversibility effect" can be defined as follows:
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Definition 1. The irreversibility effect holds, if and only if C2(x1
L-IR) ⊇ C2(x1

NL-IR). In the case of our
model, this is equivalent to the condition that x1

L-IR ≤ x1
NL-IR.

3. A Simple Model of Global Climate Change Problem

To facilitate the discussion, this study uses a very simplified model of global climate change
problem as the case study. Consider the following two-period decision problem in which the social
planner tries to choose the optimal levels of greenhouse gases (GHG) emissions, x1 for period one
and x2 for period two, that would minimize the sum of GHG abatement costs and GHG-induced
damage costs over the two periods. Assuming that the discount factor is one (i.e., there is no
discounting), the objective function can be imprecisely written in general form1 as:

(2) { }{ }
1 1 1 1 2 2 1

1 1 1 1 0 1 1 2 2 2 2 1 2 20 ( ) ( )
( ) ( ) ( , ) ( ) ( ) ( , )

x X f x x f x
J Min O A I A A D G Min O A I A A D Gθ θ

≤ ≤ ≤ ≤
= + − + + + − +

with xt = GHG emissions in period t
Xt = potential GHG emissions in period t that would occur if there is no abatement
At = GHG abatement level in period t = Xt - xt
Gt = stock of atmospheric GHG in period t
f1(x1) = minimum allowable choices of x2 (which may depend on the choice of x1)
f2(x1) = maximum allowable choices of x2 (which may depend on the choice of x1)
θ = random variable denoting uncertainty in the model

The abatement cost is assumed to consist of two components. The operating and maintenance cost
(Ot(At)) represents all the variable costs in operating and maintaining the abatement facilities. It is
assumed to be a direct function of the abatement level in each period (At). The investment cost (It
(At – At-1)) represents the costs of expanding the abatement capacity. It is assumed to be a function
of the change in abatement level compared to the previous period (At - At-1). The damage cost (Dt

(Gt,θ)) is assumed to be a function of the stock of GHGs in the atmosphere (Gt) and a random
variable (θ) which reflects the underlying uncertainty in the model. The model assumes that the
only uncertain component in the model is the damage cost function, thus the random variable θ does
not appear in the abatement cost functions. The three cost functions are assumed to be convex and
twice continuously differentiable in At, At - At-1, and Gt, respectively.

Similar to the general model, this model assumes that when the social planner makes her decision in
period one, she is uncertain about the size of the random variable θ but has some prior information
regarding its probability distribution. For simplicity, it is assumed that θ ≥ 0 and θ appears in the
damage cost function in a linear multiplicative manner – i.e., D1(G1, θ) = θ⋅ 1

~D (G1). The damage D1

(⋅) occurs at the end of period one and provides a chance for the planner to learn about the true value
of θ. To simplify the analysis, the model considers only the two extreme possibilities of learning –
i.e., no learning (NL) and full learning (L). The true value of θ is known after D2(⋅) occurs at the
end of period two.

                                                
1 The precise form depends on further assumption concerning the future learning of θ which will be discussed below.
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To further simplify the analysis, the following additional assumptions are assumed:

(1) The stock of atmospheric GHG in period 0 (before period 1) is zero (G0 = 0 and thus G1 = x1).
(2) The stock of GHG abatement capital and, thus, the level of GHG abatement in period 0 are zero

(A0 = 0).
(3) The potential GHG emissions that would occur if there is no abatement for both period 1 and 2

are the same (X1 = X2 = X).
(4) The stock of atmospheric GHG decays naturally at the rate of 1-∆. Thus the stock of

atmospheric GHG at the end of period 2 becomes G2 = x2+∆x1.
(5) The level of GHG abatement is a linear function of the stock of abatement capital and the stock

of capital depreciates at the rate of 1-δ. Thus under the assumption of capital irreversibility, the
minimum limit of GHG abatement would be that A2 ≥ δA1.

Under the above assumptions, the objective function when there is full learning at the end of period
one becomes:

{ }{ }
1 2 1

1 1 1 1 1 1 2 2 2 1 2 2 2 1( , )
( ) ( ) ( , ) ( ) ( ) ( , )

x x x
Min E O X x I X x D x Min O X x I x x D x xθ θ

θ θ − + − + + − + − + + ∆  
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Under the above assumptions, the objective function when there is no learning at the end of period
one becomes:

{ }{ }
1 2 1

1 1 1 1 1 1 2 2 2 1 2 2 2 1( )
( ) ( ) ( , ) [ ( ) ( ) ( , )]

x x x
Min E O X x I X x D x Min E O X x I x x D x xθ θθ θ − + − + + − + − + + ∆  

(4) { }{ }
1 2 1

1 1 1 1 1 1 2 2 2 1 2 2 2 1
( )

( ) ( ) ( , ) ( ) ( ) ( , )
x x x

Min O X x I X x D x E Min O X x I x x D x x Eθ θ= − + − + + − + − + + ∆

The analysis is conducted in four different models: a linear model and three single-quadratic
models. In these models, the three cost functions (O(⋅), I(⋅), and D(⋅)) are assumed to be either linear
or quadratic. For the linear model, all cost functions are assumed to be linear. For the single-
quadratic models, only one of the three cost functions is assumed to be quadratic while the other
two are still linear.2

The specific functional forms for each of the three cost functions are as follows3:

Operating and maintenance cost
O-linear: Ot(⋅) = αtAt = αt(X - xt)
O-quad: Ot(⋅) = αt1At + αt2At

2 = αt1(X - xt) + αt2(X - xt)2

                                                
2 The analysis and discussions for double- and triple-quadratic models will be presented in my next paper (Essay2).
3 All parameters, α, β, and γ, are assumed to be non-negative. To keep the model simple, the constant terms are omitted
from the cost functions. But adding the constant terms would not affect the results of the analysis. Please note that all
quadratic cost functions are convex with respect to their corresponding variables.
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Investment cost
I-linear: It(⋅) = βt(At - At-1) = βt(xt-1 - xt)
I-quad: It(⋅) = βt1(At - At-1) + βt2(At - At-1)2 = βt1(xt-1 - xt) + βt2(xt-1 - xt)2

Damage cost
D-linear: Dt(⋅) = θγtGt = θγt(xt + ∆Gt-1)
D-quad: Dt(⋅) = θγt1Gt + θγt2Gt 2 = θγt1(xt + ∆Gt-1) + θγt2(xt + ∆Gt-1)2

Table 1: List of Models
Model Functional Assumptions Appropriate Choice of

Control Variable4

1 D-linear O-linear I-linear All variables (including xt)
2 D-quad O-linear I-linear Gt
3 D-linear O-quad I-linear xt
4 D-linear O-linear I-quad Qt

4. Methodology of Analysis

The methodology of analysis used in this paper is based on the theorem proposed by Epstein (1980)
and further clarified by Ulph and Ulph (1997). Considering the above two-period control problem,
we can rewrite the objective functions in the full learning and no-learning cases as:

J(L) =
1x

Min  E [O1(X-x1)+I1(X-x1)+D1(x1,θ)+ 
2 1( , )x x
Min

θ
[O2(X-x2)+I2(x1-x2)+D2(x2+∆x1,θ)]]

=
1x

Min  E [ V(x1,θ) + 
2 1( , )x x
Min

θ
[O2(X-x2)+I2(x1-x2)+D2(x2+∆x1,θ)]]

=
1x

Min  E [ V(x1,θ) + C(x1,θ)]

J(NL) =
1x

Min  E [O1(X-x1)+I1(X-x1)+D1(x1,θ)+ 
2 1( )x x

Min  E [O2(X-x2)+I2(x1-x2)+D2(x2+∆x1,θ)]]

=
1x

Min  E [ V(x1,θ) + 
2 1( )x x

Min [O2(X-x2)+I2(x1-x2)+D2(x2+∆x1,E θ)]]

=
1x

Min  E [ V(x1,θ) + C(x1,E θ)]

with V(x1,θ) = O1(X-x1)+I1(X-x1)+D1(x1,θ) and C(x1,θ) = 
2 1( , )x x
Min

θ
[O2(X-x2)+I2(x1-x2)+D2(x2+∆x1,θ)]

for learning case and C(x1,E θ) = 
2 1( )x x

Min [O2(X-x2)+I2(x1-x2)+D2(x2+∆x1, Eθ)] for no-learning case. A

modified/simple version of Epstein’s theorem can be stated as follows.

                                                
4 See the discussion in Section 8.
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Theorem 1: Assuming that V(x1,θ) and C(x1,θ) are convex in x1

(a) if ),(xC 1x1
θ is convex in θ, then x1

L ≤ x1
NL

(b) if ),(xC 1x1
θ is concave in θ, then x1

L ≥ x1
NL

(c) if ),(xC 1x1
θ is linear in θ, then x1

L = x1
NL.

Proof: The first order conditions characterizing the optimal values of x1 for learning and no learning
cases are:

Learning: Vx1
(x L ,Eθ ) + πθ

θ
∑ Cx1

(x L ,θ ) = 0

No Learning: Vx1
(x L ,Eθ ) + Cx1

(xL , Eθ ) = 0

 If the marginal cost function 
1xC (x1,θ) is concave (convex) in θ, then the expected marginal cost at

any particular value of x1 is lower (higher) under learning than under no-learning. By assuming that
both V(x1,θ) and C(x1,θ) are convex, the attainment of both of the first order conditions would
require that we have x1

L ≥ x1
NL (x1

L ≤ x1
NL). If 

1xC (x1,θ) is linear in θ, it is both (weakly) concave
and (weakly) convex in θ. Thus, we must have x1

L = x1
NL.

Under standard economic assumptions, we would expect the function V(⋅) to be convex in x1.
Moreover, if we have the constraint set of x2 that is "well-behaved", we could also expect to have
function C(⋅) that is convex in x1 (Epstein, 1980). (An example of a "well-behaved" constraint set is
when both constraints f1(x1) and f2(x1) are linear.) Since both irreversibility constraints discussed in
this paper are linear, the only remaining question that we need to consider in determining the
direction of "irreversibility effect" in this model is whether 

1xC (⋅) is a concave or convex function
in θ. Thus, the discussion on the results of each model in the following sections is conducted based
on the graph of 

1xC (⋅) on the θ axis.

5. Results from the "Irreversibility Effect" Perspective

This section describes the results of the analysis of the "irreversibility effect" following the
methodology explained in Section 4. Four different stock irreversibility/reversibility constraints are
considered in the analysis. These constraints include: GHG stock irreversibility (G-irr; G2 ≥ ∆G1 or
x2 ≥ 0), GHG stock reversibility (G-rev; G2 ≥ 0 or x2 ≥ -∆x1), abatement capital stock irreversibility
(K-irr; A2 ≥ δA1 or x2 ≤ X-δ(X-x1))5, and abatement capital reversibility (K-rev; A2 ≥ 0 or x2 ≤ X).

                                                
5 To make the K-irr assumption comparable to the existing literature, it is interpreted as a constraint on the minimum
amount of GHG abatement such that all the inherited abatement capital (minus depreciation) must always be utilized.
Our separation of GHG abatement cost into operating and maintenance cost (Ot) and investment cost (It), however,
indicates an inconsistency in the existing models that consider the K-irr assumption. For such K-irr constraint to
actually exist, all the GHG abatement costs must be in the form of capital cost and there must be no variable cost
component. Most models, especially the numerical models, however, are constructed as if the GHG abatement costs
consist of only the variable cost component.
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Please note that the reversible assumptions (G-rev and K-rev) used here are not the same as the "no
constraint" assumption implicitly assumed in all existing literature when the "no irreversibility" case
is considered.6

The standard convention of “irreversibility effect” expects that the G-irr will induce an
"irreversibility effect" that biases towards less current emissions (x1

L ≤ x1
NL) while the K-irr will

create another "irreversibility effect" that biases towards more emissions (x1
L ≥ x1

NL). Since none of
the existing literature has considered the G-rev and K-rev constraints, I would only say that the
conventional conception is violated when the G-rev constraint has induced an "irreversibility effect"
that biases towards more emissions or when the K-rev constraint has created an "irreversibility
effect" that biases towards less emissions. Please note that the conventional conception expects the
"no-irreversibility" (no-constraint) assumption to create no "irreversibility effect"7.

Table 2: Analytical Results on the Direction of "Irreversibility Effect"
Constraint Model 1

(app var = xt)
Model 2

(app var = Gt)
Model 3

(app var = xt)
Model 4

(app var = Qt)
K-irr Higher x1 Higher x1 Higher x1 Lower x1
K-rev Neutral Higher x1 Neutral Lower x1
G-irr Neutral Lower x1 Neutral Higher x1
G-rev Higher x1 Neutral Higher x1 Higher x1

Table 2 shows the summary results on the direction of the "irreversibility effect" for each irr/rev
constraint in each model (see Appendix C for details of the analysis). Half of the results (presented
in italic) are found to be inconsistent with the conventional conception regarding "irreversibility
effect". The K-irr constraint does not always induce the "irreversibility effect" that biases towards
more emissions and the G-irr constraints does not always induce the "irreversibility effect" that
biases towards less emissions. The K-rev and G-rev constraints are also found to induce the wrong
direction of "irreversibility effect" as well. Moreover, the direction of the "irreversibility effect" of
each constraint is found to be highly dependent on the functional assumptions of the model. The
most interesting results occur in Model 4 – where the K-irr and K-rev constraints induce the
"irreversibility effect" that biases towards less emissions while the G-irr and G-rev constraints
induce the "irreversibility effect" that biases towards more emissions. In other words, all the
constraints are found to induce the "irreversibility effects" in the wrong directions compared to the
conventional conception. These results indicate an important flaw in the conventional conception of
the "irreversibility effect" and perhaps the need for a new framework.

                                                
6 Ulph and Ulph (1995, 1997) explicitly discuss the G-rev assumption but use the “no constraint” assumption in their
actual analysis.
7 For all linear or single-quadratic models, the no-constraint assumption will always create no "irreversibility effect"
since the marginal cost function Cx1 when there is no constraint in these models is always linear in θ (see Theorem 1).
This result, however, does not always hold for more complex models.
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6. A New Framework

Epstein (1980) is the first to propose a general criterion that could be used to determine whether the
"irreversibility effect" holds or not. It is important, however, to note that Epstein does not frame his
problem as a study of the effects of irreversibility, but as "an investigation of the effects on decision
making of the temporal resolution of uncertainty" (Epstein 1980, p.270). This is indeed the correct
description of the problem that economists focus on when we analyze the "irreversibility effect".

Consider Definition 1, the focus of the analysis of "irreversibility effect" is whether x1
L-IR is larger

or smaller than x1
NL-IR. We are comparing the two optimal solutions of x1 that differ "only with

respect to the amount of information provided by Y about Z" (Epstein 1980, p.269). The analysis of
"irreversibility effect" is not a study of the effects of irreversibility – since we are not comparing the
optimal solutions of the irreversible and no-constraint cases. The two optimal solutions we are
comparing assume exactly the same irreversibility constraint but differ only on the amount of future
learning. Thus, the analysis of "irreversibility effect" is actually the investigation of the effects of
future learning on the optimal decision under the context of uncertainty and irreversibility. In the
current definition of "irreversibility effect", irreversibility is just a part of the context of analysis not
the focus of the analysis.

The incorrect framing of the problem causes at least two types of unresolved anomalies.

- The "irreversibility effect" may not hold in the irreversible case – i.e., x1
L-IR > x1

NL-IR. All the
inconsistencies found in Section 5 fall into this type of anomalies.

- The "irreversibility effect" could hold even if there is no "irreversibility constraint" – i.e., x1
L-NC

≤ x1
NL-NC. See my next paper (Essay 2) for examples of this type of anomalies.

To resolve these anomalies8, I propose two new concepts: "learning effect" and "irreversibility bias
on the learning effect". The "learning effect" concerns the comparison between the optimal solution
when there is no-learning and the solution when there is full learning. Thus, it is essentially
equivalent to the conventional concept of "irreversibility effect", but is defined more generally.

Given a particular context M (i.e., a set of assumptions M about the situation).
Definition 2.1 The learning effect pushes towards higher x1, if x1

L-M > x1
NL-M,

Definition 2.2 The learning effect pushes towards lower x1, if x1
L-M < x1

NL-M,
Definition 2.3 There is no learning effect, if x1

L-M = x1
NL-M.

The concept of "learning effect" is more general than the definition of "irreversibility effect" in two
senses. (i) There is no predetermined direction that the learning effect is supposed to hold. The
direction of learning effect is described independently from the irreversible/reversible constraint.

                                                
8 Narain et al. (2003) propose a different definition for the “irreversibility effect” – i.e., the “irreversibility effect” holds
if 1 1 1 1

ˆ ˆL IR NL IRx x x x− −− ≤ −  with 1̂x being the choice of x1 that gives maximum decision making flexibility in the future.
This alternative definition could alleviate some of the anomalies discussed here, but it would not eliminate all of them –
since the problem is still being framed as the study of the effect of irreversibility and not the effect of future learning.
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(ii) The concept of learning effect is equally applicable for the irreversible, reversible, or no-
constraint cases. Thus, it is possible to have the learning effect that pushes towards one direction in
the no-constraint case and pushes towards the other direction in the irreversible case.

The second concept, "irreversibility bias on the learning effect", addresses how the addition of
irreversibility constraint into the model changes the direction of the learning effect compared to the
no-constraint case. Thus, the direction of the "learning effect with irreversibility constraint" is
determined by both the "learning effect when no-constraint" and the "irreversibility bias on the
learning effect". The precise definition of "irreversibility bias on the learning effect" will be
described in the section when we examine the details of the analysis on the "learning effect".

The most important advantage of the use of these new concepts over the "irreversibility effect"
definition is that it brings us to the correct framing of the problem under consideration. Framing the
problem as a study of intertemporal interaction between learning and decision making processes
allows us to understand the problem better. Since "learning effect" is an intertemporal feature, it can
only occur when there is an intertemporal connection between our current-period decision and our
future decisions. If there is no intertemporal connection – i.e., if what we do today does not in any
way affect our future decisions – then we can consider them as separate decisions to be made
independently. This implies that whatever is going to happen in the future – including whether or
not we are going to have future learning about uncertainty – becomes irrelevant to our current
decision. This means there is no "learning effect". It is only when there is an intertemporal
connection among decisions at different time periods that we will have "learning effect".

There are two possible types of intertemporal connection: intertemporal constraint-dependency and
intertemporal functional-dependency. Intertemporal constraint-dependency occurs when our choice
in current period has an effect in limiting or enhancing the range of available options in our future
period decisions – this has been regarded as the focal point of the studies on “irreversibility effect”.
However, there is another type of intertemporal dependency that could happen. Intertemporal
functional-dependency refers to the case when our current period choice does not directly affect the
range or availability of future period options, but it affects the marginal cost and/or marginal benefit
function of the future options. The change in marginal cost/benefit function then affects the optimal
choices that we choose in the future decisions. Therefore, similar to constraint-dependency,
functional-dependency also requires that we take this induced change in the future optimal path into
account in selecting our current optimal choice. The fact that the “irreversibility effect” does not
hold universally when the benefit/cost functions are intertemporally non-separable indicates the
importance of the functional-dependency. Any analysis of "learning / irreversibility effect" that does
not take the functional assumptions of the model into account could not be considered complete.

Thus, in order to address the importance of both dependency mechanisms, the analysis in this paper
is conducted on a group of models with different functional and constraint assumptions.

7. Results from the "Learning Effect" Perspective

This section illustrates how the proposed framework operates through the detailed analysis of two
of the four models (i.e., Model 2 and 4). These two models are selected because of their contrasting
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results. As shown in Table 2, Model 2 yields results that are fully consistent with the conventional
conception while Model 4 gives results that totally contradict the conventional conception of
"irreversibility effect". Thus the analysis of these two models should provide a sufficient coverage
of the new framework. Moreover, in order to allow a more complete explanation, the analysis in this
section will be limited to only the two irreversible constraints (G-irr and K-irr). The analysis for the
other two constraints and/or the other two models can be conducted in an analogous manner.

It is important to note that since the concepts of "learning effect" and the "irreversibility effect" are
essentially equivalent, the same analytical method (as described in Section 4) is applied here. The
major difference between the two frameworks is how they interpret the results.

Analysis for Model 2 (D-quad, I- and O-linear)

Model 2 assumes that Dt(⋅) is a quadratic function while Ot (⋅) and It(⋅) are linear functions. Under
such assumptions, the objective functions under full learning and no-learning become:

JL = 
1x

Min [α1(X-x1)+ β1(X-x1)+ E θγ11x1+ E θγ12x1
2+ E [

2 1( , )x x
Min

θ
[α2(X-x2)+ β2(x1-x2) 

+ θγ21(x2+∆x1) + θγ22(x2+∆x1)2]]]
= 

1x
Min [V2(x1, E θ) +E C2(x1, θ)].

JNL = 
1x

Min [α1(X-x1)+ β1(X-x1)+ E θγ11x1+ E θγ12x1
2+ 

2 1( )x x
Min [α2(X-x2)+ β2(x1-x2)+ E θγ21(x2+∆x1)

+ E θγ22(x2+∆x1)2]]
= 

1x
Min [V2(x1, E θ) + C2(x1, E θ)].

Figure 1a, 1b, 1c, and 1d show the graphs of 
1

2
xC (⋅) on the θ axis for Model 2 when there is no-

constraint, when there is only G-irr constraint, when there is only K-irr constraint, and when there
are both G-irr and K-irr constraints, respectively.

       
1xC

1xC (x1,θ) = β2+α2∆+β2∆ = (a)
      
        (a)

         θ  

Figure 1a: No Constraint Case in Model 2



Chalotorn Kansuntisukmongkol
ERG, UC-Berkeley, 03/31/04

11

Consider Figure 1a. When there is no irreversibility constraint in Model 2, 
1xC (⋅) is found to be a

linear function in θ – i.e., 
1xC (x1,θ) = β2+θγ21∆+2θγ22∆(x2*+∆x1) = β2+α2∆+β2∆ = (a). Thus, Model

2 has no learning effect when there is no constraint.

     
1xC

1xC  (x1,θ)  β2+α2∆+β2∆ = (a)

1xC  (x1,θ) = when θ ≤ (α2+β2)/(γ21+2γ22∆x1)
         (a)  β2+θγ21∆+2θγ22∆2x1 = (b)
          (b) when θ > (α2+β2)/(γ21+2γ22∆x1)
      

      θ  

Figure 1b: G-irr Case in Model 2

Consider Figure 1b for Model 2 when there is G-irr constraint only. When G-irr constraint is
inactive or when θ ≤ (α2+β2)/(γ21+2γ22∆x1), we have the interior solution as the optimal solution and
thus 

1xC (x1,θ) = (a). When G-irr constraint is active or when θ > (α2+β2)/(γ21+2γ22∆x1), the optimal
solution is to choose x2 = 0 (following the G-irr constraint) and we have 

1xC (x1,θ) = β2+θγ21∆+
2θγ22∆2x1 = (b). Both (a) and (b) are linear functions in θ, but when we couple them together, the
coupling of these two segments of 

1xC (⋅) becomes a convex function and we have 
1xC (⋅) = max

[(a), (b)]. Since 
1xC (⋅) is convex in θ, there is a "learning effect" in this case that pushes towards

lower x1 (i.e., x1
L ≤ x1

NL).

    
1xC

        (c)
1xC  (x1,θ)  -α2δ + β2(1-δ) + θγ21(δ+∆)

       + 2θγ22(δ+∆)(X-δX+δx1+∆x1)= (c)

     (a)
1xC (x1,θ) =      when θ < 

(α2+β2)
 γ21+2γ22(X-δX+δx1+∆x1)

 

β2+α2∆+β2∆ = (a)

           when θ ≥ 
(α2+β2)

 γ21+2γ22(X-δX+δx1+∆x1)
 

       θ

 
Figure 1c: K-irr Case in Model 2
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Figure 1c shows the graph of 
1xC (x1,θ) for Model 2 with K-irr constraint. When the K-irr constraint

is inactive or when θ ≥ 
(α2+β2)

 γ21+2γ22(X-δX+δx1+∆x1)
 , the optimal solution is the interior solution and

we have 
1xC (x1,θ) = (a). When K-irr constraint is active or when θ < 

(α2+β2)
 γ21+2γ22(X-δX+δx1+∆x1)

 , we

have 
1xC (x1,θ) = -α2δ + β2(1-δ) + θγ21(δ+∆) + 2θγ22(δ+∆)(X-δX+δx1+∆x1)= (c). Both (a) and (c)

are linear functions in θ. But when we couple these two segments of 
1xC (x1,θ) together, we have

1xC (x1,θ) = min [(a), (c)]. The coupling through minimization relationship means that the 
1xC (x1,θ)

function is concave in θ. Thus, the K-irr case of Model 2 has a "learning effect" that pushes towards
higher x1 (x1

L ≤ x1
NL).

     
1xC

(c)
1xC (x1,θ)

      
        (a)

         (b)

      θ  

Figure 1d: G-irr, K-irr Case in Model 2

Figure 1d shows the graph of 
1xC (x1,θ) for Model 2 when there are both G-irr and K-irr constraints.

When θ < 
(α2+β2)

 γ21+2γ22(X-δX+δx1+∆x1)
  or when K-irr constraint is active, we have 

1xC (x1,θ) = (c).

When 
(α2+β2)

 γ21+2γ22(X-δX+δx1+∆x1)
  ≤ θ ≤ 

(α2+β2)
 γ21+2γ22∆x1

  or when none of the constraints is active, the

optimal solution is the interior solution and we have 
1xC (x1,θ) = (a). When θ > 

(α2+β2)
 γ21+2γ22∆x1

  or

when G-irr is active, we have 
1xC (x1,θ) = (b). Similar to the above cases, all the three functions are

linear and the coupling of segment (a) and segment (b) occurs through maximization relationship
while the coupling of segment (a) and segment (c) occurs through minimization relationship. Thus,
the resultant 

1xC (x1,θ) is neither concave nor convex in θ and we have the "learning effect" in the
G-irr, K-irr case that is ambiguous in its direction. In other words, we may have x1

L > x1
NL or x1

L =
x1

NL or x1
L < x1

NL depending on the detailed parameters of the cost functions in the model as well as
the probability distribution function of the uncertain parameter θ.
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Table 3 summarizes the directions of the learning effects for all the four cases of Model 2.

Table3: Direction of the Learning Effect for Model 2
Irreversibility Assumption Curvature of Cx1 Direction of the "Learning Effect"
1. No constraint Linear in θ None
2. With G-irr constraint Convex in θ Push towards lower x1

3. With K-irr constraint Concave in θ Push towards higher x1

4. With both G-irr and K-irr Neither Convex Nor Concave Ambiguous

Discussion

The analysis of the learning effect in Model 2 that we have done so far discusses each of the four
cases separately. Alternatively, we may consider them as a group of related cases of the same
model. Doing so provides an interesting perspective on the results.

First, note that Model 2 has no learning effect when there is no irreversibility constraint in the
model. This is because when there is no irreversibility constraint or when none of the constraint(s)
is active, 

1xC (⋅) becomes segment (a) which is linear in θ.

Second, when there is/are irreversible constraint(s) in the model, the function 
1xC (⋅) is composed of

two major parts:
- A part where no constraint is active, i.e., segment (a).
- Parts where one of the irreversibility constraints is active, i.e., segment (b) where G-irr

constraint is active and/or segment (c) where K-irr constraint is active.

Thus, the curvature of 
1xC (⋅) of any irreversible case is dependent on three elements: (i) the

curvature of segment (a) where no constraint is active; (ii) the curvature(s) of the constrained
segment(s), i.e., segments (b) and/or (c); and (iii) the couplings of various segments into the 

1xC (⋅)
function.

Third, let us start by considering the curvatures of the constrained segments. According to the
results above, both constrained segments – i.e., segments (b) and (c) – in Model 2 are found to be
linear in θ. The linearity of these segments, however, is not limited to this model. Under the
assumption of multiplicative uncertainty, the linearity of these two segments is due solely to the
linearity of their corresponding irreversibility constraints on x1. (Recall that the G-irr constraint
requires that x2 ≥ 0 while K-irr constraint requires that x2 ≤ X-δX+δx1.) Since all the models in this
paper assume the same linear irreversibility constraints, the two segments are linear in all the other
models as well.

This means that the curvature of 
1xC (⋅) in all the models in this paper is dependent on (i) the

curvature of segment (a) and (ii) the coupling relationships of various segments in the 
1xC (⋅)

function. As discussed below, this finding is very critical to the understanding of the concept of
"learning effect" and "irreversibility bias on the learning effect".
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Fourth, regarding to the curvature of the unconstrained segment (a). According to the results above,
segment (a) of 

1xC (⋅) for Model 2 is also found to be linear. The linearity of the segment (a),
however, is model specific. The curvature of segment (a) depends on the functional assumptions of
each model.

Fifth, since all the three possible segments of 
1xC (⋅) in Model 2 are linear in θ. The curvature of

1xC (⋅) in all irreversible cases of Model 2 is determined solely by the coupling relationships – the
couplings of segment (a) with the other two segments of 

1xC (⋅). The coupling of segment (b) where
the G-irr constraint is active with segment (a) where no constraint is active pushes 

1xC (⋅) function
towards convexity (Figure 1b) – thus causing the G-irr case of Model 2 to have learning effect that
pushes towards lower x1. The coupling of segment (c) where the K-irr constraint is active with
segment (a) pushes 

1xC (⋅) function towards concavity (Figure 1c) – thus causing the K-irr case of
Model 2 to have learning effect that pushes towards higher x1. Moreover, the coupling of both
segments (b) and (c) with segment (a) in the G-irr, K-irr case causes the 

1xC (⋅) function to be
neither concave nor convex (Figure 1d), thus we have the learning effect that has ambiguous
direction.

The above results can be interpreted as if the addition of either of the two irreversibility constraints
has created some kind of "irreversibility bias on the learning effect" that pushes the learning effect
towards either direction. Since Model 2 has no learning effect when there is no constraint, the
"learning effect" of each of the other three (irreversible) cases simply follows the direction(s) of the
"irreversibility bias(es)" presented in the model. For the G-irr only case, since the coupling of
segments (b) and (a) occurs through maximization relationship, the 

1xC (⋅) function is pushed
towards convexity, and thus, we have an "irreversibility bias" that pushes the "learning effect"
towards lower x1 direction. Similarly, for the K-irr only case, since the coupling of segments (c) and
(a) occurs through minimization relationship, the 

1xC (⋅) function is pushed towards concavity, and
thus, we have an "irreversibility bias" that pushes the "learning effect" towards higher x1 direction.
Finally, when we have both G-irr and K-irr constraints in the model, we have two "irreversibility
biases" that pushes against each other, thus we have the "learning effect" that has ambiguous
direction.

This new perspective suggests that the directions of learning effects in all these cases are governed
by the directions of three underlying components – i.e., the learning effect when no constraint, the
irreversibility bias caused by G-irr constraint, and the irreversibility bias caused by K-irr constraint.
Table 4 shows the directions of these three components for Model 2. A more precise definition of
the irreversibility bias is given below.

Table 4: Directions of Underlying Components for Model 2
Learning Effect and Irreversibility Bias Direction
Learning effect when no constraint None
G-irreversibility bias Push towards lower x1
K-irreversibility bias Push towards higher x1
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Definition of the "Irreversibility Bias on the Learning Effect"

The analysis of the learning effect of Model 2 above illustrates how the "learning effect when there
is no constraint" combines with the "irreversibility bias(es) on the learning effect" in determining
the direction of the "learning effect" in any irreversible case. It is important to note that:

- The direction of the "learning effect when there is no constraint" is governed by the
concavity/convexity of the segment (a) where no constraint is active. (In the case of Model 2,
segment (a) is linear in θ thus there is no "learning effect" when there is no constraint).

- The direction of the "irreversibility bias" is determined by the coupling relationship between
segment (a) and the segment where the irreversibility constraint is active. Since both
irreversibility constraints are linear in x1 (G-irr: x2 ≥ 0, K-irr: x2 ≤ X-δX+δx1), the segments of

1xC (⋅) where these constraints are active become linear in θ. Thus the direction of the
"irreversibility bias" is determined solely from the coupling relationship.

Definition 3 summarizes the definition of the "irreversibility bias on the learning effect".

For models with multiplicative uncertainty, the "irreversibility bias on the learning effect" of any
linear irreversibility constraint can be defined as follows:

Definition 3.1 The "irreversibility bias on the learning effect" pushes towards lower x1 if and
only if the coupling of the segment of 

1xC (⋅) where the irreversibility constraint is active
with the segment of 

1xC (⋅) where no constraint is active occurs through maximization
relationship.
Definition 3.2 The "irreversibility bias on the learning effect" pushes towards higher x1 if
and only if the coupling of the segment of 

1xC (⋅) where the irreversibility constraint is active
with the segment of 

1xC (⋅) where no constraint is active occurs through minimization
relationship.

Analysis for Model 4 (I-quad, D- and O-linear)

Model 4 assumes that It(⋅)is a quadratic function while Ot (⋅) and Dt(⋅) are linear functions. Under
such assumptions, the objective functions when there is full learning and when there is no learning
become:

JL = 
1x

Min [α1(X-x1)+ β11(X-x1)+ β12(X-x1)2+ E θγ1x1+ E [
2x

Min [α2(X-x2)+ β21(x1-x2) 

+ β22(x1-x2)2 + θγ2(x2+∆x1)]]]
= 

1x
Min [V4(x1, E θ) +E C4(x1, θ)].
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JNL = 
1x

Min [α1(X-x1)+ β11(X-x1)+ β12(X-x1)2+ E θγ1x1+ 
2x

Min [α2(X-x2)+ β21(x1-x2)+ β22(x1-x2)2

+ E θγ2(x2+∆x1)]]
= 

1x
Min [V4(x1, E θ) + C4(x1, E θ)].

Figure 2a and 2b show the graphs of 
1xC (x1,θ) on the θ axis for the case of G-irr only and K-irr

only, respectively. Only the graphs of 
1xC (x1,θ) for these two cases are presented here since they

carry sufficient information to allow the identification of the directions of the "learning effects" in
all the four cases as well as the directions of all the three underlying components.

     
1xC

  (a)

1xC (x1,θ)
(b)

       θ

Figure 2a: G-irr Case in Model 4

     
1xC

  (a)

   
1xC (x1,θ)

 (c)

       θ

Figure 2b: K-irr Case in Model 4
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Table 5 concludes the directions of the learning effects in all the four cases of Model 4. Table 6
summarizes the directions of the three underlying components that govern the directions of all the
learning effects.

Table5: Direction of the Learning Effect for Model 4
Irreversibility Assumption Curvature of Cx1 Direction of the "Learning Effect"
1. No constraint Linear in θ None
2. With G-irr constraint Concave in θ Push towards higher x1

3. With K-irr constraint Convex in θ Push towards lower x1

4. With both G-irr and K-irr Neither Convex Nor Concave Ambiguous

Table 6: Directions of Underlying Components for Model 4
Learning Effect and Irreversibility Bias Direction
Learning effect when no constraint None
G-irreversibility bias Push towards higher x1
K-irreversibility bias Push towards lower x1

Discussion

The analysis shows that, similar to the case of Model 2, there is no "learning effect when no
constraint" in Model 4 – since the unconstrained segment (a) is linear in θ. As discussed earlier, the
curvature/linearity of segment (a) found in these cases are due to the functional assumptions of the
model. Actually, it can be shown that the unconstrained segment (a) of the 

1xC  function is always
linear in θ for all linear and single non-linear models.

For the G-irr bias, the coupling of segment (b) where the G-irr constraint is active with segment (a)
occurs through minimization relationship (Figure 2a). This causes the 

1xC (⋅) function to be pushed
towards convexity. Therefore, the incorporation of G-irr constraint in the model creates the G-irr
bias that pushes the learning effect towards higher x1 direction. On the other hand, the coupling of
segment (c) where the K-irr constraint is active with segment (a) occurs through maximization
relationship (Figure 2b). The 

1xC (⋅) function is pushed towards convexity, and thus, we have the K-
irr bias that pushes the learning effect towards lower x1 direction. So, similar to the case of Model 2,
these two irreversibility constraints create irreversibility biases that push against each other. But,
contrary to Model 2, the directions of the two biases are flipped. In Model 2 we have G-irr bias
pushing towards lower x1 and K-irr bias pushing towards higher x1, while in Model 4 we have G-irr
bias pushing towards higher x1 and K-irr bias pushing towards lower x1.

The directions of the irreversibility biases found in Model 4 seem counter-intuitive. It looks like the
two irreversibility biases found in this model are pushing the optimal solution towards less
flexibility choices – G-irr bias pushing towards more emissions while K-irr bias pushing towards
less emissions. These irregularities can be explained in part by the insight gain from understanding
the "Simple Analysis 1" approach discussed below.



Chalotorn Kansuntisukmongkol
ERG, UC-Berkeley, 03/31/04

18

8. Simple Analysis 1

Drawing from the results of the analysis, I find that for linear and single non-linear models there is a
much simpler and more intuitive way to reach the same results. This intuitive approach – called
Simple Analysis 1 (SA1) – is possible due to a special characteristic of the linear and single non-
linear models. By selecting the control variable and rearranging the model appropriately, all linear
and single non-linear models can be rewritten such that they are functionally independent. This
characteristic allows us to intuitively analyze and understand the “irreversibility effect” in these
models by simply looking at the constraint dependency mechanism of the rearranged models. The
most important step of SA1, thus, is the selection of the appropriate choice of control variable(s).

Consider Model 2 first. Using Gt as the control variable, the objective function of Model 2 can be
written as follows:

J = Min
G1

 [α1(X-G1)+β1(X-G1)+θγ11G1+θγ12G1
2+ Min

G2

 (α2(X-G2+∆G1)

     +β2(G1-G2+∆G1)+θγ21G2+θγ22G2
2)]

= Min
G1

 [α1(X-G1)+α2∆G1+β1(X-G1)+β2(G1+∆G1)+θγ11G1+θγ12G1
2

     + Min
G2

 (α2(X-G2)-β2G2+θγ21G2+θγ22G2
2)].

Since the objective function can be rearranged such that it is functionally independent, Gt is an
appropriate control variable choice for Model 2. Please note that if we rewrite Model 2 using some
other choices of control variable (e.g., xt or Qt), the model may not be functionally independent.

Epstein (1980) has proved – subject to standard qualifications – that when a model is functional
independent (i.e., additively separable), the "irreversibility effect" will always hold. Since Model 2
can be written such that it is functionally independent based on variable Gt, the "irreversibility
effect" musts hold for Model 2 providing that we base our definition of "irreversibility effect" on
how the constraints can be interpreted in terms of variable Gt.

What this conclusion actually means, in terms of our new framework, is that: (i) There is no
"learning effect when no constraint" in Model 2 and, thus, the "learning effects in irreversible cases"
of this model are solely the results of the "irreversibility biases" presented in the model. And (ii) the
directions of the "irreversibility biases" in Model 2 are such that they always push the optimal
current-period solution towards more flexible choices – providing that we base our definition of
more/less flexibility on how the constraints can be interpreted in terms of the appropriate variable
Gt.. The same is true for other linear and single non-linear models. Thus, for this group of models,
we can determine the direction of the "irreversibility bias" of any constraint by looking at how the
constraint can be interpreted in terms of the appropriate control variable(s) of that model.

In terms of variable Gt, the G-irr constraint requires that we choose G2 ≥ ∆G1. This constraint
imposes a lower limit on the permissible choices of G2 and this lower limit is set to be an increasing
function of G1. This means that when the value of G1 is higher, the lower constraint will become
higher and, thus, less flexible. Therefore the G-irr constraint is found to create an "irreversibility
bias" that would bias our choice towards lower G1 – i.e., lower current period emissions (lower x1).
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For the K-irr constraint, in terms of variable Gt, the K-irr constraint requires that G2 ≤ Z-δZ+δG1+∆
G1. This constraint imposes an upper limit that is increasing in G1 on the permissible choice of G2.
This means that the higher the value of G1, the larger the upper limit will be. Since a larger upper
limit means a more flexible limit, the K-irr constraint would create an "irreversibility effect" that
pushes towards higher current period emissions (higher G1 and x1).

The directions of the two irreversibility biases are consistent with the conventional conception held
in most "irreversibility effect" literature. Since the G-irr constraint limits us from unemitting the
past emissions, it should push us towards emitting less now. Because we do not want to be stuck
with a high stock of atmospheric GHGs if the damage of climate change turns out to be severe.
Analogously, for the case of K-irr constraint, since we do not want to be stuck with high stock of
GHG abatement capital that could not be uninvested if the climate change damages turns out to be
minimal, the existence of K-irr constraint push us towards investing less (or emitting more) now.

Next, consider Model 4. Model 4 can be rearranged such that it becomes functionally independent
when a new variable Qt is selected as the control variable. The variable Qt is defined as the
difference in abatement level compared to the previous period (Qt = At – At-1) – i.e., it reflects the
level of abatement capital investment during period t. Using Qt as the control variable, the objective
function of Model 4 can be rearranged such that it becomes functionally independent.

J = Min
Q1

[α1Q1+ β11Q1+ β12Q1
2+ θγ1(X-Q1)+ Min

Q2

[α2(Q1+Q2)+ β21Q2+ β22Q2
2 

+ θγ2((1+∆)(X-Q1)-Q2)]]
= Min

Q1
[α1Q1+ α2Q1+ β11Q1+ β12Q1

2+ θγ1(X-Q1)+ θγ2(1+∆)(X-Q1) + Min
Q2

[α2Q2 

+ β21Q2 + β22Q2
2- θγ2Q2]]

For the G-irr constraint, in terms of variable Qt, the G-irr assumption requires that Q2 ≤ X-Q1. It
imposes an upper limit constraint on the choice of Q2 and this upper limit is set to be a decreasing
function of Q1. This means that when the value of Q1 gets higher, the upper limit becomes smaller
and less flexible. Thus, for Model 4, the G-irr constraint would create an irreversibility bias that
pushes our current choice toward lower Qt (lower investment), i.e., higher x1 (higher emissions).

For the K-irr constraint, the constraint requires that Q2 ≥ - (1-δ)Q1. It imposes a lower limit
constraint on the choice of Q2 and this constraint is decreasing in Q1. Thus, under the K-irr
assumption, an increase in Q1 will make the lower constraint smaller, i.e., more relaxed. Therefore,
the K-irr assumption would create an irreversibility bias that pushes towards higher Q1. But this
means that the K-irreversibility bias is pushing towards lower current emissions (lower x1).

The results of Model 4 may seem counter-intuitive, still they can be readily understood. Starting
with the G-irr constraint, the constraint says that we cannot emit a negative amount of emissions (x2

≥ 0) or that we cannot abate more than the amount that we would emit when there is no abatement
(A2 ≤ X). The upper limit on the amount of abatement we can do means that there is an upper limit
on the amount of investment we can add in each period. Surprisingly, the more abatement we have
in the current period, the less room we leave for future decision on the additional investment. Thus
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when the G-irr assumption is translated into the restriction in Q2 (Q2 ≤ X-Q1) the constraint would
become stricter when there is higher abatement investment in period one (higher Q1). Therefore, we
find the G-irr constraint creating an "irreversibility effect" that push towards lower Q1 (higher x1) in
the model that has Qt as the appropriate choice of control variable.

Whereas the keyword in understanding the results in G-irr case is “investment”, the keyword for the
K-irr case is "capital depreciation". Under the assumption of K-irr, even though it is not possible to
uninvest the abatement capital, there is still a small possibility that we can have A2 > A1 (Q2 < 0) –
by allowing the existing capital to depreciate. The K-irr constraint specifies the minimum amount of
GHG abatement such that all the existing capital after depreciation must be utilized (A2 ≥ δA1). This
is equivalent to, in terms of capital depreciation, specifying the maximum capital depreciation that
could happen. Thus, the more investment we have made in the past, the more options we have in
deciding how much existing abatement capital we would allow to decay. Therefore when the K-irr
assumption is considered in terms of the restriction in Qt, it would create an "irreversibility effect"
that biases us toward more current investment (less emissions).

9. Conclusion

This paper proposes a new framework in understanding and analyzing an intertemporal interaction
between learning and decision making processes under the context of uncertainty and irreversibility.
It proposes that this intertemporal feature, conventionally termed as the “irreversibility effect”,
should be renamed as the “learning effect” – because the focus of the analysis of the “learning /
irreversibility effect” is the effect of future learning, not the effect of irreversibility, on the optimal
current-period solution. The paper also introduces another new definition of “irreversibility bias on
the learning effect” that reflects how the addition of the irreversibility constraint into the model
affects the direction of the “learning effect”.

The analysis has been conducted on four simple models of climate change problem that differ in
their functional assumptions. The analysis illustrates how the “learning effect when no constraint”
and the “irreversibility bias(es)” work in creating the learning effect in the irreversible case under
the new framework. The results of the analysis as well as the use of SA1 approach point to the
critical significance of the functional assumptions in determining the “learning effect” and the
“irreversibility bias” in the model.
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