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using the Kalman filter

David I. Stern

This chapter reports on empirical work (Perrings and Stern 2000; Stern 1994)
that uses the Kalman filter to estimate stochastic trends in the context of
resource use models. This modelling approach treats changes in the environ-
ment and changes in the production possibilities of the economy as similar
processes, which in both cases can be seen as changes in either capital stocks
or changes in technology. The two case studies are a model of production and
technological change in the US macroeconomy in the post-war period, and a
model of rangeland utilization and degradation in Botswana in the 30 years to
the mid-1990s.

Perrings (1987) presents a vision of a dynamic, evolving economy that
receives inputs from its environment and returns surplus outputs to its envi-
ronment. These surplus outputs substantively change the nature of the resource
base on which the economy depends and the changing nature of the resource
structure precipitates technological change within the controlled economy
itself. Technological change and controlled capital accumulation within the
economy forces uncontrolled capital accumulation and technological change
in the environment (OÕConnor 1993). Perrings modelled this system using a
von Neumann-type technology and the mass balance principle as key features.
This vision was extended and refined by OÕConnor (1991) to include energy
flows and thermodynamic considerations regarding energy.

The framework presented in this chapter is nowhere near as complete or
encompassing. However, it does incorporate some aspects of such a system.
Its primary advantage is that it is an empirical approach utilizing advanced
econometric techniques to describe the state and evolution of technology.
Unlike the Perrings and OÕConnor models, the models in this chapter utilize
neoclassical principles of optimization. Additionally, the US model embodies
a neoclassical production function that allows continuous substitution of factor
inputs within a given state of technology. The technology in the rangeland
model consists of a group of logistic growth functions.
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Conventional econometric modelling of agricultural and industrial produc-
tion technologies (for example Capalbo 1988; Berndt and Khaled 1979) has
assumed that such systems can be approximated by deterministic production
technologies that are inherently linear in the parameters. The stochastic
components of these models are stationary random variables due to optimiza-
tion errors by producers. There are two reasons why this approach is inappro-
priate as a model of joint economy-environment systems. The first is that they
are probably inappropriate as a model of industrial systems. Technological
change is now widely seen as a non-stationary stochastic process (Slade 1989;
Solow 1994). Second, the natural environment is an additional source of
stochastic variation, uncertainty, unpredictability, and evolutionary and some-
times ÔsurprisingÕ behaviour (OÕConnor 1993; Perrings 1987).

Cointegration modelling and Kalman filtering are two approaches to the
econometric modelling of non-stationary systems that have been rapidly intro-
duced to all areas of applied econometrics (Cuthbertson et al. 1992).
Cointegration modelling (Engle and Granger 1987) assumes that a linear
combination of random variables is stationary.1 Kalman filtering (Kalman
1960; Kalman and Bucy 1961) can be used to model explicitly non-stationary
random variables. It has been used in this context to model technological
change as a stochastic trend (Harvey and Marshall 1991; Slade 1989; Stern
1994). Extremely complex and non-linear models may be amenable to econo-
metric estimation using the Kalman filter. Both studies in this chapter use
Kalman filter techniques. Cointegration modelling only enters explicitly to the
extent that the equations in the Botswana model incorporate a form of error
correction mechanism. Implicitly, we test all equations for stationary residuals
and hence for the presence of cointegration.2

Changes in the quality of environmental resources such as rangelands in
sub-Saharan Africa can be visualized as a process of uncontrolled technologi-
cal change in the environment. As such they can be modelled in a similar way
to technological change in controlled economic systems. In this chapter, we
use the Kalman filter to model factor-augmenting technological change trends
in the US macroeconomy in the post-war period. Standard linear regression
techniques are of no use in estimating this type of model where the trend vari-
ables are stochastic rather then simple deterministic trends. This model is a
fairly standard econometric model of technological change in the economy
though we know of no other study that actually estimates multiple stochastic
technical change trends. The main substantive point of interest for ecological
economists and environmental management scholars is the estimated trend in
autonomous energy efficiency.3

We also use the Kalman filter to model the current and climax state of range-
land in Botswana in a 30-year period up to the mid-1990s within an optimal
control model of pastoralistsÕ behaviour. Both state variables are unobserved by
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the econometrician and represent the state of natural technology in livestock
production or dually the level of natural capital present. Of particular interest
is the distinction between short-run, reversible rangeland degradation, repre-
sented by declines in the current state of the rangeland, and long-run and irre-
versible rangeland degradation, represented by declines in the climax state of
the rangeland. We interpret the latter to be the result of the loss of resilience in
the agro-ecosystem.

The advantage of this modelling approach is that we do not need to be able
to directly measure the availability of natural capital stocks in order to inte-
grate a simple model of the ecology of the system into a behavioural model of
the economic system. This generalized technological change approach may
have many other integrative applications in ecological economics.

The remainder of the chapter is divided into three main parts. The next part
covers the theory of generalized technological change and state space models
and the Kalman filter. The third part presents the empirical examples and the
fourth provides some conclusions.

THEORY

Generalized Technological Change

Let us examine in more detail the relationship between the conventional defi-
nition of technology and the broader definition proposed here. In a general
production system any aggregate indicator of the state of technology is a
composite of the state of the natural resource base and the state of technology
in the usual sense (Cleveland and Stern 1993; Stern 1999a). More specifically,
assume that technology is given by the following transformation frontier:

Q = f(A1X1, . . ., AnXn, B1R1, . . ., BmRm, N) (10.1)

R is a vector of resource inputs (for example the area of agricultural land, stock
of petroleum in a reservoir) and N is a vector of additional environmental vari-
ables such as rainfall and temperature. The Xi are other factors of production
controlled by the extractor (such as capital, labour, energy and materials), and
the Ai and Bi are augmentation factors associated with the respective factors of
production. Factor augmentation is a (fairly weak) restriction on the possible
nature of technological change. It specifies that technical change increases or
decreases the effective quantity of each factor of production available per crude
unit of the input used.4 Taking the derivative of lnQ with respect to time yields:

Qú = ·
i
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ú

i + ·
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siX
ú

i + ·
j

rjR
ú

j + vNú (10.2)
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where the si, ri, and n are the output elasticities of the various inputs. A dot on
a variable indicates the derivative of the logarithm with respect to time. Four
measures of resource productivity or resource scarcity in a cost of production
sense (Cleveland and Stern, 1993; Stern, 1999a) can be derived from (10.2).
The crudest indicator is resource productivity (Q/R):

Qú Ð Rú = ·
i

si A
ú

i + ·
j

rj B
ú

j + ·
i

siX
ú

i + vNú (10.3)

where R is an aggregate of the resource inputs. Examples of this indicator are
energy-intensity (E/GDP) and crop yields. This indicator is not very informa-
tive about likely long-run developments in resource availability because it is
likely to be dominated in the short run at least by changes in the quantities of
other inputs X.

Multifactor productivity (MFP) is a measure of the quantity of produced
inputs required to extract a unit of resource commodity and is thus an indirect
measure of the combined state of technology and state of nature and the avail-
ability of resources (see Stern, 1999a). This measure is a generalization of the
unit cost indicator of resource scarcity introduced by Barnett and Morse
(1963). An advantage of this indicator is that we do not need any data about
the state of the resource stock, R. The change in lnMFP is given by:

MFúP = Qú Ð ·
i
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ú

i = ·
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rjRj + vN (10.4)

Thus moves in this indicator are the sum of the four terms on the RHS of
(10.4), respectively:

1. Technical change
2. Resource depletion or augmentation
3. Change in the dimension of the resource stock, for example area farmed
4. Change in environmental variables such as rainfall and temperature in

agriculture

The sum of terms 1, 2, and 4 are what energy analysts call resource quality
(Gever et al. 1986). This definition of resource quality allows changes in the
state of technology to compensate for a decline in the physical quality of the
resource. MFP is not affected by the prices and availability of those other inputs
that can obscure the long-term trends in resource quality and availability.5

When we have data available on the extent of the resource base, we can
compute total factor productivity (TFP), which expresses the productivity of
the joint system:

TFúP = Qú Ð ·
i

si X
ú

i Ð ·
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ú
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j

rjB
ú

j + vN (10.5)
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This indicator is identical with the resource quality concept mentioned above.
We can obtain even more information by breaking the right-hand side of (10.5)
into its components Ð the factor augmentation trends. The augmentation trends
tell us about the contribution of the relevant inputs to productivity holding the
quantities and effectivities of all the other inputs constant. In the US growth
model example, one of the augmentation trends estimated is the autonomous
energy efficiency. In the Botswana case study, the main indicator is the carry-
ing capacity of the rangeland or the Ôstate of the rangelandÕ. The former trend
is mainly due to changes in technology that allow consumers to use energy
more or less effectively. The latter trend is more in the nature of a change in
the natural capital stock, but it can be treated as if it was a change in technol-
ogy.

Recent research on technological change has emphasized that to a large
extent technological change is endogenous Ð rather than changes arriving as
exogenous Ômanna from heavenÕ they may occur as a result of the economic
process and agents may invest in research and development. In the US exam-
ple we assume that technological change is exogenous. This does not mean
that technological change occurs at a constant rate or that it is unaffected by
economic factors. Quite to the contrary, we assume that the rate of technolog-
ical change varies over time as it follows a stochastic time path. Economic
events and variables may indeed affect the course of this path; however, the
econometric model does not specify the ways in which this happens.
Technology is exogenous in the sense that economic agents are not free to
choose the technology with which they produce. However, following standard
neoclassical assumptions they are free to choose the technique that they use
from among those afforded by the technology. Therefore, optimization
processes are constructed for the purposes of econometric estimation assum-
ing that [at least some] prices, technology and uncontrolled inputs are given,
but agents are free to choose quantities of controlled inputs.

On the other hand, in the Botswana case study changes in the state of the
rangeland are partly endogenous Ð grazing by cattle affects the state of the
rangeland Ð and partly exogenous Ð the effects of rainfall and random shocks.
However, we assume that pastoralists do not take the state of the rangeland
into account in their decision-making. Their impact on the rangeland is treated
as an external cost.

State Space Models and Kalman Filter

The Kalman filter is an algorithm for estimating unobserved time-varying
variables and has numerous applications in modern time series econometrics.
In our application we use the filter to estimate unobserved stochastic trends.6

The first step in applying the Kalman filter to an estimation problem is to
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reformulate the model in question in terms of a state space model. A non-linear
generalization of the linear state space model is given by (De Jong, 1991a,
1991b; Harvey, 1989):

yt = z(at) + E(at) ut t = 1, . . ., T (10.6)

at+1 = r(at) + H(at) ut t = 1, . . ., T (10.7)

where equations (10.6) are the measurement equations and equations (10.7)
are the transition equations; yt is the vector of ÔdependentÕ variables, the obser-
vations; at is a vector of unobserved stochastic state variables; ut is a vector of
normally distributed disturbances with zero mean and covariance su

2I (and is
assumed to be serially uncorrelated and uncorrelated with a(); z(), r(), E(), and
H() are possibly non-linear functions of the state vector. In the Botswana case
study, E() and H() are constant matrices. Additionally in the US study, r() is a
linear function.

As the state variables are unobserved and the current state depends on
previous unobserved states, the Kalman filter must be used to estimate the
current state vector. The filter is also used to compute the prediction error
decomposition of the likelihood function. We use the DavidonÐFletcherÐ
Powell quasi-Newton algorithm (Greene 1990) to maximize this likelihood
function with respect to the fixed hyperparameters that define the functions in
(10.6) and (10.7). The derivatives are calculated by the finite difference
method. Given maximum likelihood estimates of the hyperparameters, the
Kalman filter produces maximum likelihood estimates of the state variables
using only data for previous periods. Given these estimates, a smoother algo-
rithm (De Jong 1991a, 1991b) is used to calculate values for the unobserved
state variables utilizing the entire data set. We use the extended Kalman filter
suitable for such non-linear state space models. Details of the use of the
Kalman filter in this context are given by De Jong (1991a, 1991b), Harvey
(1989), Harvey and Marshall (1991), Slade (1989), and Stern (1994).

APPLICATIONS

Energy and Growth

There has been extensive debate concerning the trend in energy efficiency in
the developed economies, especially since the two oil price shocks of the
1970s. Taking the example of the US economy, energy consumption hardly
changed in the period 1973 to 1990 (Figure 10.1). This was despite a signifi-
cant increase in GDP. These facts are indisputable. What has been the subject
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of argument is what were the reasons for the break in the trend. It is commonly
asserted that there has been a decoupling of economic output and resources,
which implies that the limits to growth are no longer as restricting as in the
past (for example Bohi 1989; IBRD 1992). There are four main explanations
of decoupling:

1. Decoupling may be due to shifts from lower-quality fuels such as coal to
higher quality fuels such as electricity, which are more productive
(Kaufmann 1992; US Congress 1990). Figure 10.2 shows that when we
adjust energy use for shifts in energy quality, much less decoupling is
evident.

2. Decoupling could be due to substitution of other inputs for energy.
3. Shifts in the output mix might result in decoupling if economies demate-

rialize as the share of the service sector in economic activity grows over
the course of economic development.

4. Finally, a fourth possible cause of decoupling is growing autonomous
energy efficiency.

Jorgensen and Wilcoxen (1993) estimated that autonomous energy effi-
ciency is declining. Berndt et al. (1993) use a model in which this index is
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assumed to change at a constant rate. They estimate that in the US manufac-
turing industry between 1965 and 1987, the energy augmentation index was
increasing at between 1.75 per cent and 13.09 per cent per annum depending
on the assumptions made.

Perhaps these rather inconsistent and wide-ranging estimates are due to the
inappropriate assumption that the trend is deterministic. We can use the
Kalman filter to estimate an autonomous energy efficiency trend that is
stochastic rather than deterministic. The trend is estimated as a factor-
augmenting technical change trend alongside those for capital and labour by
using a group of equations derived from a macroeconomic production func-
tion.

We use a similar method to Harvey and Marshall (1991) with the following
modifications. Like Slade (1989) and Darby and Wren-Lewis (1992), we
assume that the trends follow a local linear trend (Harvey 1989), rather than a
random walk with drift. We do not assume constant returns to scale (but do
assume homotheticity) and use a production function rather than a cost func-
tion.7 Also, we estimate the model in the time domain rather than the
frequency domain and do not make the assumption of statistical homogeneity.

Similarly to Harvey and Marshall (1991), we assume that factor markets
are competitive. It is not assumed that output markets are competitive. We also
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assume that a translog function can provide a reasonable approximation to the
underlying production technology. We assume that there is weak separability
between the two groups capitalÐlabourÐenergy (KLE), and materials, which
allows us to omit materials from models of the marginal product of the other
factors (Lakshmanan et al. 1984). This is the only assumption required to esti-
mate the factor share equations (see below) with the omission of materials.
However, in order to estimate an output equation excluding a materials vari-
able, we have to assume also that non-energy materials are strictly comple-
mentary to aggregate KLE input and therefore have a zero marginal product.
Any increase in output due to an increase in materials use with constant KLE
input is credited to technical change. This is a strong assumption. While it
could be argued that these are reasonable approximations in a manufacturing
industry, they are clearly unreasonable approximations in an industry such as
agriculture where fertilizers, pesticides, water and so on can be used in vary-
ing proportions and clearly do have a marginal product.

In accordance with Harvey and Marshall (1991), it is assumed that techni-
cal change is both of the factor-augmenting type represented by three stochas-
tic trend variables, AK, AL, and AE, and also of a factor neutral type represented
by a stochastic trend A0. However, such a trend is unidentifiable in the model
developed here and therefore it was dropped.8 The translog production func-
tion for period t, imposing symmetry restrictions (see Berndt and Christensen
1973) on the cross-product coefficients pij, is:

lnQt = p0 + ·
i

piln(XitAit) + ½ ·
i

·
j

pij ln(XitAit)ln(XjtAjt) (10.8)

where Q is output and the X are the various factor inputs. Following Kim
(1992), and given the above assumptions, we derive inverse factor demand
functions from the production function that determine the price of each of the
three factors of production. These demand functions yield after various manip-
ulations, the cost share equations:

Sit = (¶Ct/¶Qt) [pi + ·
j

pij ln Ajt + ·
j

pij ln Xjt + eit] (10.9)

where C is total cost and the Si the shares of each factor in costs. We assume
that the production function is homogeneous, but do not impose constant
returns to scale. As the cost shares sum to a constant in every period, the
covariance matrix of their disturbances is singular, that is ·

i
ei = 0 and it is not

possible to obtain a maximum likelihood estimate of all three equations jointly
(Barten 1969). We chose to drop the energy share equation.

In order to estimate all three augmentation trends, at least three equations are
required. The obvious third equation is the production function. However, the
production function itself involves multiples of the unobserved augmentation
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variables, which cannot then be estimated using the diffuse Kalman filter.9 For
this reason the output equation is not the production function (10.8) but is
instead based on integrating (10.2) under the assumption of factor market
equilibrium and substituting into (10.8):

lnQt = p0 + (¶Ct /¶Qt)
Ð1[·

j
Sit ln Ajt + ·

j
Sit ln Xjt + eQt] (10.10)

The local linear trend model follows a random walk with a time-varying
drift that itself follows a random walk:

lnAit = lnAit Ð1 + git Ð 1 + hAit (10.11)

git = git Ð 1 + hgit (10.12)

All the error terms h are assumed to be uncorrelated. The elements of at in
(10.7) are therefore:

at = [ lnAKt, lnALt, lnAEt,gKt, gLt, gEt]« (10.13)

where gKt, gLt, and gEt are the stochastic trend terms and the transition matrix
in (10.7) is:

I3 I3
R = [ ] (10.14)

03 I3

The initial state of A is set to zero with zero variance, while g has a diffuse
prior distribution. This indexes the augmentation trends to one in the first year.
The observed variables are also indexed to one.

To summarize Ð two of equations (10.9) are estimated for labour and capi-
tal together with (10.10). We use De JongÕs (1991a, 1991b) diffuse Kalman
filter algorithm. In total there are six parameters of the production function
that must be estimated by maximum likelihood: p0, p

K
, p

L
, p

E
, p

KK
, p

KL
, and p

LL
,

which form the parameters of z() in (10.6) as well as five in the constant
covariance matrix E and six in H. An estimate of the error variance of the first
equation s2

u that is concentrated out of the likelihood function is also
produced. Maximum likelihood is performed iteratively using the Broyden,
Fletcher, Goldfarb and Shanno approximation of the Hessian matrix and finite
difference derivatives.

Full details of the data employed are provided in Stern (2000). Labour is
measured in hours worked by full- and part-time employees in domestic indus-
tries. Capital is measured by a Divisia index aggregating producerÕs private
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capital. Energy is measured by a Divisia index aggregating a variety of fuel
types (shown in Figure 10.2). Output is gross output calculated using a Divisia
index as the real value of GDP and energy.10 Due to this high level of aggre-
gation, it is possible that the estimate of autonomous energy efficiency will
incorporate the effects of some aspects of structural change on the output side
of the economy (Solow 1987). The time period employed is 1948Ð1990.

The estimates of the hyperparameters, their standard errors and the esti-
mate of s2

u are presented in Table 10.1. Most of the parameters are highly
significant. Some of the error variances are insignificant as is p

LL
. The main

features of the results concern the estimated production function parameters
and the stochastic properties of the technical change trends. The production
technology is characterized by increasing returns to scale. The degree of
returns to scale is 1.146. This compares to KimÕs (1992) estimate for US
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Table 10.1 Maximum likelihood estimates of hyperparameters in the US
macro model

Parameter Estimate Parameter Estimate 
(standard error (standard error 
in parentheses) in parentheses)

p
K

0.4819 E3,2 Ð0.3787
(0.0312) (0.1323)

p
L

0.5739 E3,3 5.4255eÐ04
(0.0388) (0.5884)

p
E

0.0902 H1,4 5.5423eÐ04
(7.4482EÐ03) (0.8351)

p
KK

Ð0.2660 H2,5 3.5193eÐ04
(0.0842) (0.4324)

p
KL

0.2263 H3,6 4.8293
(0.0594) (1.7930)

p
LL

Ð0.2861 H4,7 1.7571
(0.3215) (0.9496)

p0 4.3584EÐ03 H5,8 0.7041
(6.5663eÐ03) (0.2686)

E2,1 Ð0.8166 H6,9 3.3614
(0.1039) (1.8105)

E2,2 0.1925 s2
u 4.28478eÐ05

(0.0882)
E3,1 1.5075

(0.2540)



manufacturing of 1.15 for a homogeneous function and 1.28 for a non-homo-
thetic function, and CapalboÕs (1988) estimate of 0.77 for the US agricultural
sector. The parameters of the production function have the expected relation-
ships. Increasing application of any factor leads, ceteris paribus, to dimin-
ishing and eventually decreasing returns. Also the second derivatives of the
function are all positive within some range of input values. Increasing the use
of other factors raises the marginal product of a factor of production. Table
10.2 presents the results of diagnostic tests on the residuals of each equation.
The results show that the model is an adequate representation of the data for
all the equations.

As seen from the estimates of the variances of the relevant disturbances
(H), the labour and capital trends are integrated random walks as the vari-
ance of h

Ai is insignificantly different from zero. The energy trend is a local
linear trend where both the disturbances have significant variances. Figure
10.3 presents the time paths of the technical change trends. Capital would be
expected to have little trend, as the quantity of capital is theoretically the
capitalized sum of capital services. This should hold as long as the govern-
ment statisticians succeed in dividing changes in the nominal stock of capi-
tal between volume and inflationary components. However, as explained
above in this model, there is also a factor-neutral technical change trend that
has not been estimated. Therefore, we should assume that the general down-
ward trend in the capital augmentation factor is due to a similar upward trend
in the factor-neutral technical change trend. As a result of the high estimated
degree of returns to scale, estimated overall technical change has been fairly
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Table 10.2 Residual diagnostics: US macro model

Equation
S

K
S

L
SE lnQ

DW 1.7885 2.0268 2.1195 1.8892
Q(18) 23.2226 16.1559 17.0336 19.3560

(0.1822) (0.5817) (0.5208) (0.3702)
LM(1) 1.0211 2.0867 1.5877 1.6054

(0.3122) (0.1486) (0.2077) (0.2051)
t(43) 0.1950EÐ01 Ð0.2191EÐ01 0.1564EÐ02 0.2092EÐ01

(0.9845) (0.9826) (0.9988) (0.9834)

Notes: significance levels in parentheses. Tests are as follows:
DW = DurbinÐWatson test for first order serial correlation;
Q(18)  = BoxÐPierce Q test for general serial correlation/non-stationarity;
LM(1) = BreuschÐPagan Lagrange Multiplier Heteroskedasticity Test H1: et

2 = f(t);
t(43)    = t test on residual sample mean H0: E(et) = 0.



modest with around a 50 per cent increase in effectiveness over the period.
The fluctuations in the trend would be partly due to changes in the capacity
utilization of capital.

Relative to this overall trend, the efficiency of labour use has increased
substantially over time. The rise in labour efficiency is expected given the high
share of labour in costs, which would induce labour-saving technical change
and higher levels of human capital accumulation over time.

Relative to the overall upward trend, energy shows large fluctuations. Until
the mid-1960s autonomous energy efficiency is increasing and then it starts a
sharp decline. However, the results show that the first oil shock in 1973 does
not disrupt the overall downward trend in energy efficiency. Only after the
second oil shock does the trend reverse and energy efficiency increase. Finally
in the late 1980s the rate of improvement in autonomous energy efficiency
slows as the price of oil again falls.

These results show that when the overall TFP trend is broken down into its
component parts, technical change is shown to be a much more fragile and
erratic process than is often assumed in the literature (for example Barnett and
Morse 1963). The augmentation indices for different inputs may be moving in
opposite directions and even change direction as in the case of energy here. At
different points in time various of the alternative theories of the coupling and
decoupling of energy use and GDP discussed above appear to explain the
trend. The impression is of initial gains in energy efficiency that eventually
Ôrun out of steamÕ due to the effects of rising personal energy consumption and
lower marginal productivities of new energy applications as the price of
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energy fell in the first three decades after World War II. The first oil shock was
not significant enough to totally reverse that trend and even after the trend
reversed it was not sustainable.

Rangelands in Botswana

Ecosystem stability and resilience are critical in the generation and mainte-
nance of economic welfare. Current human activity, although aimed at
increasing the productivity and stability of production of natural systems, may
adversely affect the resilience of those systems and render them more suscep-
tible to systemic shocks and stress. Declining resilience may mean that current
human activity is unsustainable into the future.

Though some theoretical issues have been explored (for example Barbier
1993; Perrings et al. 1995), little progress has been made on empirical
measurement. Naturally, the lack of data on environmental and biological
variables is as much a constraint here as in any other area of natural resource
economics (Conrad and Clark 1987). The generalized technological change
approach could be valuable here as it can be used to estimate unobserved
changes in the states of environmental variables that affect economic
productivity. This approach is illustrated using a study of rangeland produc-
tivity in Botswana. The reader can find a description of the background to
the case study and the rationale for the way the model is constructed in the
paper we have already published on this topic (Perrings and Stern 2000). In
this chapter, we therefore focus on describing the model and explaining the
results.

It is assumed that the economy is made up of identical price-taking live-
stock farmers who enjoy open access to the range, and who maximize the util-
ity derived from the profits, P, from livestock production. The property rights
regime is assumed to be essentially open-access, implying that there are no
economic or social incentives for farmers to take the external costs of natural
resource degradation into account in their stocking strategies. Although the
introduction of boreholes is now introducing some private control over access
to the range, the assumption is not unreasonable for the period being evalu-
ated. Individual livestock farmers are, therefore, assumed to neglect the effect
of their actions on the state of the range. Hence, the private decision problem
is to maximize the utility of the net benefits of livestock production subject to
the dynamics of the farmerÕs own herd. The short- and long-run dynamics of
the range are assumed to be irrelevant to the private decisions of farmers. The
only livestock to enter the farmersÕ profit function is cattle. Sheep and goats
are excluded from the model, although they are very important in reality. They
are assumed to be risk-averse. Risk-neutral models were tested, but performed
extremely poorly. The general form of the model is given by the optimization
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problem that follows. Pastoralists maximize the net present value of their
welfare W over time:

MaxUit Wit = ·
∞

t=0
rtW(Pit) (10.15)

subject to the following growth equation for their cattle herd:

DXit + 1 = Xit [a1 (1 Ð Xt/Kt) + a2 (st Ð 1)] Ð Uit + eXit (10.16)

where:

Ut is herd offtake,
Xt is the aggregate stock on the rangeland,
Xit is the farmerÕs own herd,
Kt is the state of the range,
st is rainfall,
r is the discount factor,
eX, ht are random error terms.

The period interval is a year starting in September. The animal stock vari-
able is measured at the beginning of each time period, whereas the flow vari-
ables are measured for the duration of the time period. Peak rainfall occurs in
summer (southern hemisphere). Animal growth depends on the state of K at
the beginning of the time period, the rainfall within the period and offtake.
Recent theories of rangeland dynamics argue that herd dynamics are most
influenced by rainfall in years of exceptionally high or low rainfall and most
influenced by stocking density in years of average rainfall (Arntzen 1994;
Perrings 1994). Unlike Perrings (1994), we assume that rainfall only interacts
with Xit and not with Xit Xt/Kt. This is because the functional form in Perrings
(1994) implies that increases in rainfall reduce the growth of livestock when
cattle exceed the current carrying capacity, which is counter-intuitive.

We assume that profits are given by:

Pit = p
Ut Uit Ð C(Xit, Yt, st) (10.17)

where p
Ut is the price of cattle offtake. The net cost function, C0,may be either

positive or negative, since it admits the possibility that there may be stock
benefits to livestock holdings. The function has the following form:

C(Xit, Yt, st) = (k0 + k
X

Xit + k
Y

Yt + ks st) Xit (10.18)

where Xit is the cattle stock of herder i, Yt is a measure of the non-farm costs or
benefits of agriculture, and st is a measure of rainfall deficit (rainfall relative to
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the mean over the sample period). The cost of holding livestock, k
X
, includes

labour and material intermediate inputs. Labour costs of herding each addi-
tional animal are thought to decline initially with increasing herd size, but
eventually to increase. The stock benefits of livestock are the sum of benefits
derived from draft power, non-meat products, insurance against adverse
climatic conditions and so on (Perrings 1996).

In the estimated cost function, Yt is proxied by GDP per capita. This reflects
two things. First, subsidies to agriculture are highly correlated with per capita
GDP. Second, increased wealth increases demand for livestock Ð styled a Ôsink
for savingsÕ by Collier and Lal (1984) Ð and raises the benefits of livestock
holding. Rainfall is expected to reduce the cost of production through its
impact on demand for supplementary feed, water and the like. This will vary
with the size of the herd.

Utility of farmer i at time t, Wit, is given by the BoxÐCox transformation
utility function:

Wit = ((Pit)
d Ð 1)/d (10.19)

which allows us to estimate the degree of risk aversion reflected in the value
of the parameter d. For a risk averse farmer d < 1.

The growth of cattle herds is assumed to be a function of rainfall, a time
trend, the average availability of graze and the area grazed. The latter is a
function of the increase in the number of boreholes (tubewells) sunk over
this period (Braat and Opschoor 1990). We therefore model the annual
increase in grazing area as a function of the number of boreholes. There are
two equations of motion describing range dynamics. The first (10.20)
describes the dynamics of the current carrying capacity, Kt. The second
(10.21) describes the dynamics of the long-run maximum carrying capacity
or climax state, Mt.

DKt + 1 = Kt [b1 (1 Ð Kt /Mt) + b2 (st Ð 1)] Ð mXö t+1 + Kt ht /Mt (10.20)

g1Mt /Köt+1
DMt + 1 = + ht (10.21)

1 + exp(g2(1 + g3 Mt /Köt+1))

where:

Köt+1 = Kt [b1 (1 Ð Kt/Mt) + b2 (st Ð 1)] Ð mXö t+1 (10.22)

Xö t+1 = Xit [a1 (1 Ð Xt /Kt) + a2 (st Ð 1)] Ð Uit (10.23)

Modelling stochastic technological change 161



and h is a random error term. The first of these equations is the more familiar,
although it has some distinctive features. It assumes that the growth of graze
and browse in any given period Ð and hence carrying capacity Ð follows a
logistic path, in which the natural rate of regeneration varies with rainfall. The
growth of graze and browse is also assumed to vary with consumption during
the period. Since this includes consumption by calves and stock added during
the period, it is described by the term mXt+1.

The second equation of motion is less familiar. It does not derive from
existing range ecology models, although it is intended to capture the sense
of the informal state and transition models. Equation (10.21) describes the
evolution of the long-run or potential carrying capacity of the range. M can
be reduced when the current carrying capacity is less than a minimum
proportion of the equilibrium value M. This use of the threshold level of
Mt /Kö t+1 below which M is unchanged expresses the idea of a loss of
resilience. The system is less resilient the further K is from M. The func-
tional form used to transmit changes in K to changes in M is a smooth tran-
sition regression model (STR) (Granger and Ter�svirta 1993). G = 1/(1 +
exp(g2 (1 + g3Mt /Kö t+1))) switches between 0 and 1 along a logistic curve as
Mt /Kö t+1) increases. The error term ht means that in the absence of such loss
of resilience changes in M (and therefore K) are possible. These changes
may reflect permanent expansion of grazing into new areas by the expansion
of the number of waterholes but also temporary variations in the area grazed
each year.

Perrings and Stern (2000) solve the optimal control problem to show that
the privately optimal rate of offtake U*

it is given by:

lt 1
Cit + ( ) ÑÑ

d Ð 1
¶C

P
Ut(1 + a1(1 Ð Xt /Kt) + a2(st Ð 1)) Ð ÑÑ

¶Xit
U*

it = (10.24)
p

Ut

We treat lit as an additional state variable estimated using the Kalman filter.
It evolves deterministically according to:

1 + r ¶C
lit+1 = ( ) PdÐ1

it + lit (10.25)
1 + a1(1 Ð Xt/Kt) + a2(st Ð 1)  ¶Xit

Equation (10.24) gives the privately optimal offtake for a single herd.
Aggregating and adding a random error term, e

Ut, we have
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U*
t = nt U*

it + e
Ut (10.26)

where n is the number of herds.
This completes specification of the whole model. It consists of the two state

space measurement equations (10.16) and (10.26); and the two transition
equations (10.20), and (10.21).11

We estimate the initial state (K1, M1, l1) assuming that X and K are in a
steady state and l is at its (privately) optimal value. The first observation is
not, however, used in the calculation of the likelihood function, which means
that it is treated as a diffuse prior. The initial state covariance matrix is given
by HH« where H is a 3 x 1 matrix, with H11 = K1 H21/M1, H31 = 0, and H21 is
estimated. The initial states are derived from (10.16), (10.20), and (10.21):

K1 = Ð a1 X1
2/(U1 Ð a1X1) (10.27)

M1 = Ð b1 K1
2/(mX1 Ð b1 K1) (10.28)

l1 = (1 + r) p
U1 (pU1 Ui1 Ð Ci1)dÐ 1 (10.29)

In order to identify K we set a1 = 0.3. This value is the same as in Perrings
(1994) and is close to that (0.265) estimated in a linear regression of (10.16)
assuming that K is constant. Because (10.16), (10.26) is a recursive system an
additional identification restriction is required. We set the correlation between
the error terms of the two measurement equations e

Xt and e
Ut to zero. se

X
is

concentrated out of the likelihood function so that E11 is set to 1. This leaves
15 parameters to be estimated. Full details of the data employed are provided
in Perrings and Stern (2000). In that paper we also conducted a number of
policy experiments with the model that are omitted here.

Residual diagnostics for the measurement equations are given in Table
10.3. Both equations fit the data reasonably well. The residual diagnostic
statistics are also encouraging.12 The maximum likelihood estimates of the
hyperparameters are given in Table 10.4. The standard errors are estimated
using the Berndt et al. (1974) algorithm. Around half the estimated parameters
have t-statistics greater than one. This implies that a more parametrically
parsimonious model might be developed or optimally a longer time series is
required to obtain more accurate parameter estimates. s2

u is the estimate of the
standard error of the residuals in the cattle stock equation (10.16), which was
concentrated out of the likelihood function. The other error variances involve
this term so that for example the standard deviation of the residuals in the
offtake equation (10.26) is su E2,2 = 0.001038.

Figure 10.4 presents estimates of the variables that drive private stocking and
offtake decisions: the price of offtake, the net cost of livestock holdings and the
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Table 10.3 Residual diagnostics: Botswana model

Equation
Ut Xt+1

R2 0.77721 0.99376
DW 1.426290 2.584818
Q(7) 13.778183 11.538466

(0.05527020) (0.11679514)
ADF Ð4.18073 Ð4.06454
BÐP 2.627091 6.947954

(0.26886503) (0.03099352)

Notes: significance levels in parentheses. Tests are as follows:
DW = DurbinÐWatson test for first order serial correlation;
Q(7) = BoxÐPierce Q test for general serial correlation/non-stationarity;
ADF = Augmented DickeyÐFuller test for residual stationarity;
BÐP = BreuschÐPagan test for coefficient variation.

Table 10.4 Maximum likelihood estimates of hyperparameters: 
Botswana model

Parameter Estimate Parameter Estimate

a2 0.13859 r 0.16501
(0.05495) (0.04824)

b1 1.19394 k0 Ð0.04793
(1.02271) (0.08279)

b2 0.61842 k
X

0.0001514
(0.48354) (0.0006198)

m 0.65206 k
Y

0.01544
(0.71201) (0.00984)

g1 397.52479 ks Ð0.01689
(773.14788) (0.00877)

g2 Ð181.89518 E2,2 0.62907
(369.21253) (0.25000)

g3 Ð1.25890 H2,3 13.96006
(12.04458) (8.38597)

d Ð0.48003 su 0.00165
(0.83499)

Note: Figures in parentheses are standard errors.



private user cost of herd growth. The net cost of livestock holdings is initially
negative, implying that there were net private benefits to holding cattle stocks
(draft power, non-meat products, tax advantages and so on dominated the cost of
herd maintenance). The relative value of the private benefits of offtake and live-
stock holdings is summarized in Figure 10.5. In the late 1960s and early 1970s,
the net benefits of livestock holdings were about equal to offtake benefits. This
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might be expected from the literature on cattle herding in sub-Saharan Africa. But
from the mid-1970s on, stock benefits declined as the opportunity cost of agri-
cultural labour rose, becoming negative in the mid-1980s.

The parameter estimates for the cattle stock equation imply that, given the
state of the range, rainfall in the current year has only moderate effects on the
herd. The estimated parameter of 0.1389 is close to the OLS estimate of 0.125.
The parameter estimates for the range transition equation imply that the intrin-
sic growth rate is 1.19394. The growth of the carrying capacity of the range
fluctuates strongly with current rainfall. The grazing coefficient is 0.65206.
All these coefficients are higher than we previously supposed (Perrings 1993,
1994). The estimated initial values for K and M are 2.29 million and 3.48
million, respectively, implying that X was at 59 per cent of K and K at 66 per
cent of M. That is, initial stocking rates were above the maximum sustainable
yield (given water availability in 1964/65).

The parameters of the cost function show evidence of decreasing returns to
scale. There are net benefits for small herds when national income is low. At
the average GDP per capita for the period, net stock benefits peak for a herd
of 22 animals, while stock costs exceed stock benefits for herds of greater than
44 animals. At 1965 income levels net stock benefits peaked at a herd size of
120. It would thus appear that economic development has reduced the net
benefits from stockholdings. This may be because it has raised the opportunity
cost of labour used in herding or because use of cattle for non-consumption
purposes such as draft power has fallen.

Figure 10.6 shows the evolution of the state variables over time. These
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Figure 10.6 State variables
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include both the two unobserved variables estimated by the Kalman filter, and
the cattle stock. The stocks are the relevant quantities at the beginning of the
years shown: that is X1994 is the cattle stock at the end of 1993. The trend in
the time series for M is a function of the spread of boreholes. That is, the maxi-
mum carrying capacity of the range increased with the supply of water for
livestock. Our results show that this expansion is not uniform. There are
substantial increases in M during periods when the cattle herd approached
current carrying capacity and some consolidation in the intervening period.
But we cannot tell if the decline in M in those periods is due to change in the
area grazed or due to a slow degradation of the rangeland that is not associated
with loss of resilience. The current carrying capacity K shows large fluctua-
tions as would be expected from the high estimates we obtained for the para-
meters in its equation of motion. The cattle stock never actually exceeds the
estimated carrying capacity.

Figure 10.7 decomposes the changes in M into random fluctuations and the
contribution of the parametric loss of resilience function. The changes are in
terms of ¥Mt+1 so that the changes occurring in the years indicated result in the
increase or decrease in M in the following year. The results indicate one poten-
tial loss of resilience event in 1985Ð1986 (contributing an 8 per cent reduction
in M going into 1986/87). However, as the parameters g1, g2, and g3 are statis-
tically insignificant, we are unable to confirm a loss of resilience. M itself
declines by only 3.7 per cent between 1985/86 and 1986/87. This may have
been due to expansion into new grazing areas occurring simultaneously with
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the loss of resilience in some areas of the rangeland. These kind of potential
responses make determining whether a loss of resilience has occurred from
aggregate data of the sort we use here particularly difficult.

These episodes are a response to rainfall deficit shocks, and occur when the
system is stressed due to high grazing pressure. 1985/86 was the fifth year of
a major drought. Rainfall was actually slightly higher than in the previous
year, but the cumulative effects of drought worked to lower current carrying
capacity relative to the size of the herd. X/K is at a maximum for the entire
sample in 1985/86. They also work to reduce Kt+1/Mt, the variable that actu-
ally controls the loss of resilience switch in our model. This is at a minimum
in 1985/86. The large coefficients for the transition equation for M imply that
the resilience threshold is very sharp.

We are interested in whether it is possible to detect change in the capacity of
the system to absorb exogenous shocks (the measure of resilience sensu
Holling 1986). The changing sensitivity of the system to rainfall shocks is illus-
trated in Figure 10.8. This shows the threshold level of rainfall that we estimate
to have been sufficient to induce a loss of resilience compared to actual rain-
fall. This was derived using a one-step ahead simulation Ð that is lagged values
of variables are actual observations not simulations and the error terms from the
econometric model are treated as exogenous variables. Changes in rainfall
affect M by affecting the optimal offtake, the growth of the herd and the growth
of the range. The optimal offtake impacts on Xö t+1 in addition to the direct rain-
fall affect on Xö t+1 which then affects kö t+1 in addition to the direct rainfall affect
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Figure 10.8 Resilience with respect to rainfall

1965

1000

900

800

700

600

500

400

300

200

100

0
1970 1975 1980 1985 1995

Resilience
Rainfall

1990

M
ill

im
et

re
s



on Kö t+1. Kö t+1 alone then enters the loss of resilience function. We then perturb
actual rainfall until G = 1/(1 + exp(g2 (1 + g3Mt/Kö t+1))) = 0.5, that is halfway
switched on. This rainfall figure is the reported ÔresilienceÕ in Figure 10.5. The
dating is the same as in Figure 10.4 so that rainfall would have to be 360
millimetres and below in 1986 to cause a loss of resilience that would result in
M declining from that year to 1987. The link between change in the resilience
of the range and herd size is complicated by the fact that there was extensive
growth of the livestock sector in the period. More range was brought into use.
As a result, resilience is not a monotonically decreasing function of herd size.
Nevertheless, it does turn out that the system came closest to losing resilience
in 1979, when the size of the national herd was at its highest.

The implications of this for the speed of return to equilibrium are illustrated
in Figures 10.9 and 10.10. These report a sequence of impulse responses of K
and X to a change in rainfall. The responses are measured in LSUK/millime-
tre of rainfall (thousand livestock units per millimetre of rainfall). The graphs
show the one-, three-, five- and ten-year responses to a change in rainfall in
the year on the X axis. The impulse response function is not shown in other
years for simplicity. As this is a non-linear model the impulse response func-
tion is different for a perturbation in each of the years in the sample. Range
vegetation is inherently more responsive to rainfall fluctuations than livestock,
as is to be expected. This is partly because of the grazing term. Growth of the
vegetative cover of rangeland slows as cattle stocks build up in wet periods.
The higher the figure the larger the movement for a given shock and the more
ÔunstableÕ or responsive is the system.
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The one period impulse responses of the two variables are generally
opposite; that is the responsiveness of K increases as that of X decreases. X
is strongly influenced by the effect of rainfall on offtake. Higher rainfall
reduces offtake, spurring the growth of X, and vice versa. As grazing pres-
sure rises in droughts, the growth rate of X slows down for any given level
of rainfall. Overall, though, the one period responsiveness of both livestock
and vegetation to variations in rainfall rises over the period. That is, the
reduction in resilience of the system implies an increase in its volatility. It
takes a progressively smaller change in rainfall to induce the same response
in both vegetation and livestock. In general, K is more responsive to rainfall
shocks than X, but the nature of the response varies over the period. Up until
the late 1970s, the immediate rangeland response to rainfall is typically
substantial, but dies out fast. The return time to the previous equilibrium
involves a period of between three and five years. By contrast, the cattle
stock initially responds slowly. The effects of a shock build up over three to
five years and the return time to equilibrium takes a much longer period Ð
typically exceeding 10 years. From the late 1970s on, however, the pattern
changes. The return time for rangeland increases until it, too, exceeds 10
years. In the mid-1980s, drought, the loss of resilience in K is reflected in a
very sharp increase in the impulse response over all but the very short
period. By the late 1980s, the response to rainfall shocks is again a decreas-
ing one as the system converges on a new equilibrium.13 The general pattern
of the impulse responses of X is similar. In the mid-1970s, during a period
of high rainfall, the maximum response of cattle stocks to rainfall shocks
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occurs in one year. By the early 1980s, however, the position is reversed.
The 10-year response is equivalent to four times the one-year response;
while in 1985 the ratio rises to about seven to one. That is, consistent with a
loss of resilience, the effect of a rainfall shock in those years is explosive,
rather than damped.

CONCLUSIONS

In this chapter we have argued that an alternative tractable way of estimating
changes in environmental and natural capital stocks is to treat the impact of
those changes on the economic system in the same way as econometricians
have traditionally modelled the effects of unobserved changes in technology
on economic output. This idea is derived from Perrings (1987) and
OÕConnorÕs (1993) conception of change in the economy-environment system
as a process of uncontrolled technological change.

The US case study illustrates what it is possible to do with sophisticated
time series techniques in the arena of the conventional modelling of techno-
logical change. In particular, a time-varying estimate of the unobserved
autonomous energy efficiency trend was extracted from the US macro data
using a simple optimization model of economic behaviour and a simple
structural time series model of technological change estimated with the
Kalman filter.

The Botswana study is both interdisciplinary and integrated. Insights from
ecology are combined with economic intertemporal optimization theory in a
form relevant to the particular institutional conditions of Botswana. The
Kalman filter is again used to estimate a model that jointly includes parame-
ters of the economic system such as risk aversion and the discount rate and the
unobserved state variables of the natural system Ð the current and equilibrium
states of the rangeland. These estimates are extracted from the data containing
minimal information about the natural system Ð the number of cattle and level
of rainfall each year and the number of tubewells as a proxy for the area
grazed.

It seems that many such similar integrative ecological-economic applica-
tions could be developed to model integrated systems for which we have
limited measurements of the relevant natural capital variables. The technique
might also be extended to investigate pure natural science problems. A step in
this direction is provided by Stern and Kaufmann (2000) in a model of global
climate change. Further development of such a model could include modelling
unobserved time series such as stored ocean heat, which plays a similar role in
the climate system that renewable natural capital stocks do in ecological-
economic systems.
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NOTES

1. A stationary variable has constant mean and variance. Classical regression methods and
inference are only applicable to stationary variables. If the variables are non-stationary, stan-
dard regression results may indicate that there is a significant relation between the variables
when in fact none exists Ð a so-called spurious regression (Granger and Newbold 1974). But
in some cases the non-stationary components of a number of time series are shared so that a
linear combination of the series is stationary. This phenomenon is called cointegration.
When the variables cointegrate, valid inference is possible in regression models.

2. Stern (2000) examines the US macro data using cointegration modelling. The implication of
the latter results is that a linear combination of the stochastic trends estimated in the model
in this chapter cointegrate Ð in other words, the linear aggregate is a stationary variable.

3. Simple measures of energy efficiency divide GDP by energy used and hence require no
econometric estimation. Autonomous energy efficiency refers to changes in the effectiveness
with which energy is used holding the effective units of the other inputs constant. Only
econometrics can provide estimates of this trend at the macroeconomic level. At the micro-
level engineering based studies can also be used.

4. Equation (10.1) can be obviously generalized to multiple outputs. A useful simplifying
assumption is that the production function exhibits constant returns to scale in all inputs
including the resource inputs. This implies that there are decreasing returns when more
inputs are applied to a given resource stock R. Again, generalizations can be made. If N is
measured in terms of rainfall, temperature and so on, rather than water, heat and so on, the
relevant constant returns relates to the expansion of X and R but not N.

5. Stern (1999b), in an empirical study of US agriculture, shows how non-comprehensive
measures of MFP Ð that is the traditional Barnett and Morse unit cost and energy cost are
strongly affected by changes in the prices of other inputs in a way that obscures the long run
trend in resource quality and availability. See also Cleveland and Stern (1993) for a discus-
sion of alternative indicators in US forestry. Mattey (1990) shows that stumpage prices are
an ineffective indicator of resource scarcity in forestry.

6. The simplest type of stochastic trend is a random walk. The current value of a random walk
is equal to the previous value plus a random shock and perhaps a constant or drift term. This
means that the stochastic trend has a different value in every time period. If we attempted to
estimate this model using classical linear regression, we would have more parameters to esti-
mate than observations to estimate them with. Therefore, the model cannot be estimated
using regression methods. But using the Kalman filter only the variance of the shocks and
the value of the drift constant Ð two parameters Ð need to be estimated using maximum like-
lihood methods. Given these estimated hyperparameters, the Kalman filter algorithm
computes the value of the stochastic trend in each period given the observed data. In the US
model the stochastic trends are modelled using a local linear trend model, which is a random
walk where the drift term is itself a random walk. The Botswana model has more complex
non-linear stochastic trends.

7. We can assume that in the macroeconomy, the quantities of factor inputs are exogenous at
least in the short run, but that factor prices are endogenous. This obviously is not strictly
true, especially for energy prices. However, it is a more reasonable assumption for the
macroeconomy than for a single industry or firm. Also, we should expect the production
technology at the macroeconomic level to be non-monotonic. This is because the assump-
tion of free disposal may no longer hold (Stern 1994).

8. This means that the estimate of autonomous energy efficiency is not absolute but relative to
overall technical progress.

9. De JongÕs diffuse Kalman filter algorithm avoids the need to specify initial conditions for
non-stationary stochastic trends but it can only handle models that are linear in the state vari-
ables. This is also the reason why homogeneity of the production function is assumed.

10. This approach was used by Berndt et al. (1993).
11. Note that although the cattle stock is a state variable in the private decision problem, it is an

observation in the Kalman filter estimation.
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12. Neither DurbinÐWatson statistic shows definite evidence of first order serial correlation. The
BoxÐPierce Q statistics present a similar picture. There are no tabulated significance levels
for the augmented DickeyÐFuller statistic in a non-linear model of this type but these statis-
tics would indicate reasonable residual stationarity if these were linear regressions. The
BreuschÐPagan test for coefficient variation shows that the Kalman filter model is picking
up most of the coefficient variation that is present, although the statistic for the Xt + 1 equa-
tion is significant at the 5 per cent level but not at the 1 per cent level.

13. Note that the effects of the 1992 loss of resilience do not show up in Figure 10.6 as there are
only two periods remaining in the sample.
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