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University of California Berkeley
Departament of Agricultural and Resource Economics
207 Giannini Hall, Berkeley, CA 94720
E-mail: xabadia@are.berkeley.edu

∗new version of the paper ”Technology Choice, Land Use, and Pollution Abatement Using a
Land Classification System”



Control of Accumulating Stock Pollution by
Heterogeneous Producers

Abstract

Activities by heterogeneous producers are the cause of a wide range of en-
vironmental problems where environmental quality depends on an aggregate
pollution stock that accumulates over time. The stock of pollution can be re-
duced by changing production practices or by removing pollutants after they
are generated. In this paper we analyze the optimal combination of source
control and abatement strategies over time. The source control is given by
the input use and the technology choice for each unit. The results show that
that the optimal intertemporal policy depends on the form of abatement cost
and damage functions and that input taxes need to be complemented by tech-
nology taxes or subsidies to establish the socially optimal outcome. Finally,
the paper presents a novel approach for solving spatial-intertemporal optimal
control problem - the so called two stage solution approach.
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1 Introduction

Over the last decades, it has been a growing concern about pollution problems

including surface and ground water contamination, climate change, animal waste

among many others, where pollution is generated by a large number of units, it is

aggregated and accumulates over time. For example, when producers use fertilizers

to increase productivity, some of the applied fertilizer deep percolates and contam-

inates ground water, but the damage increases over time as the concentration of

chemical in the water increases. However, the private incentives to decrease pollu-

tion might not be sufficient since producers do not take into account the externalities

resulting from their activities, requiring government intervention.

Policy makers can address the problem in two ways, they can enact policies that

induce changes in production practices (control at the source) or they can remove

the pollutants after they have been generated but before they cause environmental

damage (abatement at the receptor). Source control can be reached by a reduction

of input use, that is affecting the intensive margin of production, by the exit of

some producing units (extensive margin), or by managing the use of inputs more

efficiently, encouraging the adoption of conservation technologies (Khanna and Zil-

berman, 1997; Fuglie and Kascak, 2001). On the other hand, there are specific

measures to address the pollution after it has been generated to reduce its environ-

mental effects, e.g., retention ponds, solids separation basins, wetland buffers and

vegetative practices such as filter strips between production facilities and nearby

surface waters (Mitsch et al., 1999).

This paper develops a modelling framework to address pollution problems where

environmental quality depends on an accumulating pollution stock and producers are

heterogeneous. It characterizes the optimal resource allocation and identifies policy

instruments that will lead to first best outcomes for competitive industries under

different informational assumptions. The model is most appropriate for agricultural

situations where the heterogeneity is given by the land quality but it can be applied

to other situations, for example when there is a ”putty clay” technology with assets

1



of various inputs as in the case of the energy sector or when capital goods have long

economic life and production is done in plants of different characteristics or using

various machines.

The paper investigates the dynamics of key variables that determine the optimal

incentive to conservation versus abatement over time. The control at the source is

determined by the allocation of the different technologies, the number of producing

units (extensive margin), and the intensity of production, that is the optimal level

of input use (intensive margin). The abatement is taken into account by considering

the possibility of treating the pollutant after it has been generated in order to reduce

the concentration of the pollutant at the receptor. Moreover, it is determined the

optimal combination of policies affecting the intensive margin (e.g. input taxes) and

the extensive margin (technology taxes or subsidies) in order to induce the socially

optimal technology choice.

The modelling approach taken here is a full-information control strategy where out-

puts are observable and there is no production uncertainty. The results show that

the intertemporal optimal policy depends on the convexity of abatement cost and

damage functions. When the accumulation of pollution stock produces a significant

increment on the the cost of abatement and on the environmental damage or when

abatement cost is highly convex with respect to the level of abatement, i.e., marginal

abatement cost increases rapidly with the abated quantity, the abatement effort at

the receptor is not sufficient to reduce the stock of pollution to its optimal intertem-

poral path and it has to be reinforced with a high control at the source, implying

a decrease in the aggregate emissions and consequently a decrease in the resource

use. In contrast, if the marginal abatement cost increases slowly with additional

abatement, the optimal intertemporal policy is characterized by a high abatement

at the receptor. In this case, the decrease in aggregate emissions and in the input

use towards the steady state values is done gradually. The results also demonstrate

that a policy based on the reduction of input use alone is not able to achieve the

social optimum since it produces a distortion on the extensive margin and there-

fore it must be complemented with technology policies that encourage the optimal
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allocation of the conservation technologies.

A very essential part of this paper consists of the novel approach in presenting a

two-stage solution to a spatial-intertemporal optimal control problem. The two-stage

solution, allows us to derive the qualitative characteristics of the solution better and

more easily than a single-stage solution. The first stage consists of the optimal

static solution taking into account heterogeneity conditions, and the second stage

comprises the intertemporal optimization of the solution of the first stage. The two

stages are linked by the common shadow price that allows the necessary changes

needed to transform a spatially optimal, yet static, environmental policy analysis to

an intertemporally and spatially optimal environmental policy.

The organization of the paper is as follows. Section 2 reviews the literature. Section

3 describes the basic features of the model and in section 4 we find the optimal

environmental policy, divided into the optimal static solution and the optimal in-

tertemporal solution. Section 5 analyze the spatial and intertemporal input and

technology policies that can achieve the social optimum. Finally section 6 concludes

the paper.

2 Review of the literature

There is a wide array of cases in what pollution by heterogeneous producers is ag-

gregated and accumulates over time. Some examples are summarized in table 1.

Most of the recent literature is related to the adoption of a conservation technology

as a part of solution to the stock externality problem. Examples on the agricultural

sector include the use of modern irrigation technologies such as sprinkles, drip and

other volume irrigation to reduce the amount of water applied and hence the leaching

of pollutants (Caswell and Zilberman, 1985; Caswell et al., 1990; Green et al., 1996),

the adoption of soil Nitrogen testing to adjust more precisely the amount and timing

of input application to crop growth needs in order to reduce potential N-losses (Fuglie

and Bosch, 1995), the adoption of Integrated Pest Management to decrease pesticide
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use (Moffitt, 1993; Abler and Shortle, 1995; Fernandez-Cornejo, 1998), and the adop-

tion of conservation tillage that can reduce soil erosion and water and air pollution

(Hu et al., 1997; Pautsch et al., 2001). Moreover, Lal et al., (1998) have shown that

the use of minimum tillage can increase carbon sequestration rates, decreasing green

house gas emissions so that it contributes to moderate the global warming. Similar

benefits of precision technologies have been investigated in different production pro-

cesses, e.g. in the transportation sector (Khazzoom, 1995; Michaelis, 1995; Nakata,

2000), in the electricity-generating sector (Siegel and Temchin, 1991; Khanna and

Zilberman, 1999; Barnali and Parikh, 2000??), and in the manufacture of iron, steel,

cement and glass among many others (Tester et al., 1991). Most of these studies

support the finding that taking into account the heterogeneity of producing units is

a crucial issue in the study of technology adoption.

There is a second group of papers focusing on the regulations in the extensive mar-

gin to reduce pollution stock problems. Ribaudo et al. (1994) study crop land

retirement as an option for reducing water pollution. Their results show that land

retirement as a primary pollution control tool is expensive, but if it is appropri-

ately targeted, could generate sufficient benefits to compensate the costs. Wu and

Segerson (1995) present an empirical framework for quantifying effects of commodity

programs and taxes on the extensive margin and consequently on potential ground-

water pollution in Wisconsin and Plantinga (1996) examine the potential gains in

environmental quality resulting from price incentives to change the extensive-margin.

A third group of models is concerned on the optimal combination of source control

and abatement policies. Shah et al. (1995) present a dynamic framework to analyze

the optimal combination of on-farm and off-farm pollution control measures in the

problem of water logging, however assuming constant land quality. Ribaudo et al.

(2001) use an empirical model to evaluate the impacts of alternative strategies to

achieve a particular Nitrogen reduction in the Mississippi Basin. They find that

reducing fertilizer use is less costly than wetland restoration up to a level of nitro-

gen loss reduction, beyond this point, wetland restorations are most cost-effective.
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Farzin (1996) develops a dynamic framework to analyze how should the static pol-

icy instruments be modified in the presence of an stock externality problem and

simulates the model for the case of fossil fuel burning and the consequent global

warming.

However, all these studies focus on specific parts of the pollution abatement process.

They analyze either the optimal intertemporal policies assuming homogeneity in

production units or they optimize with respect to quality without incorporating the

intertemporal aspect of the pollution stock problem. In this paper we incorporate

heterogeneity as well as intertemporal aspects together in the pollution abatement

decision process. The consideration of heterogeneity allows us to determine the

effects of a change in the quality of the fixed asset in the extensive and intensive

margins and on the conservation technology adoption rates, whereas the dynamic

framework together with allowing the possibility of on-farm and off-farm measures

to decrease the pollution stock, makes it possible to evaluate the incentives to control

the pollution at the source versus abating it after it has been generated. Moreover,

it also allows us to evaluate the effects of the policies over the resource use in the

long-run.

3 The Economic Model

Consider a production process that uses a variable input and a fixed input (an asset)

to produce a single output. The producing units (for example, farms, small firms

or households) differ in the quantity and quality of the fixed asset they own. The

heterogeneity of the asset is denoted by ε, ε ∈ [ε0, ε1], reflecting the quality of the

production unit. It may represent a measure of land quality, but it may be vintage

in case of machinery or even differences in management practices. It is assumed that

the higher is the value of ε the higher is the asset quality. The available asset with

quality ε is denoted by X(ε).

For simplicity, we concentrate on the case where two alternative technologies i, i =

1, 2 are available. The subscript i=1 represents a precision technology, and i=2 de-
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notes the traditional technology. The traditional and precision technologies may be

types of fertilizer, different irrigation technologies or pesticide management prac-

tices in agricultural activities or two different coal qualities in the case of electricity

generation. The asset allocated to technology one at any moment of calendar time

t, with quality ε is denoted by x1(t, ε) and the asset allocated to technology two is

given by x2(t, ε). Let u1(t, ε) and u2(t, ε) represent the applied input per unit of

asset associated to technology 1 and 2 respectively and let ei(t, ε) be the effective

input per unit of asset using technology i. The ratio of effective input to applied

input is called effectiveness of input use and it is denoted by βi, it depends on the

technology used, where β1 > β2, that is, the conservation technology has a higher

effectiveness of input use.1.

Let f(ei(t, ε), xi(t, ε)) represent the C
2 production function under technology i. We

assume constant returns to scale with respect to the fixed input, thus we can rewrite

the function as f(ei(t, ε))xi(t, ε), and it strictly concave in ei, that is, fei > 0 and

feiei < 0, where the subscript of a function with respect to a variable denotes its

partial derivative. The assumption of constant returns to scale within a production

unit has been widely applied in different models, for example in a power plant unit

(Khanna and Zilberman, 1999) or in a firm (Caswell et al., 1993). The product and

input prices are denoted by p and c respectively. We assume that annualized fixed

costs of technology adoption per unit of asset I, are larger for technology 1 than

those required for technology 2, i.e. I1 > I2.

The heterogeneity also affects the productivity of the fixed asset under each tech-

nology. Thus, yi = hi(ε)f(ei(t, ε)), i = 1, 2, reflects the production per unit of asset

with quality ε using technology i, where hi(ε) represents the productivity of the fixed

asset. It may represent variability in soil fertility, or the productivity of the different

machineries. We assume that dhi/dε > 0, i.e., the productivity increases with the

asset quality.

1For example, in the case of irrigation technologies, precision technologies such as sprinkler or

drip irrigation can reach an irrigation effectiveness of 0.95 while efficiency of traditional irrigation

methods is only about 0.6 (Hanemann et al., 1987).
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The applied input that is not utilized by the production process can be a source

of environmental contamination. We define the pollution function per unit of as-

set of quality ε associated with each particular technology choice i, i = 1, 2 as

αi(ε)g(ui(t, ε)) where g(ui(t, ε)) represents the potential emissions per unit of asset

as a function of the input applied with technology i. We assume that gui > 0,

guiui > 0, i.e. the marginal pollution is increasing in the input use, and αi(ε) indi-

cates the part of the potential emissions that reach the receptor for a given quality.

We assume that α1(ε1) = α2(ε1) = 0 and dα2/dε < dα1/dε < 0. The former prop-

erty indicates that the emissions that reach the receptor are zero when the quality is

maximum. The latter property together with the former implies that the functions

cannot intersect, thus technology 2 is more polluting than technology 1, and also

indicates that | α1(ε)− α2(ε) | increases as ε decreases, in other words, technology

two exacerbates the potential emissions as the asset quality decreases. The emissions

of activity one and two with quality ε that accumulate at the receptor are given by

α1(ε)g(u1(t, ε))x1(t, ε) and α2(ε)g(u2(t, ε))x2(t, ε) respectively.

The economic loss resulting from the emissions is given by the damage function

d(s(t)), where s(t) is the concentration (i.e., stock) of the pollutant in the receptor

at time t. We propose a C2 damage function with the following properties: d(0) = 0,

ds > 0, dss > 0, and d(s) = N, ∀s ≥ s̄, where 0 < N < ∞. One can think of s̄ as

the saturation point of the concentration of the pollutant in the receptor

To reduce the concentration of the pollutant, abatement strategies are available at

the regional level, in form of treatments at the receptor. Thus, let η(t) denote abate-

ment at period t, and let the abatement cost function be denoted by k(η(t), s(t)).

It is reasonable to assume that the marginal cost of abatement is positive kη > 0

and increasing with the abated quantity kηη > 0, but decreasing with the stock of

pollution kηs < 0. We also assume that ks > 0 and kss > 0, since the growing

social awareness could generate the need to perform more intensive treatments of

the pollution stock, increasing the abatement costs. Figure 1 presents a possible

scheme of the key variables and their relationships in the production process.

Figure 1
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The dynamics of the concentration of the pollutant in the receptor can now be stated

as

ṡ(t) =

∫ ε1

ε0

(

2
∑

i=1

αi(ε)g(ui(t, ε))xi(t, ε)
)

dε− η(t)− ζs(t), (1)

where a dot over a variable denotes the operator d
dt
. Following Clasen et al. (1989),

we describe the concentration of the pollutant over time as a linear function in s.

The parameter ζ, 0 < ζ < 1 represents the natural decay rate of the pollutant at

the receptor.

4 Dynamics of the pollution stock problem

It is assumed that a social planner exists and maximizes the present discounted value

of the net benefits from production while taking into account the social economic

losses due to the accumulation of the pollutant. 2 Thus, the social planner’s decision

problem is given by

2Given the regional focus of the analysis, we assume that the product prices are not influenced

by regional production decisions and thus they are taken as given. Thus, the output price is also

not influenced by the production of the externality. We assume that there are no transportation

costs, and that the utility function of the consumers is quasilinear with respect to the traded goods

and the externality. Thus, the optimal level of the externality is independent of the consumers’

expenditures, and it is possible to derive a utility function which depends only on the externality s

(Mas-Colell, Whinston and Green, 1995). To discuss the results of our model in a practical setting

we propose that the derived utility function can be represented by the damage function d(s(t)) and

the abatement cost function k(η(t), s(t)). Additionally it is also assumed that there are no cost of

public funds, and lump sum transfers are available to redistribute income so that land-use taxes

are not distortionary (Sandmo, 1995). The assumptions made with respect to the quasilinearity

of the utility function and the existence of costless public funds help to keep the model simple. It

allows us to concentrate our analysis on the incentives to control pollution versus abating it and

on the design of environmental policies.
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max
ui(t,ε), xi(t,ε), η(t)

∫

∞

0

exp−δt
[ ∫ ε1

ε0

(

2
∑

i=1

(

phi(ε)f(βiui(t, ε))−

−cui(t, ε)− Ii
)

xi(t, ε)
)

dε−
(

d(s(t)) + k(η(t), s(t))
)

]

dt,

(S)

subject to

ṡ(t) =

∫ ε1

ε0

(

2
∑

i=1

αi(ε)g(ui(t, ε))xi(t, ε)
)

dε− η(t)− ζs(t),

s(0) = s0, ui(t, ε) ≥ 0, i = 1, 2, xi(t, ε) ≥ 0, i = 1, 2,

x1(t, ε) + x2(t, ε) ≤ X(ε) 0 ≤ η(t) ≤ s(t).

where s0 denotes the amount of pollution stock at the receptor at the initial point

of calendar time, and the parameter δ > 0 denotes the social discount rate.

Proposition 1 The dynamic optimization problem S is equivalent to specifying and

solving two sequential problems S1 and S2. Thus, the solution of the general problem

S can be determined in two stages. In the first stage the model is maximized over ε

subject to a prespecified level of aggregate emissions z, obtaining the optimal trajec-

tories of u(ε) and x(ε) (problem S1). In the second stage the parameter z becomes

a decision variable and the optimal trajectories of the functions u(t, ε), x(t, ε) and

η(t) over time are obtained (problem S2).

The proof is in the appendix. Because of the structure of the problem, we are able

to decompose it into a static control problem and a dynamic control problem. The

static control problem optimizes the use of resources over quality (or space) deter-

mining how much each unit should control pollution to maximize temporal benefits

given aggregate pollution constraints. The solutions of this problem are plugged in

the dynamic control problem to assess the optimal combination of pollution control

at the source given by the aggregate emissions and abatement at the receptor.

Separating the problem in two stages is possible given the fact that the state vari-

able is an aggregate function that only depends on time. In the first stage we

analyze the optimal solution over ε, i.e., the optimal level of applied input, the
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optimal technology choice for each unit, and the optimal riparian zone, given by

X(ε)−
(

x1(ε) + x2(ε)
)

, at every location ε, that is the optimal range of qualities in

what production does not take place. In the second stage we derive the optimal in-

tertemporal solution for the optimal static solution given by the optimal combination

of pollution control at the source and abatement at the receptor.

4.1 The Optimal Static Solution

In the first stage the solution of the social planner’s decision problem is given by the

value function V (z) defined as:

V (z) ≡ max
ui(ε), xi(ε)

∫ ε1

ε0

(

2
∑

i=1

(

phi(ε)f(βiui(ε))− cui(ε)− Ii
)

xi(ε)
)

dε (S1)

subject to

z =

∫ ε1

ε0

(

2
∑

i=1

αi(ε)g(ui(ε))xi(ε)
)

dε,

ui(ε) ≥ 0, i = 1, 2, xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε),

where z denotes the aggregate emissions over the entire range of ε, from ε0 to ε1,

which accumulates over time.

A solution of the problem has to satisfy the following necessary conditions

L1ui ≡ (phiβifui − c− λαigui)xi + υi = 0, (2)

L1xi ≡ pyi − cui − Ii − λαig(ui) + υi+2 − υ5 = 0, (3)

L1λ ≡ z −

∫ ε1

ε0

(

2
∑

i=1

αig(ui)xi
)

dε = 0. (4)

The Lagrange multiplier λ is interpreted as the shadow costs of the prespecified level

of emissions at the receptor, z. Please note that z does not depend on ε, thus λ

is constant over space. Given the interpretation of λ, the necessary condition (2)
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indicates that the value of the marginal product of applied input per unit of asset of

quality ε with each technology should equal the sum of its marginal private cost and

the marginal cost of pollution per unit of asset for an interior solution. In the case of

a boundary solution, the Lagrange multiplier of the binding constraint reflects the

difference between the value of the marginal product and the sum of the marginal

costs. Since the production function has constant returns to scale, we will find an

optimal level of input use per unit of asset with quality ε (∀xi > 0) irrespective of

the total asset endowment.

Proposition 2 For a given technology, an increase in the quality of the asset leads

to an increase in the input use and to an increase in the output.

∂u

∂ε
> 0,

∂y

∂ε
> 0.

The proof is shown in the appendix. Equation (A. 21) implies that an increase in

the asset quality increases the optimal intensity of input use of either technology

since it increases the productivity of the marginal unit of the applied input and it

decreases the marginal pollution level. In the case that βi depends on ε as in Caswell

and Zilberman (1986), the change on input use would depend on the elasticity of

marginal productivity.

The necessary condition (3) indicates that the marginal net benefits of production

per unit of asset of quality ε with each technology should equal the marginal cost of

pollution per unit of asset. However, since both production an emissions functions

are linear in the fixed asset, the technology that leads to a higher quasirent, say

Π∗

i ≡ H1xi will be completely preferred to the technology with the lower quasirent,

implying that all the resources with quality ε should be used with the technology

that yields the highest quasirent. Hence, we exclusively obtain boundary solutions

for every quality ε given either by x1(ε) = X(ε), x2(ε) = X(ε) or x1(ε) = x2(ε) = 0.

In this case, the Lagrange multiplier of the binding constraint reflects the difference

between the value of the marginal net benefits and the marginal pollution cost. The

adoption of the conservation technology is optimal when the quasirent of the preci-
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sion technology is positive and larger than that of the traditional technology. The

difference in quasirent per unit of asset of quality ε with the modern and traditional

technology can be written as:

Π∗

1 − Π
∗

2 ≡ H1x1
−H1x2

= p4y∗ − c4u∗ −4I − λ(α1g(u
∗

1)− α2g(u
∗

2)) (5)

where 4 represents the difference in the level of the different variables with the two

technologies. Equation (5) implies that the precision technology should be adopted

if the impact of adoption in the increase in output, input saving and decrease in

pollution compensates the difference in the fixed cost required to implement the

technology, that is, the higher annual expenditures per unit of asset on human cap-

ital and equipment. However, the maximal quasirent for technology i, Π∗

i depends

on the asset quality, and thus it will change over ε. As equation (A. 22) shows, the

quasirent for each technology increases with an increase in the quality ε since it

increases the asset productivity and it decreases the amount of emissions that reach

the receptor. Furthermore, we can see from (A. 23) that the quasirent is more likely

to be convex in the low qualities because when the input use is low, the production

and pollution are low while the derivatives fui and gui tend to infinity. As the asset

quality increases, the first term in brackets increases while the second decreases, and

therefore the quasirent is more likely to be concave.

In order to give more insight to the analysis let us assume that β1 = β2 = 1.

Although this assumption doesn’t change the dynamic aspect of the model, it will

be useful to derive some characteristics of the adoption pattern. At the maximum

quality ε1, the traditional technology will be preferred to the modern technology since

it has lower costs of adoption (Π∗

1(ε0) < Π∗

2(ε0)). As the asset quality declines, the

modern technology becomes more profitable as activity 2 exacerbates the potential

emissions. In the case that the order of the inequality is reversed, we know that

the social quasirent functions intersect and it is optimal to diversify the technology

choice. The switching point is given by ε∗ where Π∗

1(ε
∗) = Π∗

2(ε
∗). This case is

depicted in Figure 2 for the quasirents Π∗

1 and Π
∗

2. Thus traditional technologies

are optimal for high levels of ε where the potential emissions are low. According to

an economic criterion, the traditional technology is preferred because it has lower
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annualized fixed costs of adoption per unit of asset. On the other hand precision

technologies are optimal for ∀ε < ε∗. In this case the environmental criterion prevails

over the economic criterion, that is, the higher productivity together with the lower

emissions of the modern technology with respect to traditional technology overcomes

the costs of adopting the precision technology.

Figure 2

Additionally, Figure 2 also presents the case where both quasirents Π∗′

1 and Π
∗′

2 turn

negative below the quality ε̄, ε̄ ∈ [ε0, ε1]. Hence, no production will take place on

range of qualities between ε0 and ε̄ 3.

If the order of the inequalities of (a) and (b) is not reversed, the quasirents of

activity one and two do not intersect and therefore, it is optimal not to diversify the

technology choice. The traditional technology will be preferred because of the lowest

costs of adoption. Figure 3 illustrates this case. Likewise as in Figure 2, there may

exist a ε̄ below which no production takes place, as given in Figure 3.

Figure 3

Now we will relax our initial assumption of β1 = β2 = 1 to see how the difference

in productivity of the input use can affect the adoption pattern. In this case, at

the highest quality, the modern technology will conserve resources, and it will be

preferred than the traditional when the decrease in the input use overcomes the

higher costs of adoption, that is when

(
β2

β1

− 1)cu∗2 > I1 − I2 (6)

This case is depicted in figure 4.

Figure 4

3Even though X(ε) presents the total asset of quality ε, and clearly it is variable over ε, we

simplify the graphical presentation of our results by setting X(ε) constant over ε.
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4.2 The Optimal Dynamic Solution

In the first stage we derived the socially optimal spatial solution, given by the op-

timal allocation of the technologies and the optimal level of input use from a static

point of view. To analyze how the optimal solution is affected over time, we max-

imize the value function V obtained in the first stage over time. Hence, the social

planner’s decision problem is given by:

max
z(t), η(t)

∫

∞

0

exp−δt
(

V (z(t))− d(s(t))− k(η(t), s(t))
)

dt (S2)

subject to

ṡ(t) = z(t)− η(t)− ζ s(t),

s(0) = s0, η(t) ≤ s(t), z(t) ∈ Z = [0, z̄].

The parameter z introduced in the first stage problem, that denotes the emissions of

the entire region that reach the receptor, becomes the decision variable in the second

stage. Thus, it now depends on t. The upper limit of the set Z, z̄, corresponds to the

highest possible emission evaluated at the receptor. Thus, the decision variables in

the intertemporal allocation are given by the emissions received by the receptor z(t)

(i.e., indirectly, the abatement effort at the source level) and the abatement effort

at the receptor η(t) so that we will be able to analyze the optimal mix of reducing

emissions at the source versus abatement at the receptor. The first order conditions

for an interior solution read as

Vz = kη = ϕ (7)

ϕ̇ = δϕ+H2s =
(

δ + ζ
)

ϕ− ds − ks, (8)

ṡ = z − η − ζs, s(0) = s0. (9)

Equation (7) states that the marginal value of the aggregate emissions of the pro-

ducing units evaluated at the receptor should equal the marginal cost of abatement
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which at the same time should equal the marginal shadow cost ϕ. Equation (8)

indicates the change in the shadow cost of a delayed reduction of a marginal unit of

the pollution stock from period t to period t+ 1.

For a sustainable abatement policy the social planner is particularly interested in

the achievement of a steady state, defined by equations (8) and (9) as ϕ̇ = ṡ = 0.

Assuming an interior solution, equation (7) can be solved globally and uniquely by

using Theorem 6 in Gale and Nikaidô (1965) for z = ẑ(ϕ, s) and η = η̂(ϕ, s) (for

details, see the Appendix). For the purposes of a qualitative analysis we reduce

the necessary conditions (7) - (9) to a pair of differential equations in ϕ and s by

substituting z = ẑ(ϕ, s) and η = η̂(ϕ, s) into (8) and (9) to get

ϕ̇ =
(

δ + ζ
)

ϕ− ds − ks(η̂(ϕ, s), s), (8 ′)

ṡ = ẑ(ϕ, s)− η̂(ϕ, s)− ζs, s(0) = s0. (9 ′)

A linearization of the canonical system of differential equations around the steady-

state values of ϕ and s results in




ϕ̇

ṡ



 =





∂ϕ̇

∂ϕ
≥ 0 ∂ϕ̇

∂s
T 0

∂ṡ
∂ϕ
≤ 0 ∂ṡ

∂s
≤ 0









ϕ− ϕ∞

s− s∞



 . (10)

Since the trace of the Jacobian matrix, trJ is equal to δ > 0, employing the fact that

the trJ equals the sum of its eigenvalues assures that at least one eigenvalue is pos-

itive. First, we have considered the case that ∂ϕ̇

∂s
< 0. In this case, the determinant

of the Jacobian matrix is negative and thus, the eigenvalues have opposite signs and

the steady state equilibrium is locally characterized by a saddle point. However, in

the case that ∂ϕ̇

∂s
> 0, the determinant of the Jacobian matrix can be negative or

positive. If it is negative the steady state equilibrium is also locally characterized by

a saddle point, however, in the case that the expression ∂ϕ̇

∂s
> 0 leads to a positive

determinant of J̃ , the steady state is an unstable equilibrium. Nevertheless, this case

is economically not relevant, thus, our analysis concentrate on the first two cases.

For any initial value of s within the neighborhood of s∞, where the superscript ∞

indicates the steady state equilibrium value, it is possible to find a corresponding
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value of the shadow cost which assures that the optimal environmental abatement

policy leads towards the long-run optimum.

As it is stated in the expression of ∂ϕ̇/∂s in equation (A. 26) an increase in a marginal

unit of the pollution stock produces an increase in the marginal environmental dam-

age and additionally, it affects the abatement cost in two opposite ways, it has a

direct increasing effect in the abatement cost function caused by the more intensive

treatments at the receptor (kss > 0) and an indirect effect in the form of a smaller

marginal cost of abatement given by the last term, as the increase in the pollution

stock reduces the price of abating a specific quantity of pollution. Thus, the global

effect in the evolution of the shadow cost depends on the relative magnitude of those

opposed effects. The following proposition establishes the optimal path approaching

to the steady state as a function of the relative slopes of the abatement and damage

cost functions.

Proposition 3 : The stable path leading to the steady state can be upward or down-

ward sloping depending on the convexity of damage and abatement cost functions.

When the increase in the marginal damage and abatement cost overcomes the indi-

rect effect, i.e. dss + kss > |kηs
∂η

∂s
|, the shadow cost will increase with an increase in

the stock of pollution, decreasing otherwise.

This proposition is illustrated in figures 5 and 6 below, however, readers interested

in a more rigorous proof can obtained it from the authors. When dss+kss > |kηs
∂η

∂s
|,

the slopes of the ϕ̇ = 0 and ṡ = 0 isoclines of the phase diagram in the (s, ϕ) space

are

dϕ

ds

∣

∣

∣

ϕ̇=0
= −

∂ϕ̇

∂s
∂ϕ̇

∂ϕ

> 0,
dϕ

ds

∣

∣

∣

ṡ=0
= −

∂ṡ
∂s
∂ṡ
∂ϕ

< 0. (11)

The resulting phase diagram depicted in Figure 5 shows that the stable path leading

to the steady state is upward sloping while the unstable path is downward sloping.

In this case the pollution stock and its shadow cost evolve in a parallel way, and

therefore any pollution abatement policy can be depicted by a decrease in the shadow

cost.
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Figure 5

On the other hand, when dss + kss < |kηs
∂η

∂s
|, either because the increase in the

marginal damage and abatement costs associated with an increase in the pollution

stock are low or because the indirect effect is high enough to overcome the direct ef-

fects, the shadow cost will decrease with an increase in the aggregate pollution stock.

In this case the slopes of the ϕ̇ = 0 and ṡ = 0 isoclines are both negatives and it

holds that

dϕ

ds

∣

∣

∣

ϕ̇=0
= −

∂ϕ̇

∂s
∂ϕ̇

∂ϕ

>
dϕ

ds

∣

∣

∣

ṡ=0
= −

∂ṡ
∂s
∂ṡ
∂ϕ

. (12)

The resulting phase diagram is depicted in Figure 6. It shows that the stable path

leading to the steady state is upward sloping. Thus, an increase in the stock of

pollution will reduce the shadow cost of emissions. Assuming that s0 > s∞, the

concentration of the pollutant is decreasing along the optimal path, while the shadow

cost is increasing. Therefore, as Figure 6 shows, any pollution abatement policy can

be depicted by an increase in the shadow cost ϕ.

Figure 6

In the particular cases where there is no possibility of abatement at the recep-

tor (η(t) = 0, ∀t) or the abatement cost does not depend on the pollution stock

(k = k(η)), the phase diagram is exclusively given by Figure 5.

As the convexity of the environmental damage and abatement cost functions deter-

mine the optimal intertemporal path, they also establish the optimal combination

of source control and abatement policies over time. Moreover, it also allows us to

determine the evolution of the optimal input demand function over time. Thus, we

can derive the optimal relationship between short-run and long-run input demand

functions.

Proposition 4 : Given an initial stock of pollution greater than s∞.
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1. If dss + kss > |kηs
∂η

∂s
|, the optimal dynamic policy consists on the initial choice

of aggregate emissions z′, and consequently on the initial choice of the input

use u′i, i = 1, 2, below their steady state values z∞ and u∞i and their gradual

increase until the steady state values are reached, and on the initial choice of

abatement at the receptor η′ above its steady state value η∞ and its gradual

decrease until the steady state value is reached.

2. If dss+kss < |kηs
∂η

∂s
|, the optimal dynamic spatially differentiated policy consists

on the initial choice of aggregate emissions z ′, and consequently on the initial

choice of the input use u′i, i = 1, 2, above their steady state values z∞ and u∞

and their gradual decrease until the steady state values are reached. However,

the sign of dη̂/dt remains undetermined.

The proof is shown in the appendix. Suppose that the pollution stock is greater than

its steady state value and we have to implement a pollution abatement policy. When

the indirect effect of the pollution stock in the marginal cost of abatement is of a

minor order, either because the cross derivative kηs is low or because the abatement

cost function is highly convex with respect to the level of abatement (kηη high), the

marginal damage and marginal cost of pollution stock increases more rapidly that

the increase in the additional abatement evaluated in terms of the marginal cost, that

is, dss + kss > |kηs
∂η

∂s
|. In this case, the initial abatement effort at the receptor η ′ is

not sufficient to reduce the stock of pollution and it has to be reinforced with a large

decrease in aggregate emissions implying a high control at the source, consequently

it must be a decrease in input use. When the stock of pollution decreases towards

s∞, as it is characterized by a low decrease of abatement at the receptor, a long-run

optimal pollution abatement policy involves a decrease in ϕ over time, allowing an

increase in the aggregate emissions, that leads to an increase in the input use and

the production activities along the optimal path. Therefore, an intertemporally and

spatially optimal pollution abatement policy, for s0 > s∞, can be characterized by

choosing the levels of applied input initially below their steady-state values. As

time passes, they increase until their steady-state values are reached. This case is

depicted in Figure 7.

18



Figure 7

However, if the marginal abatement cost increases slowly with an increase in η (kηη

close to zero), it is possible that the effect of the additional abatement overcomes the

change in the marginal damage and abatement costs produced by an additional unit

of s. In this case, the optimal intertemporal abatement policy is characterized by

a high initial abatement effort at the receptor η′. Hence, the decrease in aggregate

emissions z and therefore the decrease of ui, i = 1, 2, towards the steady state

values is done gradually. This case is illustrated in Figure 8. Figure 8 shows that

the optimal intertemporal abatement policy is smoother than in the former case.

Figure 8

Therefore, the increase in the environmental damage and abatement costs set a limit

on the possibility of abating the pollution stock after it has been generated. In the

case that the pollutant becomes very dangerous above certain levels, entailing a

high convexity of the environmental damage function (e.g., chromium), the optimal

policy will require a high control of the pollution stock at the source. The same

situation would arise if the increase in pollution stock leads to an abatement cost

that makes it prohibitively expensive.

An especial case may be originated when k = k(s(t))η(t), that is, the abatement cost

is proportional to the amount of abated pollution stock. As abatement enters lineally

in the model, the restoration policy will be given either exclusively by decreasing

emissions at the source or increasing abatement depending on what policy has the

lowest cost. During the early stages, when the pollution stock is large, controlling

pollution at the source is expected to be a dominant strategy, until pollution de-

creases sufficiently to diminish the unitary abatement cost below the marginal value

of pollution, i.e. k(s(t)) < Vz, after this point in time it will be no source control

and the pollution will be abated after it has been generated.

The pattern of adoption of the precision technology will also change over time as

a decrease (increase) of shadow cost along the optimal path results in an increase

(decrease) in the quasirent for both activities. In the case where the quasirents
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of different activities intersect, this increase will also lead to a different optimal

technology adoption. In the case where quasirents of the different activities do not

intersect along the entire optimal path, the optimal technology choice pattern does

not change at all. However, the quasirent of the different technologies might intersect

along some part of the optimal path, leading to a change in the optimal technology

choice pattern during this time and constancy otherwise.

5 The Optimal spatial and intertemporal Policies

5.1 Private Optimum with Input and Technology Policies

The social optimum, characterized by the equations (2) - (4) however, is not equiv-

alent to the private optimum since the producer does not consider the externality.

Her decision problem is simply given by

V (P ) ≡ max
xi, ui

∫ ε1

ε0

(

2
∑

i=1

(phi(ε)f(βiui)− cui − Ii)xi

)

dε (P1)

subject to

xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε), ui(ε) ≥ 0, i = 1, 2

The private behavior will lead to an amount of aggregate emissions above its op-

timal social level. A first-best policy would call for a tax on individual emissions

contributing to environmental damage at the receptor. However, individual emis-

sions cannot be observed due to high costs or technical infeasibility (Kopman and

Smith, 1993) and policy makers must rely on other policy measures which have to

be observable and correlate as close as possible to the individual emissions (Braden

and Segerson, 1993). These selection criteria are met by input taxes together with

technology policies, provided they are based on site specific information. Since the

pollution function is linear with respect to the fixed asset, the following proposition

establishes the policies that lead to an optimal input use and technology adoption.
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Proposition 5 : Provided that input use and technology choices can be observed in

each unit with quality ε, an optimal policy can be obtained by

1. a spatially differentiated input tax τi, i = 1, 2, given by τi = λ∗αigui(u
∗

i ), i =

1, 2, together with

2. a spatially differentiated technology subsidy or tax per unit of asset σi, i = 1, 2,

given by σi = −τiu
∗

i + λ∗αig(u
∗

i ) R 0.

Proof: The private decision problem where we have an input tax and a technology

subsidy / tax yields maxxi, ui
∫ ε1

ε0

(

∑2
i=1(phi(ε)f(βiui)−cui−Ii)xi

)

−
(

∑2
i=1(τiuixi+

σixi)
)

dε. Analyzing the necessary conditions of the problem we can see that the pri-

vate optimum coincides with the social optimum given by equations (2) to (4), thus

the input tax τi, i = 1, 2, together with the technology subsidy or tax σi, i = 1, 2,

establishes the spatially differentiated optimal input-use and technology adoption in

every location ε. ¥

An input tax alone, however, is not sufficient to achieve the social optimum since it

only establishes equation (2) but not equation (3), that is, the introduction of a tax

on the intensive margin causes a distortion on the extensive margin, thus the social

optimum is not realized. To establish the efficient allocation of technologies, the

input tax needs to be complemented by a technology policy. The sign of σi, i = 1, 2,

determines if we have a technology subsidy or tax. In the case where it is positive we

have a technology tax, and if it is negative we have in fact a subsidy. Substituting

the value of the spatially differentiated input tax τi, i = 1, 2, into σi, i = 1, 2, we

obtain:

σi = λ∗αi
(

g(u∗i )− guiu
∗

i

)

R 0 (13)

As it has been shown in a proposition by Goetz and Zilberman (manuscript), when

the marginal contribution of applied input to pollution is increasing, that is g(ui)

is convex, σi, i = 1, 2, is negative and we have a technology subsidy, otherwise

σi, i = 1, 2, has to be a technology tax. In our model, the emission function is

convex, thus, the input taxes need to be complemented by technology subsidies.
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The introduction of an input tax induce the firm to substitute the variable input

by the fixed asset, for example increasing the number of cultivated hectares by

a farm, that in turn affects the amount of pollution generated. As the emission

function is convex, the pollution expenditures per unit of asset (τiu
∗

i = λ∗αiguiu
∗

i )

are higher than the shadow value of the emissions per unit of asset (λiαig(u
∗

i )), thus

we need to apply a technology subsidy equal to the difference between the pollution

expenditures and its shadow cost per unit of asset.

The input and technology policies depend on the quality of the asset and on time.

The employment of information on asset qualities allows one to target specific units

so that input and technology policies based on the emissions of pollutant at the

receptor associated with a particular technology can be adjusted to the potential

emissions characteristic of the unit. Moreover, the technology and input use are

easy to monitor so that the policies can be enforced in practice as well. These taxes

are also adjusted over time according to the shadow cost of the pollutant which

varies according to the development of the stock of pollutant over time. To see

how should evolve these policies over time, we analyze the steady state equilibrium

that would be reached when the producing units do not consider the pollution they

cause and we compare it with the social steady state. The private intertemporal

equilibrium will be given by

max
η(t)

∫

∞

0

exp−δt
(

V (P )− d(s(t))− k(η(t), s(t))
)

dt (P2)

subject to

ṡ(t) = zP − η(t)− ζ s(t),

s(0) = s0, η(t) ≤ s(t).

where zP is the private level of aggregate emissions. In the private equilibrium the

amount of aggregate emissions is not under the social planner control and therefore

the social planner is only able to determine the amount of pollution abated at the
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receptor to decrease pollution stock. Figures 9 and 10 show the difference between

the steady state equilibrium that would be reached in this case and the social steady

state, for the two analized cases, and they also illustrate the adjustment path.

Figures 9 and 10

Figures 9 and 10 suggest that the convexity of damage and abatement cost functions

have important implications in the intertemporal policies. The difference between

the private and social pollution stock in the steady state in figure 9 is lower than

in figure 10. This is due to the higher convexity of the damage and/or abatement

costs. Moreover, when the abatement cost is highly convex in the level of abate-

ment (figure 9 ) there must be a large decrease in aggregate emissions, implying a

substantial increase in the taxes in the first stages of the abatement process, leading

to a decrease in the resource use. This involves a high control at the source level

accompanied with a decrease in the level of abatement at the receptor. In contrast,

when marginal abatement and damage costs vary slightly (figure 10 ), the intertem-

poral taxes can be gradually adjusted. Figures 9 and 10 also show the importance

of an early intervention of the policy makers to control the stock of pollution since

an increase in the difference between private and social pollution stock requires also

an increase in the severity of the intervention. On the contrary, if the difference

between private and social pollution stock is small, the policy measures can be less

harshly implemented and relaxed as we approach to the steady state. Likewise, since

producers do not gain from an improved environmental quality, it will be easier to

apply an early policy than a late but draconian one.

6 Summary and Conclusions

This paper presents a modelling approach for the socially optimal management of

an accumulating pollution stock when producers are heterogeneous. This proposal

is analyzed in a general framework that can be implemented in different environ-

ments, like in the problem of water logging, pesticide resistance or carbon emissions

among others. The optimal intertemporal pollution abatement policy is analyzed
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considering heterogeneity conditions. A static solution for the production subsystem

is determined in the first stage, where it is shown that the optimal level of input use

per unit of asset increases with an increase in the quality of the fixed asset. More-

over, it is determined the optimal technology choice pattern given the asset quality

and the range of qualities that will be employed for environmental protection.

The socially optimal intertemporal equilibrium is determined in the second stage.

It is illustrated that the optimal intertemporal change in the shadow price towards

the long-run equilibrium depends on the convexity of the abatement cost and dam-

age functions. Therefore, these functions establish the link between the short-run

and long-run input demand functions, determining the optimal mix of controlling

pollution at the source versus abatement at the receptor.

Due to the presence of an externality the private net benefit maximizing strategy

does not correspond to the social one. Thus, environmental policies in form input

taxes and technology taxes or subsidies are proposed which induce site specific re-

sponses rather than uniform responses by taking account of the vulnerability of the

unit with respect to emissions for a given technology. In particular, the temporal

aspect of the regulation is of great importance, since it determines the degree of

severity and the time schedule of the policy measures.

The economic problem is solved within a spatial and intertemporal framework based

on a two stage approach. This sequential procedure enhances the analytical tractabil-

ity of the solution more easily. The two stages are linked by the common shadow

price allowing a relationship to form between the optimal short-run and long-run

technology allocation. Most importantly it allows the necessary changes to transform

a spatially optimal, yet static, environmental policy analysis to an intertemporally

and spatially optimal policy.
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Appendix

Utilizing Pontryagin’s Maximum Principle, the current Hamiltonian of the optimal
pollution restoration strategy (S) is given by

H ≡

∫ ε1

ε0

(

2
∑

i=1

(

phi(ε)f(βiui(t, ε))− cui(t, ε)− Ii
)

xi(t, ε)
)

dε

−
(

d(s(t)) + k(η(t))
)

−µ
(

∫ ε1

ε0

(

2
∑

i=1

αi(ε)g(ui(t, ε))xi(t, ε)
)

dε−
(

η(t) + ζ
)

s(t)
)

.

To facilitate the interpretations of the costate variable µ, it has been multiplied by
minus one. In this way µ has a positive value. The arguments ε and t of the variables
and the Lagrange multipliers will be suppressed to simplify the notation unless it
is required for an unambiguous notation. Taking account of the constrains on the
control variables leads to the Lagrangian: L ≡ H + ω1u1 + ω2u2 + ω3x1 + ω4x2 +
ω5(X − x1 − x2) + ω6η + ω7(s − η), where ω1, . . . , ω7 denote Lagrange multipliers.
The solution of problem (S) has to satisfy the following necessary conditions stated
in accordance with Theorem 1, page 276, Seierstad and Sydsæter (1987)

Lu1
≡ (ph1β1fu1

− c− µα1gu1
)x1(t, ε) + ω1 = 0, (A. 1)

Lu2
≡ (ph2β2fu2

− c− µα2gu2
)x2(t, ε) + ω2 = 0, (A. 2)

Lx1
≡ py1 − cu1(t, ε)− I1 − µα1g(u1(t, ε)) + ω3 − ω5 = 0, (A. 3)

Lx2
≡ py2 − cu2(t, ε)− I2 − µα2g(u2(t, ε)) + ω4 − ω5 = 0, (A. 4)

Lη ≡ −kη + µ+ ω6 − ω7 = 0, (A. 5)

µ̇(t) = δµ+Hs = µ(δ + ζ)− ds − ks + ω7, (A. 6)

ṡ(t) =

∫ ε1

ε0

(

2
∑

i=1

αig(ui(t, ε))xi(t, ε)
)

dε− η(t) + ζs(t),

s(0) = s0. (A. 7)

The analytical solution of the necessary conditions (A. 1) - (A. 7) is difficult.
Thus, we rewrite the problem in the following way

max
ui(t,ε), xi(t,ε)

∫

∞

0

exp−δtA1 dt+ max
η(t)

∫

∞

0

exp−δtA2 dt (A. 8)

subject to

ṡ(t) = B1 +B2, (A. 9)

s(0) = s0, η(t) ≤ s(t), ui(t, ε) ≥ 0, i = 1, 2, (A. 10)

xi(t, ε) ≥ 0, i = 1, 2, x1(t, ε) + x2(t, ε) ≤ X(ε). (A. 11)

where
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A1 ≡

∫ ε1

ε0

(

2
∑

i=1

(

phi(ε)f(βiui(t, ε))− cui(t, ε)− Ii
)

xi(t, ε)
)

dε

A2 ≡ −
(

d(s(t)) + k(η(t), s(t))
)

B1 ≡

∫ ε1

ε0

(

2
∑

i=1

αi(ε)g(ui(t, ε))xi(t, ε)
)

dε

B2 ≡ −η(t)− ζs(t),

Relations and inequalities in (A. 10) and (A. 11) are block conditions (local con-
straints for subsystems) whereas equation (A. 9) gives the equation of motion for the
dynamic system. According to the Kornai-Liptak decomposition principle (Sanders,
1964), we write a local problem of reduced dimensionality:

max
ui, xi

A1 − λ(z −B1) (S1)

subject to

B1 = z ui ≥ 0, i = 1, 2, xi ≥ 0, i = 1, 2, x1 + x2 ≤ X(ε).

were λ is a Lagrange multiplier and z is a variable to be determined endogenously.
In our model, z denotes the aggregate emissions over the entire range of ε, from ε0
to ε1 which accumulates over time.

That is, in the first stage we analyze the optimal solution over ε, given by

max
ui(ε), xi(ε)

∫ ε1

ε0

(

2
∑

i=1

(

phi(ε)f(βiui(ε))− cui(ε)− Ii
)

xi(ε)
)

dε (S1′)

subject to

z =

∫ ε1

ε0

(

2
∑

i=1

αi(ε)g(ui(ε))xi(ε)
)

dε,

ui(ε) ≥ 0, i = 1, 2, xi(ε) ≥ 0, i = 1, 2, x1(ε) + x2(ε) ≤ X(ε),

To facilitate the interpretations of the costate variable λ, it has been multiplied by
minus one. In this way λ has a positive value. The arguments ε and t of the variables
and the Lagrange multipliers will be suppressed to simplify the notation unless it is
required for an unambiguous notation.

Taking account of the constrains on the control variables leads to the Lagrangian
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L1 ≡

∫ ε1

ε0

(

2
∑

i=1

(

phif(βiui)− cui − Ii
)

xi

)

dε

+λ
(

z −

∫ ε1

ε0

(

2
∑

i=1

αig(ui)xi
)

dε
)

+υ1u1 + υ2u2 + υ3x1 + υ4x2 + υ5

(

X − x1 − x2

)

.

The solution of problem (S1’) has to satisfy the following necessary conditions stated
in accordance with Theorem 1, page 276, Seierstad and Sydsæter (1987)

L1u1
≡ (ph1β1fu1

− c− λα1gu1
)x1 + υ1 = 0, (A. 12)

L1u2
≡ (ph2β2fu2

− c− λα2gu2
)x2 + υ2 = 0, (A. 13)

L1x1
≡ py1 − cu1 − I1 − λα1g(u1) + υ3 − υ5 = 0, (A. 14)

L1x2
≡ py2 − cu2 − I2 − λα2g(u2) + υ4 − υ5 = 0, (A. 15)

L1λ ≡ z −

∫ ε1

ε0

(

2
∑

i=1

αig(ui)xi
)

dε = 0. (A. 16)

Let u∗i (z)), x
∗

i (z), i = 1, 2,, be the optimal solution of the problem (S1), and let V(z)
be the value function of the maximization problem, then, the coordinating problem
takes the form

max
z(t)

∫

∞

0

exp−δt V (z(t)) dt+max
η(t)

∫

∞

0

exp−δtA2(η(t), s(t)) dt (S2)

subject to

ṡ(t) = z(t)−B2(η(t), s(t)), s(0) = s0, 0 ≤ η(t) ≤ s(t),

Rewriting terms,

max
z(t), η(t)

∫

∞

0

exp−δt
(

V (z(t))− d(s(t))− k(η(t), s(t))
)

dt (S2′)

subject to

ṡ(t) = z(t)− η(t)− ζ s(t), s(0) = s0, 0 ≤ η(t) ≤ s(t).

The current value Hamiltonian of the second stage is given by: H2 = V (z(t)) −

d(s(t))−k(η(t), s(t))−ϕ
(

z(t)− η(t)− ζs(t)
)

, where ϕ denotes the costate variable.

The first order conditions read as
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L2z ≡ Vz − ϕ = 0, (A. 17)

L2η ≡ −kη + ϕ+ υ6 − υ7 = 0, (A. 18)

ϕ̇ = δϕ+H2s =
(

δ + ζ
)

ϕ− ds − ks + υ6, (A. 19)

ṡ = z − η − ζs, s(0) = s0. (A. 20)

Assume we find the optimum of the problems (S1) and (S2). That is we find the
functions u∗i , x

∗

i , i = 1, 2, z∗ and η∗ that solve the FOC (A. 12) to (A. 20). Given
that

- equations (A. 12) to (A. 15) of problem (S1) are parallel to equations (A. 1) to
(A. 4) of the main problem,

- equation (A. 18) of problem (S2) is equivalent to equation (A. 5) of problem
(S),

- equation (A. 16) is the definition of aggregate emissions that we introduced,
thus its substitution into equation (A. 20) leads to equation (A. 7) of problem
(S),

- and equation (A. 17) relates the two stages. The change in the value function
of the static problem (S1) given by a marginal increment of the aggregate
emissions z is given by Vz = dV/dz = ∂L1/∂z = λ, where we made use of the
envelope theorem, thus we obtain that λ∗(t) = ϕ∗(t). That is, the shadow cost
of the pollution stock ϕ is equal to the shadow cost of the aggregate emissions
in the static problem λ. This link allows us to relate the optimal abatement
policy over ε with the optimal intertemporal abatement policy,

we can conclude that this functions will also maximize the problem (S), with the La-
grangian multipliers µ∗(t) = λ∗(t) = ϕ∗(t) and ω∗

1, . . . , ω
∗

7 = υ∗1, . . . , υ
∗

7 respectively.¥

To find the effect of the change in the asset quality in the intensity of applied input
we differentiate equations (A. 12) and (A. 13) with respect to ε and solve for ∂ui/∂ε
obtaining:

∂ui
∂ε

=
−(ph′iβifui − λα′

igui)

phiβ2
i fuiui − λαiguiui

> 0. (A. 21)

The changes in the allocation of the technologies are determined by differentiating
equations (A. 14) and (A. 15) with respect to ε:

Π∗

iε
≡ H1xiε = [ph

′

if(βiui)]− [λα
′

ig(ui)] > 0, (A. 22)

where the first term in brackets presents the value of the change in production per
unit of asset due to an increase in the asset productivity, and the change in the
emissions per unit of asset that reach the receptor is measured by the second term
in brackets. Since h′i > 0, f(βiui) > 0 and λα′

ig(ui) < 0, the quasirent of activity i,
i = 1, 2, is upward sloping with an increase in ε.
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The concavity of the quasirent is shown in the second derivative, given by

Π∗

iεε
= [ph′′i f(βiui)− λα′′

i g(ui)]− [(ph
′

iβifui − λα′

igui)
∂ui
∂ε
] T 0, (A. 23)

In order to analyze the effect of the change in the shadow cost or in the stock of
pollution over the aggregate emissions (control at the source) and abatement at the
receptor we conduct a comparative static analysis. The sign of ∂ẑ/∂ϕ and ∂η̂/∂ϕ can
be determined by solving the first order equations (A. 17) and (A. 18) for z = ẑ(ϕ, s)
and η = η̂(ϕ, s). Hence by the implicit function theorem, we obtain

(

L2zz L2zη
L2ηz L2ηη

)

(

∂ẑ
∂ϕ

∂ẑ
∂s

∂η̂

∂ϕ

∂η̂

∂s

)

+

(

L2zϕ L2zs
L2ηϕ L2ηs

)

=

(

0 0
0 0

)

. (A. 24)

Thus, the application of Cramer’s rule yields that

∂ẑ

∂ϕ
=

1

Vzz
≤ 0,

∂ẑ

∂s
= 0,

∂η̂

∂ϕ
=

1

kηη
≥ 0,

∂η̂

∂s
= −

kηs
kηη

≥ 0. (A. 25)

The implicit function theorem is also used to calculate the elements of the Jacobian
matrix evaluated at the steady state equilibrium with ϕ̇ = ṡ = 0, leading to

J̃ =

(

∂ϕ̇

∂ϕ
= δ + ζ − kηs

∂η

∂ϕ
> 0 ∂ϕ̇

∂s
= −kηs

∂η

∂s
− dss − kss T 0

∂ṡ
∂ϕ
= ∂z

∂ϕ
− ∂η

∂ϕ
< 0 ∂ṡ

∂s
= −ζ − ∂η

∂s
< 0

)

. (A. 26)

To find the optimal intertemporal path of z(t) and η(t), we find the total differenti-
ation with respect to time given by

dẑ

dt
=

∂ẑ

∂ϕ

dϕ

dt
+

∂ẑ

∂s

ds

dt
=

1

Vzz

dϕ

dt
, (A. 27)

dη̂

dt
=

∂η̂

∂ϕ

dϕ

dt
+

∂η̂

∂s

ds

dt
=

1

kηη

dϕ

dt
−

kηs
kηη

ds

dt
. (A. 28)

Finally, we conduct a comparative static analysis to analyze the effect of the change
in the shadow cost over the input use. Since neither V nor λ depend on ε, we
assume that the technologies are located optimally and the amount of pollution
is chosen optimally, that is we are moving along the optimal path, the sign of
∂u∗i /∂λ can be determined by solving the first order equations (A. 12) and (A. 13)
for ui = u∗i (λ), i = 1, 2. Hence by the implicit function theorem, we obtain

(

L1u1u1
L1u1u2

L1u2u1
L1u2u2

)

(

∂u∗1
∂λ
∂u∗2
∂λ

)

+

(

L1u1λ

L1u2λ

)

=

(

0
0

)

. (A. 29)

As before, we apply Cramer’s rule that yields

∂u∗1
∂λ

=
α1gu1

ph1fu1u1
− λα1gu1u1

< 0,
∂u∗2
∂λ

=
α2gu2

ph2fu2u2
− λα2gu2u2

< 0. (A. 30)

Using equations (A. 27), (A. 28) and (A. 30) and the fact that λ = ϕ and that the
slope of the stable path is determined by the sign of ∂ϕ̇/∂s, proposition 4 can be
verified.
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