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An immense body of literature has developed to explain individual violations of
expected utility in laboratory experiments and in the real world. Most of the
explanations for these violations center on individual distortion of the value of
the potential outcomes (utility) and the probability associated with each
outcome (probability weighting). A separate literature has developed to describe
personal bias when making probability assessments and forecasts. I suggest a
model of belief updating based on the …ndings of the judgement bias literature.
This updating process has implications for decision-making under uncertainty
which explain many of the expected utility violations. Some agricultural
applications are suggested.
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1 Introduction

Since Simon [42, 43, 44] introduced the notion of bounded rationality, there
has been a drive in economics to focus not only on what people ought to do
given full information, but to also describe the mechanisms that determine
how they percieve the problems they face. Simon stressed the importance of
modeling procedural rationality (or optimization given ones ability to under-
stand and process information) rather than substantive rationality (global
optimization). He hypothesized that including human factors in models of
decision-making would substantially improve our ability to predict, under-
stand and regulate behavior.

Psychologists have long made a study of the limitations humans face in
computing, forecasting, and perceiving the world around them. The judg-
ment bias literature (see [27] for an anthology) in particular focuses on human
ability to understand, use and make probability statements. There are sev-
eral common biases that occur when individuals are asked to state beliefs
concerning probabilistic events. Some economists have tested for the e¤ects
of these biases in economic markets (both experimental [17, 16, 7], and real
world [11]). However, little has been done to model economically when these
probabilty biases will matter, or when we may expect them to be manifest.

A very separate literature has developed to explain how individuals make
decisions under uncertainty. Most of this literature focuses on exposing com-
mon violations of von Neumann and Morgenstern’s expected utility axioms
[34] within the laboratory, and proposing and testing alternate models de-
signed to explain these violations. This literature has grown voluminous,
and the number of “leading” models now total well into the double digits.
Few have recognized that there might be a connection between individual
failure to maximize expected utility and judgment biases (one exception is
Grether [17]). It seems only reasonable that if biases occur when processing
probabilities, that this would hamper an individuals ability to consistently
maximize expected utility. In this paper I propose a model that makes the
relationship between judgment bias and decision under uncertainty explicit.

In the following section I present a short and incomplete review of the
judgment bias literature (for a more complete presentation see Just [25]).
Characterizing these results yeilds a set of stylized facts that any complete
model of judgment bias ought to imply. In section 3 I present the limited
learning model. This model is designed to describe behavior found in the
judgment bias literature, and provide some explanation for the biases.
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Section 4 Contains a description of the non-expected utility literature,
listing many of the common violations or “paradoxes” found through exper-
imental tests. I also show examples of how the limited learning model may
explain each of these violations. In section 5 I review many of the common
properties of the limited learning model, and argue the usefulness of a model
of probability judgment in decision-making under uncertainty. Recently new
objections have been raised concerning the expected utility representation
of preferences [37]. In section 6 I discuss these issues and give mathemati-
cal evidence that any preference functional that has the ability to describe
observed behavior must have a form similar to the limited learning model.

In section 7 I use experimental data to estimate one functional form for the
limited learning model. Further, I use procedures that have become common
in the non-expected utility theory literature to demonstrate the descriptive
ability of the model. Finally in section 8 I make a case for why the limited
learning model may be of use outside the laboratory. In particular I review
some evidence that we already observe the predicted violations of expected
utility theory in markets. Taking such violations and biases into account
may provide a di¤erent perspective on agricultural policy measures.

2 Judgment Bias

The judgment bias literature seeks to measure the accuracy with which indi-
viduals make probability assessments. There are two concepts which jointly
measure accuracy. The …rst of these is calibration. An individual is well cal-
ibrated when events that he or she predicts with x % probability happen x
% of the time. The second measure of accuracy is resolution. An individual
displays good resolution (or knowledge) if their probability assessments are
generally close to 1 or 0. There is some trade o¤ between the two notions
of accuracy. I can, of course, predict that the Dow Jones Industrial Average
(DJIA) will close at 10,000 tomorrow with certainty. This prediction has
very high resolution (I make a very narrow prediction), but terrible calibra-
tion (what I predict with certainty will happen with very small probability).
On the other hand I could predict that the DJIA will close at some real
number with certainty and always be correct. Individuals tend to be poorly
callibrated especially when predicting events for which they have little expe-
rience [35]. Training has helped in some experiments, but the training does
not appear to be transferable [1]. In this section I will characterize many of
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the biases that arise when individuals make probability statements. These
biases appear to cause greater resolution at the expense of calibration.

2.1 The Law of Small Numbers

The law of small numbers is a somewhat derisive name given to the phe-
nomenon of ignoring sample size [46]. In other words individuals when com-
bining data to make inferences often take sample properties of very small
samples to be the population properties. By not adjusting the weight of evi-
dence to suit the sample size, too much will be inferred from small samples,
and too little inferred from large samples. Of most interest, is the fact that
this property is so often displayed by scientists, even within journal articles
[46, 9].

The lack of adjustment for sample size suggests that there must be some
sort of cost involved in correctly weighting samples in belief updating. The
e¤ects of ignoring sample size in scienti…c studies include: overstated power
of statistical tests, overcon…dence in trends and replicability, and attempts to
…nd causal explanations for outlying data. Individuals making decisions may
be lead to believe items are positively correlated when they are independent,
and beliefs may ‡uctuate too quickly or too slowly given the information
obtained by the individual. The law of small numbers is somewhat to blame
for all of the following biases, causing individuals to update using incorrect
inferrences.

2.2 Representativeness

Representativeness bias occurs when individuals ignore base rates (prior in-
formaiton) [28]. The name representativeness is suggestive of individuals
believing the process that is most represented by new information to be
most likely, disreguarding any prior probabilities. This process is similar to
the process of maximum likelihood estimation in that prior information is
ignored, and the process with the highest likelihood is considered the most
probable process. This bias is one of the most studied in economics. Grether
[17] and Camerer [6] have found signi…cant evidence of representativeness
in experimental markets. DeBondt and Thaler [11] …nd evidence from New
York Stock Exchange data. Essentially, when base rates are ignored, indi-
viduals’ beliefs will drift wildly whenever new information comes in. Arrow
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[4] suggests that representativeness typi…es the movements of stock market
and commodities market prices.

2.3 Conservatism

Conservatism is the opposite of representativeness. When individuals display
conservatism they are learning too slowly for the information they recieve.
Edwards [12] …nds that in some cases it will take individuals 5 iterations to
do the belief updating work Bayes theory does in one. Less has been done
to …nd conservatism in commodities markets. Conservatism would occur if
individuals failed to incorporate new price information. Prices may linger
too long when true values of stocks or commodities had already changed. If
some individuals learn too slowly in some instances, they may create a market
bubble as individuals overvalue (or undervalue) stocks given the information
present in the market.

2.4 Overcon…dence

Representativeness and conservatism are opposing biases in belief updating.
While some have speculated the conditions under which each may occur, little
is known directly about the circumstances leading to one bias or the other.
A clue may be gained from observing static beliefs of individuals. Alpert
and Rai¤a [1] and Oskamp [35] describe a phenomenon known as overcon-
…dence. In each of their studies, individuals are asked to assess con…dence
intervals (or quantiles) for many varying physical events (e.g. the number
of business school Ph. D. students at Harvard). Individuals overwhelmingly
stated con…dence intervals that were too narrow. Support has been found
for this …nding among several di¤erent elicitations in varying …elds (see [9]
for a review) . It appears that whatever process determines the weight of
prior and likelihood in belief updating has as its e¤ect that beliefs are less
di¤use than optimal Bayesian updating would suggest. Individuals tend to
ignore outlying events when assessing probability, perhaps due to the cost of
accounting for low probability events. This means that risk is underassessed,
and individuals are overcon…dent about their predictions. This leads me to
believe that the opposing processes of representativeness and conservatism
may be due to a cost of incorporating di¤use information.
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2.5 Empirical Models and the Speed of Learning

Grether [17] and Edwards [12] both use a similar modi…cation of Bayes rule,
dubbed generalized Bayes rule, to estimate e¤ects of representativeness (in
the case of Grether) and conservatism (in the case of Edwards). The gener-
alized Bayes rule has the following form

pt+1 (µ) =
pt (µ)

r l (xjµ)1¡rR
pt (µ)

r l (xjµ)1¡r dµ
; (1)

where x represents the data presented to the individual, µ is the parameter
to be forecasted, pt are beliefs in period t; l is the likelihood of observaing
x given the parameter µ, and r is a constant in the unit interval. Edwards
…rst suggested using this form when he noticed that, for a given situation,
Bayesian log-likelihood ratios of stated beliefs seemed to be a linear transfor-
mation of the beliefs implied by Bayes rule. This rule has also been used by
Zellner [49] in a statistical inferrence setting. While both Grether and Ed-
wards …nd the generalized Bayes rule to …t beliefs well in any given question,
they …nd that weights di¤er between questions. Edwards suggests modeling
the dependence of r on environmental characteristics as a promising area of
research.

In separate studies much evidence has been found that the speed of learn-
ing is dependent on the di¤usion (or variance) of the simuli. In fact there is
now a mountain of evidence that learning is slowed beyond what is suggested
by Bayes rule when new information is di¤use [19]. This suggests that we
might expect r to depend on variance of the distributions pt and l. Hog-
arth and Einhorn [22] also …nd a dependence upon how complicated prior
and likelihood information are. These observations forms the basis for the
limited learning model. In the next section I present this model and discuss
some of its properties.

3 The Limited Learning Model

To construct a simple model of learning, consider an individual who uses
the generalized Bayes rule to combine incoming information with previous
beliefs. Suppose that the individual must exert some mental e¤ort (or cost) in
combining information, and that this cost is dependent upon the complexity
of the two distributions to be combined and the degree to which the individual
incorporates both. Let z be the choice variable, ² be the random parameter
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the individual is learning about, and let U (z; ²) be the individuals Bernoulli
utility function. Suppose that in this instance the weights yielding the most
accurate information are according to Bayes rule, and are hence equal. The
individual’s true expected utility is thus given by

1Z

¡1

U (z; ²) p (²) l (²)R1
¡1 p (²) l (²) d²

d²¡ c1 (z)¡ c2 (p; l; r) ; (2)

where c1 (z) is the cost associated with choice z; and c2 (p; l; r) is the cost
associated with combining prior p and likelihood l using weight r: The in-
dividual however does not observe this expected utility, but his anticipated
expected utility

1Z

¡1

U (z; ²) p (²)r l (²)1¡rR1
¡1 p (²)

r l (²)1¡r d²
d²¡ c1 (z)¡ c2 (p; l; r) : (3)

Thus the individual must maximize (3) with respect to z yeilding …rst order
conditions

1Z

¡1

Uz (z; ²) p (²)
r l (²)1¡rR1

¡1 p (²)
r l (²)1¡r d²

d²¡ c1z (z) = 0: (4)

Thus, so long as the functions are well behaved, any solution must have the
individual meeting this …rst order condition. While the individual is not able
to observe the true expected utility, it may be reasonable that an individual
would know from previous experience what type of tradeo¤s to expect from
changing the weighting, r: Even if this is a new situation and the indivual
does not have this knowledge, the individual may hazard some guess as to
the tradeo¤ and hence perform an optimization similar to the following1:

maxz;r
1R
¡1

U (z;²)p(²)l(²)R 1
¡1 p(²)l(²)d²

d²¡ c1 (z)¡ c2 (p; l; r)

subject to
1R
¡1

Uz(z;²)p(²)
rl(²)1¡rR 1

¡1 p(²)rl(²)1¡rd²
d²¡ c1z (z) = 0:

(5)

This is similar to the …rst order approach used in contract theory and is sub-
ject to the same regularity conditions for su¢ciency of …rst order conditions

1I have dropped conditioning from the likelihood function to eliminate some clutter.
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(see Macho-Stadler and Perez-Castrillo [32]). The …rst order conditions for
(5) are given by

1Z

¡1

Uz (z; ²) p (²) l (²)R1
¡1 p (²) l (²) d²

d²¡c1z (z)+¸

2
4c1zz (z)¡

1Z

¡1

Uzz (z; ²) p (²)
r l (²)1¡rR 1

¡1 p (²)
r l (²)1¡r d²

d²

3
5 = 0(6)

¡ c2r (p; l; r)¡ ¸
1Z

¡1

Uz (z; ²) [ln p (²)¡ ln l (²)] p (²)r l (²)1¡rR1
¡1 p (²)

r l (²)1¡r d²
d²

+ ¸

Z 1

¡1

[ln p (²)¡ ln l (²)] p (²)r l (²)1¡rR1
¡1 p (²)

r l (²)1¡r d²
d²

1Z

¡1

Uz (z; ²) p (²)
r l (²)1¡r d² = 0

(7)

We can combine (6) and (4) to obtain

1Z

¡1

Uz (z; ²) p (²) l (²)R1
¡1 p (²) l (²) d²

d²¡
1Z

¡1

Uz (z; ²) p (²)
r l (²)1¡rR1

¡1 p (²)
r l (²)1¡r d²

d²

+ ¸

2
4c1zz (z)¡

1Z

¡1

Uzz (z; ²) p (²)
r l (²)1¡rR1

¡1 p (²)
r l (²)1¡r d²

d²

3
5 = 0: (8)

Equation (7) is a very interesting equation. In physics, entropy is de…ned as
the expected log height of a density function. Information is then de…ned
as negative entropy. Equation (7) displays a tradeo¤ between anticipated
marginal utility of information (on the left of the equation) and the marginal
cost of processing information. Each of the two constraint terms involve the
anticipated (note the weighting) expected di¤erence in log height of prior and
likelihood multiplied by the marginal bene…t of z: Using the de…nition of in-
formation from physics, this is simply the marginal bene…t of information
added through incorporation of the likelihood function. So, quite literally,
the model implies one must pay for understanding. Equation (8) displays
the tradeo¤ in true expected utility and cost of action. Theoretically we
could solve this model for the optimal r = R (l; p; y) ; where y is a variable
representing the environmental factors of the decision situation. This weight-
ing function would also be dependent on the type of problem the individual
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might be facing and his ability to understand the tradeo¤s involved. Thus
we can represent beliefs as

p2 (x) =
p (x)R(l;p;y) l (µjx)L(l;p;y)

1R
¡1

p (x)R(l;p;y) l (µjx)L(l;p;y) dx
; (9)

I will refer to this as the Limited Learning Model. Here R (for recall) is
a function of the likelihood function, the prior function, and other factors
represented by y such as passage of time, interceding data or environmental
facotrs; L (learning) is also a function of these three objects. The weight
R is a measure of how well the individual remembers and incorporates pre-
vious information. Thus it represents primacy e¤ects from the psychology
literature, or what Simon called information storage ability. The weight L
is a measure of how well an individual incorporates new information in deci-
sions and, hence, represents recency e¤ects, or what Simon called information
processing ability.

This model di¤ers from that proposed by Grether or Edwards in that I
allow weighting of the prior and likelihood function to be dependent on con-
text. In accordance with Hogarth and Einhorn [22] these weightings should
be a function of the complication involved in processing new information
and retaining old information. By allowing the weights to vary, the limited
learning model may better represent true human behavior.

Note that in the Bayesian model, a prior is necessary so that learning is
not perfect and immediate. In the event that no prior information is avail-
able, the individual is assumed to create a prior based on the situation and
other similar experiences. Fox and Irwin [14] cite evidence that individuals’
prior beliefs are incorporated into information presented in the laboratory
when calculating probabilistic beliefs. While this approach may challenge
the abilities of formal modeling in real world contexts, it is more realistic
than perfect and instantaneous learning from the …rst stimulus. In other
words, this is more reasonable than using only a likelihood function to rep-
resent initial learning. The use of the entire distribution is in the spirit of
the rank-dependent models proposed by Quiggin [36].
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3.1 Explanation

3.1.1 The Prior

A prior function is used in decision theory to represent beliefs regarding the
distribution of a random variable before observing new information. In the
context of this paper, it represents the beliefs of an individual regarding the
distribution of money payo¤s. Even in the absence of previous experience, it
is likely that individuals have opinions as to how much money they are likely
(or unlikely) to win in a given setting (e.g. laboratory experiment, farming,
etc.). Let us focus for now on an experimental setting.

Suppose the individual is told that they will have probability l (x) of
gaining x, and l (y) of gaining y, where l (x)+ l (y) = 1. Upon being told the
numerical probabilities, the individual tries to convert the probabilities into
understanding. Understanding within the individual need not be numerically
based. However, I assume that we can represent the …nal understanding
numerically. Within this processing, individuals bias the information toward
their prior beliefs [14, 17].

The most commonly used model of information combining is that of
Bayesian updating. In this case, if the individual’s prior were to be known to
be of the same quality as the likelihood information told to the individual,
the optimal updating rule would imply the following posterior distribution:

p2 (z) =

8
><
>:

p(x)l(x)
p(x)l(x)+p(y)l(y)

for z = x
p(y)l(y)

p(x)l(x)+p(y)l(y)
for z = y

0 otherwise.

(10)

The posterior probability of any outcome in the case of two possible out-
comes always lies in the interval whose endpoints are the prior and likelihood
values of that outcome.

It is not likely that experimenters would give out bad information. If it
could be known that experimenters were telling the truth, then prior infor-
mation would be of lesser quality. In fact if it was known that the likelihood
function represented truth, a weight of R = 0 would be given to all prior
information under optimal updating. This yields

p2 (z) =

8
<
:
l (x) for z = x
l (y) for z = y
0 otherwise.

(11)
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In other words, an optimal updating of beliefs, given truth of the information
observed, implies beliefs are identical to the truth. Alternatively, knowing
that the prior is truth leads to the likelihood receiving a weight of zero:

p2 (z) =

8
<
:
p (x) for z = x
p (y) for z = y
0 otherwise.

(12)

In this way Bayesian updating can represent the biasing of beliefs toward
some prior beliefs. It is important that Bayesian updating alters probabilities
based on the outcome associated with a probability. Two outcomes with the
same probability will not necessarily be distorted in the same way. The
distortion of each will depend on the context of other possible outcomes and
the weights given them.

3.1.2 Non-Optimal Weighting

While an econometrician can weight based on the size of data sets involved
in the prior and likelihood functions, individuals may not know the quality
of information they are told. Beyond not knowing the quality, there are
also limitations in one’s ability to process information, which were described
previously. For these reasons it is unreasonable to assume that individuals
will always behave optimally when combining prior beliefs and incoming
information.

These limitations mean that low quality priors may be too prevalent in
posterior beliefs, or low quality information may prevail against high quality
prior beliefs. Hogarth and Einhorn [22] suggest that the principle determi-
nant of whether recency or primacy e¤ects will be observed is the relative
degree of di¢culty in maintaining a prior and processing incoming informa-
tion.

This means that instead of basing the weighting of prior and likelihood
solely on quality as in the statistical model, or having a static weighting as
Zellner suggests, the weighting appears to be a function of how complicated
the information they represent are to understand. In this way beliefs will be
closer to the prior distribution of payo¤s when information to be learned is
in some way complicated to process. When the likelihood functions of two
lotteries are similar, distortions arising from ine¢cient use of information
may cause seeming violations of expected utility theory. This is an argument
similar to Buschena and Zilberman [5] and Rubenstein [40].
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Other factors may also a¤ect the weighting of information, such as re-
liability of the source, familiarity with similar information, experience with
similar situations, or something as simple as typeface used to write the infor-
mation. Schultz’ [41] arguments about education in decision-making suggest
that educational factors may be appropriate to include in any weighting func-
tion.

3.1.3 Measurement of Complication

In order to identify which distributions are more heavily weighted in infor-
mation processing, we need a measure of how complicated a distribution is
to understand. In the absence of direct observation of complication, some in-
strument will be necessary. This measure will form the basis of the weighting
functions.

One obvious choice is the variance of the distribution. A distribution
with widely varying outcomes often appears complicated and will likely be
harder to interpret than very tightly dispersed distributions. In all of the
analysis of this article I will use this measure, as it is widely understood, and
an intuitive measure. Also, Haruvy et. al [19] cites substantial evidence that
variance tends to slow learning in experimental and …eld studies.

Variance has weaknesses as a measure of complication, however. In par-
ticular small probabilities of large monetary outcomes are likely viewed as
complicated and outside the realm of updating experience (see the example
in the next section). Yet gambles with this description would have low vari-
ance. A better measure would be entropy. Entropy was introduced through
the …eld of physics as a representation of the amount of disorganization in a
distribution. Literally, negative entropy is interpreted as information. The
formula for the entropy of a density f (¢) is

H (f (x)) = ¡
Z
log

µ
f (x)

m (x)

¶
f (x) dx; (13)

where m (¢) is a weighting function. If m (x) = 1, then this is just negative
the expected log height of the density. The higher the expected log height,
the more concentrated the distribution is. By incorporating a weighting
function, entropy can give more importance to certain ranges of payo¤s in
determining how complicated a distribution. In this way distributions with
low concentration around extreme payo¤s may also be included as compli-
cated distributions. Entropy is also preferable as it measures the degree of
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concentration anywhere in the distribution, and not just the concentration
about the mean.

4 Non-Expected Utility

In this section I demonstrate the usefulness of the limited learning model of
decision-making and compare it with several known expected utility viola-
tions. In order to be a preferred tool for modeling at least two requirements
must be met. First, the model must explain available data. Second it must
o¤er a simpler or more plausible explanation. In this problem, the latter may
correspond to fewer departures from conventional theory of decision-making
under uncertainty if individuals begin to approximate true probabilities in
decisions, given experience.

To demonstrate the ability of this model to describe the data consider
the following functions:

utility:

u (x) = 1¡ e¡:0001x (14)

prior:

p (¢x) =

(
1

7000
¡ ¢x

(7000)2
if x ¸ 0

1
7000

+ ¢x
(7000)2

if x � 0
(15)

weighting:

R
¡
¾2l ; ¾

2
p

¢
=

8
>>>>>><
>>>>>>:

9:0909
¾2l
¾2p

if ¾2l
¾2p
< :0022

:02 + 17:3077
³
¾2l
¾2p

¡ :0022
´

if :0022 � ¾2l
¾2p
< :0074

:11 + 9:2457
³
¾2l
¾2p

¡ :0074
´

if :0074 � ¾2l
¾2p
< :0306

:3245 + :5
³
¾2l
¾2p

¡ :0306
´

if :0306 � ¾2l
¾2p

(16)

L
¡
¾2l ; ¾

2
p

¢
= 1¡R

¡
¾2l ; ¾

2
p

¢
:

where u is utility, x is wealth, ¾2p and ¾2l are the variances of the prior and
likelihood function, respectively. Figure 1, 2 and 3 display these graphs over
the relevant intervals.
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The utility function has constant absolute risk aversion of .0001.2 It is
important that the individual may display risk aversion (even over losses) in
this framework. One of the major theses of non-expected utility theory is
that individuals are risk loving over losses. Hence, the use of value functions
that are convex below current wealth. This value function explains the what
is called the re‡ection e¤ect. My model suggests, however, that the utility
function may be smooth, always concave, and still display the re‡ection e¤ect.
The use of a symmetric prior distribution creates the desired result.

I have used a tent-shaped distribution in this numerical example for sim-
plicity and plausibility. Individuals may enter the experiment with some
belief that their current wealth is not likely to change much (hence 0 is the
modal value of the prior), and that they are about as likely to lose some
amount x as they are to win x. Although I have not shown it in general,
symmetry of the prior is all that is required to create the re‡ection e¤ect in
all examples discussed here.

I have used four connected line segments to describe a weighting function
for the prior distribution. I derived this function by exploring the values
that could explain the modal observations of the problems described in this
section. While other functions (in particular smooth functions) could also
describe the data, I consider this to be the simplest representation. It appears
in Figure 3 that for a small standard deviation of wealth, individuals behave
more rationally, relying mostly on the perfect information they receive. Very
close to 0, the function R is convex.

When the standard deviation of monetary outcomes is larger, individuals
depend more on their prior knowledge as Hogarth and Einhorn [22] would
suggest. The function is concave in variance of wealth for larger values. Of
particular interest is how the function changes slope around a standard devi-
ation of $500. While any amount of uncertainty has a dramatic e¤ect on the
ability to process information relative to certainty, the rate of departure from
super-rationality (or unconstrained rationality) decreases for larger variance
of wealth.

This weighting function describes why individuals would give special

2This may seem like a very small degree of risk aversion. My reason for using such a
small absolute level of risk aversion is purely to avoid problems with numerical accuracy.
Higher absolute risk aversion creates a function that has slope zero over part of the relevant
range with the accuracy of Matlab. Arrow [3] suggests that individuals should have relative
risk aversion near 1, which would occur with this utility function if individuals have wealth
of $10,000. All analysis is conducted with initial wealth of $10,000.
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salience to certainty when making decisions, as 0 is the only standard de-
viation that appears to elicit a completely rational response (even if R were
larger at certainty the individual would not consider the prior in weighting
because a likelihood function that is only positive at one point will result in
all posterior weight being placed on that point).

I will now proceed to demonstrate how these parameters potentially de-
scribe the responses observed by Kahneman and Tversky. I demonstrate their
problems 1, 2 and 10, the Ellsberg paradox, a violation due to Loomes, and
then list the expected utilities from all numerical problems found in Kahne-
man and Tversky [26]. For all examples assume a current wealth of $10,000.
It is important to remember that I am not attempting to …nd true parame-
ters and functional forms. This is only an example to show that individuals
may try to maximize expected utility under learning-recall limitations.

4.0.4 Problem 1 and 2:

Kahneman and Tversky [26] induced the Allais paradox by asking individuals
to choose between pairs of lotteries as follow:

Problem 1: Choose between

A:
$2500 with probability .33
$2400 with probability .66
$0 with probability .01

B: $2400 with certainty.

Problem 2: Choose between

C:
$2500 with probability .33
$0 with probability .67

D:
$2400 with probability .34
$0 with probability .66.

They found that 82% of 72 respondents chose B in Problem 1, and 83%
chose C in Problem 2. A simple calculation shows that these answers violate
expected utility theory. Choosing B implies that :33u (2500) + :01u (0) <
:34u (2400), while choosing C implies that :33u (2500)+:01u (0) > :34u (2400)
– an obvious contradiction.

While the prior I have assumed is positive over an interval, the likelihood
function is zero at all values other than $2500, $2400, and $0. These values
are , p (2500) = 9:1837£10¡5; p (2400) = 9:3878£10¡5; and p (0) = 1:4286£
10¡4: The likelihood function is as represented in Problem 1 above. The
variance of the likelihood function and prior density are ¾2l = 60819 and
¾2p = 8:1667 £ 106 respectively. Thus the values of the weighting functions
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are R
¡
¾2l ; ¾

2
p

¢
= :1104 and L

¡
¾2l ; ¾

2
p

¢
= :8896; and the posterior density is

p2 (x) =

8
>>>><
>>>>:

p(2500)Rl(2500)1¡R

p(2500)Rl(2500)1¡R+p(2400)Rl(2400)1¡R+p(0)Rl(0)1¡R
if x = 2500

p(2400)Rl(2400)1¡R

p(2500)Rl(2500)1¡R+p(2400)Rl(2400)1¡R+p(0)Rl(0)1¡R
if x = 2400

p(0)Rl(0)1¡R

p(2500)Rl(2500)1¡R+p(2400)Rl(2400)1¡R+p(0)Rl(0)1¡R
if x = 0

0 otherwise

=

8
>><
>>:

:3444 if x = 2500
:6395 if x = 2400
:0161 if x = 0
0 otherwise.

The value of the utility function at the relevant values are u (2500 + 10000) =
:7135, u (2400 + 10000) = :7106, and u (0 + 10000) = :6321: The expected
utility of option A is EU = :3444£ :7135 + :6395£ :7106 + :0161£ :6321 =
:7103: The expected utility of option B is just u(2400 + 10000), which is
:7106. Thus, the individual who behaves as my assumed model suggests
would choose option B as did most of the respondents.

The variance of the likelihood function in choice C of problem 2 is ¾2l =
1381875. The weights suggested by this example are R

¡
¾2l ; ¾

2
p

¢
= :3938 and

L
¡
¾2l ; ¾

2
p

¢
= :6062: The posterior distribution is

p2 (x) =

8
<
:
:3536 if x = 2500
:6464 if x = 0
0 otherwise.

(17)

The expected utility from choice C is EU = :3536£ :7135 + :6464£ 6321 =
:6609:The variance for choice D is ¾2l = 1292544:The weights areR

¡
¾2l ; ¾

2
p

¢
=

:3883 and L
¡
¾2l ; ¾

2
p

¢
= :6117: The posterior distribution for D is

p2 (x) =

8
<
:
:3615 if x = 2400
:6385 if x = 0
0 otherwise,

(18)

and expected utility is EU = :3615£ :7106+:6385£:6321 = :6605: Thus, this
individual would choose option C, as did the majority of the respondents.

The changes in probabilities are summarized in …gures 4 through 6. Note
in the tables, and in later discussions, that I have scaled the prior density
values of possible outcomes to sum to one. Without using a model of learn-
ing based on prior experience, the two choices made here would contradict
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traditional theory. The increased probabilities for a $2400 or $2500 change
in wealth are due to the fact that the ratio of probabilities of $0 and $2400
and $2500 are not quite so extreme in the prior as in the likelihood function.
More important is that the prior drew the probabilities of $2400 and $2500
closer together. The distortion of all probabilities other than certainty in this
systematic way makes it plausible that individuals try to maximize expected
utility yet still give answers that appear to contradict expected utility theory.

4.0.5 Problem 10

It appears that individuals have a hard time understanding compound lot-
teries. Consider the following problem due to Kahneman and Tversky [26],
where individuals must make their choice before any stage is played.

Problem10: Consider the following two stage game. In the …rst stage
there is a probability of .75 to end the game without winning anything,
and a probability .25 to move into the second stage. If you reach the
second stage you have a choice between

A:
$4000 with probability .80
$0 with probability .20

B: $3000 with certainty.

By reducing these compound lotteries, A= (4000; :20; 0) and B= (3000; :25; 0):
This is exactly the choice given in Kahneman and Tversky’s problem 4. In
that problem, 65% of 95 sunjects chose C, which corresponds to choice A
here. Of 141 respondents 78% chose B in problem 10. This is similar to the
response given in their problem 3, which is identical to the second stage of
problem 10. In other words individuals ignored the …rst stage when choos-
ing between A and B. Responding as in problem 3 is in accordance with
expected utility theory, however the di¤ering response to problem 4 makes
this a puzzle for non-expected utility.

Problem 10 is a special case because it involves a compound lottery. Us-
ing the learning model on the second-stage lottery A probabilities yields a
posterior distribution as follows:

p2 (x) =

½
:7568 if x = 4000
:2432 if x = 0:

(19)

Represent the posterior probability of reaching the second stage as ½. Then
the posterior utility of choice C is EU = ½ (:7568£ :7534 + :2432£ :6321) +
(1¡ ½) (:6321) = :6321 + :0918½. The expected utility of choice D is EU =
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½:7275: This individual will choose D if ½ ¸ :9943: This result lends some
credence to the notion that individuals ignore (or massively distort) proba-
bilities of intermediate stages in compound lotteries. This was hypothesized
by Kahneman and Tversky, among others.

4.0.6 The Ellsberg Example

The Ellsberg Paradox speaks to the way in which individuals assign proba-
bilities to events for which they have not been presented probabilities. This
paradox was discovered by Ellsberg [13], and can be displayed in the following
example.

Example 2 Suppose I have two urns each containing 100 balls. These balls
are either white or black. Urn 1 contains 49 white balls and 51 black balls.
Urn 2 has an unspeci…ed distribution of balls. The subject is told she will win
$1000 if a white ball is drawn …rst, and $1000 if a black ball is drawn second.
The subject is then asked which earns should be used for the two draws.

Using expected utility theory, the expected utility of urn 1 in the …rst draw
is :49U (1000) ; and that of urn 2 is pwU (1000) ; where pw is the subjective
probability that a white ball is drawn from urn 2. Most subjects choose urn
1 for the …rst draw, implying that pw < :49: This means that the probability
of drawing a black ball from urn 2, pb = 1¡ pw > :51: If this is the case then
individuals should request that the second ball be drawn from urn 2. This is
overwhelmingly contradicted by the experimental evidence [13]. It appears
from this paradox that individuals may not assign probability to events for
which none has been speci…ed, or rather that they may adjust their beliefs
to the situation. Some have dubbed these sorts of problems ambiguity.

The problem of the Ellsberg example can be resolved by de…ning the
prior over winnings instead of number of balls. In each case p (1000) = :4615
(scaled so p(0) + p(1000) = 1 ). The weight implied by the distribution of
balls is R

¡
¾2l ; ¾

2
p

¢
= :3245 and L

¡
¾2l ; ¾

2
p

¢
= :6755: Hence the choice of urn 1

in the …rst draw can be represented as

p2 (x) =

½
:4807 if x = 1000
:5193 if x = 0:

: (20)

In the second draw the choice of urn 1 can be represented as

p2 (x) =

½
:4942 if x = 1000
:5058 if x = 0:

: (21)
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The choice of urn 2 in either draw can be represented as

p (x) =

½
:4615 if x = 1000
:5385 if x = 0:

; (22)

which is stochastically dominated by both of the posterior distributions for
urn 1. This explanation of behavior relies on which cues the individual truly
cares about. When making choices facing ambiguity, it is not likely the
person has a feeling as to how many balls the experimenter wants to put
in an urn of varying colors. It is much more likely that the individual has
beliefs about how much money the experimenter is willing to give away, or
rather the experimenters desire to lower costs.

4.0.7 Loomes’ New Violation

Loomes [30] found a new violation of the independence axiom. This violation
is somewhat more severe in that no model proposed to date can account for
this violation [9]. To illustrate this violation consider the following example
based on Loomes [30].

Example 3 In each of the next two problems A and B are amounts of money
which you may choose, but which cannot sum to more than £20. Problem 1:
There is a .60 probability of recieving amount A, and a .4 chance of recieving
amount B. Problem 2: There is a .30 probability of recieving amount A, a
.20 probability of recieving amount B and a .50 chance of recieving nothing.

This problem is interesting because it is a test of probability ratio vi-
olations demonstrating that the behavioral problem is more complex than
simple probability weighting can account for. Of 60 subjects, 31 placed a
greater amount of money in A for problem 1 than for problem 2, 24 put
equal amounts in each and 1 put less in A for problem 1. Suppose the indi-
vidual behaves so as to maximize

P
i ¼ (pi)U (xi) ; where pi is the porbability

of outcome xi: This is a common class of models called probability weighting
models. Expected utility is a special case of this model. It is commonly
assumed that ¼ (:5) = :5, that ¼ is concave on (0; :5) and convex on (:5; 1) :
This means that individuals overweight low probabilities and underweight
high probabilities. It is also commonly assumed that

P
i ¼ (pi) = 1 for any

particular problem. In either case the individual must then solve the follow-
ing problem

max
Ai
¼

¡
piA

¢
U

¡
Ai

¢
+ ¼

¡
piB

¢
U

¡
Bi

¢
subject to Ai +Bi = 20 (23)
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where I have assumed without loss of generality that U (0) = 0: The …rst
order conditions for this problem can be written as

U 0 (Ai)

U 0(Bi)
=

1¡ ¼ (piA)¡ ¼ (pi0)
¼(piA)

; i = 1; 2 (24)

A+B = 20: (25)

This assumes an interior solution or equivalently a certain degree of risk aver-
sion. Of the 24 who placed the same amount in each problem 3 placed all the
money in A in both gambles. These were the only corner solutions observed
in these problems suggesting that if our model is correct the individuals must
be risk averse. Note that the probabilities in problem 2 are exactly half those
in problem 1, meaning that

U 0 (A1)

U 0(B1)
=

1¡ ¼ (:6)
¼(:6)

(26)

U 0 (A1 + ²)

U 0(B1 ¡ ²) =
:5¡ ¼ (:3)
¼(:3)

: (27)

Expected utility is only consistent with ¼(p) ´ p: Using the expected utility
weighting function, these condiitons are obviously violated for any concave
utility function. More can be said, however. If U is concave, the values for
A must be higher than those for B (because A recieves more probability
weight). This is true of the overwhelming majority of subjects. Thus it must
be that U 0(B1 ¡ ²) < U 0 (B1) < U 0 (A1) < U 0 (A1 + ²) : This in turn implies
that

:5¡ ¼ (:3)
¼(:3)

>
1¡ ¼ (:6)
¼(:6)

; (28)

which implies that ¼ (:3) < :5¼ (:6) : This and other data suggest that prob-
ability weighting functions perform as if globally convex in this type of ex-
periment. This is important because convex probability weighting functions
would fail to explain the majority of data accumulated through choice ex-
periments. Use of a prior could explain this violation of the independence
axiom.

Using a prior that enters conditionally dependent upon prizes and distri-
butions can also explain the independece violation that Loomes [30] discov-
ered. If we modify the amount involved in his example, so that individuals
can now allocate $20003 instead of £20, we can observe that the speci…cation

3The amount must be modi…ed to …t the computational resolution of my model, and
computer.
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of my model predicts the behavior Loomes discovered. None of the other
problems dealt with amounts so small as £20, and infact the speci…cation of
the limited learning model in this paper always predicts allocating the full
amount to choice A when amounts are so small. This is due to the small
Arrow-Pratt absolute risk aversion of the utility function. Using the larger
amount induces an interior solution. Using a more concave utility function
would produce results similar to Loomes for smaller total gambles. It is
somewhat di¢cult to solve the problem Loomes suggests using the limited
learning model because the amounts in event A and B enter in to the vari-
ance functions. Taking derrivatives is di¢cult. Hence I used a computer
simulation to locate the amount for A that maximizes expected utility ac-
cording to the limited learning model. For problem 1, the model suggests
A = $1117: For problem 2 A = 1002: This is exactly the direction of bias
discovered by Loomes. Hence this puzzle may be due to the limitations in-
dividuals have upon their understanding probability statements relative to
their prior beliefs.

4.0.8 Expected Utilities

Table 1 displays results for all of the money value examples given by Kahne-
man and Tversky. By maximizing expected utility after generalized Bayesian
updating, all of the modal values from their study are explained.

5 Prior and Probability Bias

In this section I will explore why the limited learning model is able to describe
the behavior in the problems above, and give some rationale for why it is a
reasonable model of decision under uncertainty. First, it will be important
to introduce the Marschak-Machina triangle (also called the unit simplex)
pictured in Figure 7. The unit simplex is used to graph indi¤erence curves
over lotteries all involving three possible outcomes (in this case $6000, $400
and $0). Probability of the lowest value outcome is plotted on the horizontal
axis, and probability of the highest outcome is plotted on the vertical axis.
The remaining probability is given to the middle value outcome. Expected
utility requires that all indi¤erence curves be straight parallel lines. Many of
the expected utility violations that are documented occur because individuals
display indi¤erence curves that are neither straight lines (called a violation
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Problem Dollar Amount Scaled Prior4 Posterior Likelihood Expected Utility

Problem 1 A
$2500
$2400
$0

.2795

.2857

.4348

.3444

.6395

.0161

.3300

.6600

.0100
.7103

Problem 1 B $2400 1 1 1 .7106

Problem 2 C
$2500
$0

.3913

.6087
.3536
.6464

.3300

.6700
.6609

Problem 2 D
$2400
$0

.3966

.6034
.3615
.6385

.3400

.6600
.6605

Problem 3 A
$4000
$0

.3000

.7000
.5855
.4145

.8000

.2000
.7031

Problem 3 B $3000 1 1 1 .7275

Problem 30 A
-$4000
$0

.3000

.7000
.5855
.4145

.8000

.2000
.5262

Problem 30 B -$3000 1 1 1 .5034

Problem 4 C
$4000
$0

.3000

.7000
.2432
.7568

.2000

.8000
.6616

Problem 4 D
$3000
$0

.3636

.6364
.2940
.7060

.2500

.7500
.6602

Problem 40 C
-$4000
$0

.3000

.7000
.2432
.7568

.2000

.8000
.5881

Problem 40 D
-$3000
$0

.3636

.6364
.2940
.7060

.2500

.7500
.5943

Problem 7 A
$6000
$0

.1250

.8750
.1555
.8445

.4500

.5500
.6579

Problem 7 B
$3000
$0

.3636

.6364
.8617
.1383

.9000

.1000
.7143

Problem 70 A
-$6000
$0

.1250

.8750
.1555
.8445

.4500

.5500
.5851

Problem 70 B
-$3000
$0

.3636

.6364
.8617
.1383

.9000

.1000
.5212

Problem 8 C
$6000
$0

.1250

.8750
.0013
.9987

.0010

.9990
.6323

Problem 8 D
$3000
$0

.3636

.6364
.0022
.9978

.0020

.9980
.63235

Problem 80 C
-$6000
$0

.1250

.8750
.0013
.9987

.0010

.9990
.6317

Problem 80 D
-$3000
$0

.3636

.6364
.0022
.9978

.0020

.9980
.6318

Problem 11 A
$1000
$0

.4615

.5385
.4875
.5125

.5000

.5000
.6492

Problem 11 B $500 1 1 1 .6501

Problem 12 C
-$1000
$0

.4615

.5385
.4875
.5125

.5000

.5000
.6133

Problem 12 D -$500 1 1 1 .61336
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of betweenness) or parallel (called a violation of independence). The slope of
the indi¤erence curves are related to the coe¢cient of absolute risk aversion
(approximated by the three points on the utility curve) with a greater slope
indicating greater risk aversion [31].

Some e¤ort has been made to document where the violations occur within
the triangle (see [8, 9, 21] among others). Camerer [9] sums up the evidence
by citing that most violations occur near the edges of the triangle (or outside
the ellipse drawn in …gure 8). This result has a high degree of relevance
for the model I suggest. In particular, the ellipse drawn on …gure 8 is an
iso-variance curve. Within the ellipse, variance of outcomes is higher than
outside of the ellipse. The fact that fewer violations occur where variance
is higher, suggests that expected utility is more closely observed within this
portion of the triangle. Outside of this ellipse, indi¤erence curves are not
parallel, or straight in a way that is signi…cant. This suggests that in this
region of the triangle, individuals are distorting probability in some way.

The hypothesis of the limited learning model, is that when individuals
are faced with the lotteries presented commonly in experiments, they have
a hard time believing in small variance gains, and hence will bias the small
variance gambles toward some prior beliefs. While other models of choice
under uncertainty have allowed some form of Baeyesian prior [10], I have
found none that have recognized it as such. Further, most models make
probability weights contingent on probabilities, and not the value of the
prize itself. I will discuss why this is an unsavory property in the following
section. In any case, it seems unreasonable that individuals might bias their
beliefs toward some constant probabilities that ignore outcomes available.
Much more reasonable is that this bias would be similar to those found in
the judgment bias literature. If individuals are biasing their beliefs in this
way, then manifestations of non-expected utility theory in the real world
are already identi…ed. Using most of the models supposed by non-expected
utility, theorists have a hard time …nding real world application or use. Figure
9 shows graphs of indi¤erence curves under expected utility, variance and
indi¤erence curves under the limited learning model. The utility function
and weighting functions used were those speci…ed in the previous section.
The indi¤erence curves here have exactly the properties that Camerer [9]
describes: the indi¤erence curves re‡ect di¤erent levels of risk aversion, they
fan in and out in a systematic way, they are not straight lines, they are
more nearly parallel in the middle of the triangle, and curves for gains and
losses re‡ect around the 45 degree line. Figure 9 above satis…es all of these



DRAFT: Learning and Recall in Bayesian Decision-making. 25

conditions except re‡ection for gains and losses.
In order to accomplish this re‡ection a¤ect all models up until now have

assumed that individuals use di¤erent probability weighting functions over
gains and losses (see for example [45]). Within the framework of the limited
learning model, it may be accomplished simply by assuming a prior that
decreases in probability density as possible gains (or losses) are further from
zero. An illustration of this using the speci…cation of the limited learning
model in the previous section can be found in …gure 10. These are very
similar to the indi¤erence curves estimated by Tversky and Kahneman [45].

Using the weighting of a prior has another desirable property that cannot
be acheived using two weighting functions, one for losses, one for gains. It
has been observed that the shape of indi¤erence curves depend not only on
the sign of the outcomes, but on the size of the outcomes as well [29, 21].
Further, probability weighting functions appear to change shape depending
on the size of prizes that are being considered [29]. Figure 11 displays limited
learning model probability weights for various prize levels. These properties
cannot be explained by the theories that dissallow a prior type weighting
function. In particular, prospect theory and rank dependent models do not
allow for these shapes to change depending on the size of the prize (only
on the rank of the prize). Further, updating with a prior using a constant
weight results in straight line indi¤erence curves, which can be rejected in
statistical tests [7].

This rudimentary exploration of the properties of the limited learning
model re‡ects favorably on the model. It appears that the model provides
a clear and plausible psychological explanation of the facts that have been
learned through non-expected utility experiments. It also provides a reason-
able explanation of judgment biases and learning problems that individuals
often display. Further, by allowing weights to depend upon other factors,
such as presentation and elicitation, the limited learning model may be used
to explain the individual variation in response to identical questions with the
presentation altered. In these categories the limited learning model appears
to be a reasonable alternative to the leading non-expected utility models. In
the next section I will argue why any preference functional should have a
form similar to the limited learning model.
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6 Concavity

Most economists are now aware of the growing evidence against expected util-
ity theory. Among the more recent objections are those criticizing concavity
of the utility function as the only mechanism for risk aversion. Matthew
Rabin [37, 38] is chief among the critics. While not the …rst to notice a dis-
crepancy (see Hansson [18]). Rabin points to the di¤erence in estimated risk
aversion levels observed over small gambles, and those over larger gambles.
His argument stems from a calibration theorem, which he proves. A useful
and illustrative corollary of this theorem is given below [38].

Corollary 4 Suppose that for all w; U 0 (w) > 0 and U 00 (w) < 0: Suppose
there exists g > l > 0 such that, for all w; :5U (w ¡ l) + :5U (w + g) <
U (w) : Then for all positive integers k; and all m < m (k) ; :5 (w ¡ 2kl) +
:5U (w +mg) < U (w) ; where

m (k) =

8
><
>:

ln
h
1¡(1¡ l

g )2
Pk
i=1(

g
l )
i
i

ln( lg )
¡ 1 if 1¡

³
1¡ l

g

´
2
Pk

i=1

¡
g
l

¢i
> 0

1 if 1¡
³
1¡ l

g

´
2
Pk

i=1

¡
g
l

¢i � 0:
(29)

For a statement of the theorem and a proof of both the theorem and
the corollary presented above see the appendix of Rabin [38]. This corollary
allows us to compare risk behavior over even-chance bets (commonly called
50-50 bets) under the assumption of risk aversion. For example, a person
who will always turn down a lottery with a .5 probability of winning $110
and .5 probability of losing $100 (from now on (.5, 100, .5,-100) ) will also
always turn down the lottery represented by (.5, 2090, .5, -800). Expected
utility assumes that concavity is the only explanator of risk attitude, and that
individuals are approximately risk neutral for small gambles, meaning that
individuals should accept fair bets if they are small enough. The problem
with this assumption, is that when we observe someone turning down a small
fair bet, we must assume that this is due to concavity of the utility function.

Unless the utility function changes from concave to convex as prizes get
larger, outrageous behavior is implied. It is easy to con…rm from the corol-
lary above that if a global risk averter turns down (.5, 125, .5, -100), they
will always turn down any bet with a .5 chance of losing $600, no matter how
large of a gain may be had with the remaining .5 probability. Bernoulli in-
troduced expected utility theory as a way to explain why individuals might
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not be willing to pay in…nite amounts of money to play gambles with in-
…nite expected gains (e.g. the St. Petersburg Paradox). Variants on the
St. Petersburg Paradox will sometimes yield an in…nite certainty equivalent
unless the utility function is bounded, implying eventual risk aversion for
large enough gambles [33]. It is this same property, only in the small, that
Rabin exploits in arguing the inconsistency of traditional expected utility
theory. Even if there are non-convexities in the utility function, a bounded
utility function will imply similarly ridiculous behavior if we compare to large
enough positive gains.

To see this last point consider the lottery (:5; x; :5;¡100). Suppose with-
out loss of generality, that U (¡100) = 0; and limx!1 U (x) = 1: The cer-
tainty equivalent of our lottery is given by U (CE) = :5U (x) � :5(0+1) = :5:
This means that an individual will turn down any bet with a 50% chance
of losing $100 for some …xed amount of money, no matter what the possible
gains. This also means that if you have wealth greater than U¡1 (:5) you will
never choose to take any bet that involves a 50% chance of a loss of $100.7

If we limit ourselves to the notion that all risk aversion is due to concavity
of utility, we must accept that either (1) more wealthy individuals are less
willing to risk losses, or (2) individuals are willing to pay in…nite amounts of
money for some class of lotteries with in…nite average payo¤s (constructed
similar to the St. Petersburg Paradox). I will call this the boundedness
problem.

Alternatively, some theorists have pointed out that risk averse behavior
may be due to misperceptions of probability, or transforming probabilities
before expected utility optimization. Yaari [48] proposed a model where all
risk behavior was due to a warping of probabilities rather than of monetary
values. More commonly models are proposed that involve the optimization
of some function

V (F ) =

Z
¼ (p)U (x+ w) dF (x) ; (30)

where F is the distribution of possible payo¤s, x are possible payo¤s, w is
current wealth, U is a utility function over payo¤s and ¼ represents a prob-
ability weighting function. This probability weighting function provides an
alternate explanation for risk attitudes in the small. However, a probability

7Note, given that the graph of utility is connected, and that utility is bounded and
monotone increasing, there must be some level of wealth, w; for which U (w ¡ 100) =
1
2 limx!1 U (w + x) :
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weighting function of this form cannot solve the problems that Rabin de-
scribes. For the remainder of this section I will prove an analog of Rabin’s
callibration theorem for the form (30) above, show that in order to avoid the
boundedness problem we must introduce probability and outcome weights,
or weights that are a function of x; and …nally show that no analog of the
callibration theorem can be proved for such a preference functional.

6.1 Probability Weights Can’t Explain Risk Aversion
Either

In generalizing Rabin’s theorem, I wish to make it applicable to a wide range
of models. I will use the notation U (xjw) to mean the utility of a gain of x
given the wealth level w: This allows for preference functionals such as those
speci…ed by Kahneman and Tversky [26]. The theorem can then be stated.

Theorem 5 Suppose that for all z; U (zjw) is strictly increasing and weakly
concave. Suppose that there exists Á > Á; g > l > 0 such that for all
Á 2

£
Á;Á

¤
; ¼ (:5)U (z ¡ ljw) + ¼ (:5)U (z + gjw) < U (Ájw) where z =

U¡1
³
U (Ájw)
2¼(:5)

jw
´
: Then for all x 2 U¡1

µ
U([Á;Á]jw)
2¼(:5)

jw
¶
; for all x > 0

1. If g < 2l then U (zjw)¡ U (z ¡ xjw) ¸
(
2
Pk¤(x)

i=1

¡
g
l

¢i¡1
r (zjw) if z ¡ z + 2l ¸ x ¸ 2l

2
Pk¤(z¡z+2l)

i=1

h¡
g
l

¢i¡1
r (zjw)

i
if z > z ¡ z + 2l: (31)

2. U (z + xjw)¡ U (zjw) �
8
><
>:

Pk¤¤(x)
i=0

³
l
g

´i
r (zjw) if x � z

Pk¤¤(z)
i=0

³
l
g

´i
r (zjw) + [x¡ z]

³
l
g

´k¤¤(z)
r (zjw) if x ¸ z;

(32)

where, k¤ (x) ´
¥
x
2l

¦
; k¤¤ (x) ´

j
x
g
+ 1

k
; and r (zjw) ´ U (zjw) ¡

U (z ¡ ljw) :

A proof of this theorem is straightforward given Rabin’s theorem, and is
provided in the appendix. A corollary similar to that of Rabin may also now
be proven.
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Corollary 6 Suppose that for all z; U 0 (zjw) > 0 and U 00 (zjw) < 0: Suppose
there exists g > l > 0 such that for any Á 2

£
Á; Á

¤
; ¼ (:5)U (z ¡ ljw) +

¼ (:5)U (z + gjw) < U (Ájw) where z = U¡1
³
U (Ájw)
2¼(:5)

jw
´
: Then for all positive

integers k; 8m < m (k) ; ¼ (:5)U(z¡2kljw)+¼ (:5)U (z+mgjw) < U (Ájw) ;
where

m (k) ´

8
><
>:

ln
h
1¡(1¡ l

g )2
Pk
i=1( gl )

i
i

ln l
g

¡ 1 if 1¡
³
1¡ l

g

´
2
Pk

i=1

¡
g
l

¢i
> 0

1 if 1¡
³
1¡ l

g

´
2
Pk

i=1

¡
g
l

¢i � 0:
(33)

Again this corollary follows directly from Rabin’s corollary, and a proof
may be found in the appendix. Let us consider the lottery (.5,325,.5,100).
If an individual would be willing to turn down this lottery for some certain
amount Á = U¡1 (2¼ (:5)U (200jw) jw) ; then the individual would turn down
any bet with a 50% chance of winning $100 for Á: If ¼ (p) = p; then Á = 200:
For other functions ¼, Á will depend on both the value of ¼ (:5) and the shape
of U: To see this relationship note that

U (Ájw) = 2¼ (:5)U (zjw) ; (34)

and by totally di¤erentiating we …nd that the following relationship holds

dÁ

d¼ (:5)
=
2U (zjw)
U 0 (Ájw) : (35)

This last expression requires that the certain amount Á depend positively
on the weight of ¼ (:5) : Most theories require that ¼ (:5) � :5 and then
again Á is bounded above by 200. Alternatively, if ¼ (:5) > :5; we can
set an upper bound on Á; as all probability weighting functions require
that ¼ (p) � 1: If ¼ (p) = 1 then U (Ájw) = 2U (200jw), so that Á =
U¡1 (2U (200jw)) :We know that the inverse utility function is convex, hence
we may place an upper bound on Á by using a Taylor expansion around Á:

Thus eÁ ¡ @U¡1(U(eÁ))
@eÁ

³
1
2
U

³
eÁ
´´

= 200 implies that Á ¡ 200 � U(eÁ)
2U 0(eÁ)

: This

limit is conceivably quite high. Most theories will require that ¼ (:5) be close
enough to .5 that we need not consider this upper bound. In all cases we
will …nd that some …xed amount of money will be preferred to any gamble
with a .5 probability of a gain, a result nearly identical to that found by
Rabin leading him to reject expected utility theory in favor of prospect the-
ory. An extension of the above theorem to prospect theory (withought rank
dependent probability weights) is straightforward.
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6.2 Boundedness and Probability-outcome Weights

Expected utility theory can make outrageous predictions when utility is un-
bounded. Consider a gamble with payo¤s having probability density func-
tion f (x) for x = 0; 1; 2; ::: Hence, this is a lottery that can be respre-
sented by the sequence fxi; f (xi)g1i=0 : Expected utility of this gamble is
EU (fxi; f (xi)g1i=0) =

P1
i=0 f (xi)U (xi) : Suppose that f (0) = 1 ¡ ²; and

f (ex) = ² with the probability assigned to every other outcome equal to 0.
If U (x) is assumed not to be bounded and monotonically increasing, then
for any amount of money y; it is possible ot …nd ex such that such that
U (y) < (1¡ ²)U (0)+²U (ex) no matter how small ² > 0: This is at the heart
of the problem with unbounded utility. To see how this causes problems let
us consider a sequence of the following form, f (0) = 1 ¡ ²; f (xi) =

1
2i
²;

i 2 f1; 2; :::g : Select xi such that x0 = 0; and U (xi) ¸ 2i

²
for i > 0:

Then the expected utility of this gamble would be EU (fxi; f (xi)g1i=0) =P1
i=0 f (xi)U (xi) = (1¡ ²)U (0)+ 1

2
²U (x1)+

1
22
²U (x2)+::: ¸ (1¡ ²)U (0)+

1+1+1+ ::: = 1: This just demonstrates that any unbounded utility func-
tion will imply that a gamble exists with as small probability as we would
like on very large amounts such that the value of the gamble is in…nite.

If we were to examine the same problem with a probability weighting
function, the preference functional can be represented by V (fxi; f (xi)g1i=0) =P1

i=0 ¼ (f (xi))U (xi) : First consider again the lottery (:5; x; :5;¡100). Sup-
pose without loss of generality, that U (¡100) = 0; and limx!1 U (x) = 1:
The certainty equivalent of our lottery is given by U (CE) = ¼ (:5)U (x) �
¼ (:5)U(0 + 1) = ¼ (:5) : This means that an individual will turn down any
bet with a 50% chance of losing $100 for some …xed amount of money, no
matter what the possible gains. This also means that if you have wealth
greater than U¡1 (¼ (:5)) you will never choose to take any bet that involves
a 50% chance of a loss of $100. This is the same problem observed with
expected utility. If we suppose that ¼ is continuous,8 monotonic and that
¼ (0) = 0; ¼ (p) > 0 for p > 0; then we can see that the Petersburg paradox
is still in force when the utility function is unbounded.9

8Continuity is not necessary for the result, but allows for much simpler exposition.
Alternatively, you could assume there was a second function that was continuous, positive,
monotonic and everywhere less than or equal to ¼: Using this function in place of ¼ in the
following discussion would imply the result.

9Violating these assumptions on ¼ causes extreme problems with non-monotonicity.
For example there would be some ²; such that the lottery (100; 1) would be prefered to
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Suppose that f (0) = 1¡²; and f (ex) = ² > 0: The probability assigned to
every other outcome equal to 0. If U (x) is assumed not to be unbounded and
monotonically increasing, then for any amount of money y; it is possible to
…nd ex such that such that U (y) < ¼ (1¡ ²)U (0)+¼ (²)U (ex) no matter how
small ² > 0: Consider a sequence of the following form, f (0) = 1¡ ²; de…ne »
so that ¼ (1¡ ²) = 1¡ »: Then de…ne f (xi) = ¼¡1

¡
1
2i
»
¢
; i 2 f1; 2; :::g : This

inverse must exist by continuity and monotonicity. Select xi such that x0 = 0;
and U (xi) ¸ 2i

»
for i > 0: Then the expected utility of this gamble would

be V (fxi; f (xi)g1i=0) =
P1

i=0 ¼ (f (xi))U (xi) = (1¡ »)U (0) + 1
2
»U (x1) +

1
22
»U (x2)+ ::: ¸ (1¡ »)U (0)+1+1+1+ ::: = 1: This again demonstrates

that any unbounded utility function will imply that a gamble exists with as
small probability as we would like on very large amounts such that the value
of the gamble is in…nite.

Finally consider a probability weighting function ¼ (pi; xi) increasing in
pi and decreasing in xi (at least for large enough xi)10 such that for every
sequence fxi; pig1i=0 with p a proper density and limi!1 xi = 1, there exists
some k, V (fxi; pig1i=0) =

P1
i=0 ¼ (pi; xi)U (xi) = k: In order to …nd su¢cient

conditions for such a weighting function, let us arrange this sequence accord-
ing to xi in ascending order (note we can combine any identical amounts
so that each xi is distinct). We know (because

P1
i=0 pi = 1) that there ex-

ists pn such that pi < pn whenever i > n:11 We know that for any …xed n;Pn
i=0 ¼ (pi; xi)U (xi) converges to some constant: Then we must only exam-

ine the properties of
P1

i=n ¼ (pi; xi)U (xi) ; where pi < pn and xi increasing
monotonically. We know this must converge if

P1
i=n ¼ (pn; xi)U (xi) con-

verges. Let zn = xn; zi = max (xi; zi¡1 + 1) : One condition that accom-
plishes convergence requires that there exist some p such that for any pi < p
there exists an xi with ¼ (pi; z (x)) < 1

z(x)2U (x)
whenever x > xi: To see this

note that if ¼ (pi; zi) � 1
z2iU (xi)

; then
P1

i=n ¼ (pi; zi)U (xi) � P1
i=n

1
z2i

which
converges. This su¢cient condition only requires that for small enough prob-
ability weight larger prizes will induce some form of disbelief. For prizes that
are large enough, the belief will decrease fast enough to disallow in…nite ex-
pected utilities and hence there is no lottery inducing in…nite willingness to
pay.

(100; 1 ¡ ²; 10000; ²)
10Here I only consider positive outcomes. With negative outcomes a similar result can

be proved.
11One of the basic requirements for convergence of a series is that limi!1 pi = 0:
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6.3 Callibration Theorems and Probability-outcome Weights

Using a probability weighting function of this form also removes the prob-
lems Rabin points out. For instance, consider an individual with strictly
concave utility function that will turn down the lottery (.5,125,.5,-100). The
subjective expected utility would then be given by ¼ (:5; 125)U (125; w) +
¼ (:5;¡100)U (¡100; w) < U (0; w) :Without loss of generality, let U (¡100; w) =
0; and U (125; w) = 1: Then turning down the lottery requires only that
¼ (:5; 125) < U (0; w) : Concavity only requires that U (0; w) ¸ 4

9
: If ¼ (:5; 125) <

4
9

then we have placed no restrictions on the concavity of the utility function.
By not requiring utility to be concave in these small gambles, we do not place
any extra restrictions as in Rabin’s corollary. For instance, in this case it may
be that the utility curve is a straight line. Then any gamble, (:5; x; :5;¡y)
will have expected value ¼ (:5; x) x+100

225
+¼ (:5;¡y) 100¡y

225
:The individual would

then always accept the gamble if x >
¡
4
9
+ 100¡y

225
¼ (:5;¡y)

¢
225

¼(:5;x)
¡100: Thus

x will not be in…nite if ¼ (:5; x) ¸ 0: This example demonstrates that a
probability-outcome weighting function will not be susceptible to the same
problems as expected utility and probability weighting functions. The ar-
guments of this section are intended to make the case that a probability-
outcome weighting function may be the only reasonable weighting function
available for economic modeling. In the next section I will argue the empiri-
cal superiority of the limited learning model, a model employing a weighting
function meeting the requirements of a probability-outcome weighting func-
tion.

7 Estimation and Data

For estimation I used data gathered experimentally by Hey and Orme [20].
This data consists of responses of 80 individuals to a total of 200 questions.
The subjects were asked 100 of the questions on each of two days. Each of
the questions asked the individual to choose between two lotteries (denoted
left anf right), or state that they were indi¤erent. One of the lotteries was
chosen at random, ex post, to be played for real money. Money amounts
involved were £0, £10, £20, £30. Probabilities were measured in eighths.
This data set was chosen for its comprehensiveness, and because my results
may be easily compared with those of Hey and Orme (among others who
have used this data set).

Hey and Orme compared 10 di¤erent models of choice under uncertainty,
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estimating ordered probit models, and ranking based on the Akaike Infor-
mation Criterion. They also compared nested models using likelihood ratio
tests. They paid special consideration to the statement of indi¤erence. Their
model of choice was as follows

y = V (L;R) + ²; (36)

where V (L;R) is the value of the left hand lottery, L; over the right hand
lottery, R: This value will be positive if L is prefered and negative if R is
prefered. The variable y is unobservable, but we observe the choice of lottery
l; r; or c (for left, right and center, or indi¤erence). So the response has the
following form

X =

8
<
:
l if ¿ < V (L;R)
c if ¡¿ < V (L;R) < ¿
r if V (L;R) < ¡¿

: (37)

In this section I will use Hey and Orme’s techniques and model to test the
limited learning model against nine of the models used by Hey and Orme.
I wish also to compare their model of indi¤erence to a strict interpretation
(i.e. that ¿ = 0): The models used in Hey and Orme include risk neutral-
ity (RN), expected utility (EU), disappointment aversion (DA), prospective
reference (PR), quadratic utility (QU), regret theory with dependence (RD),
regret theory with independence (RI), rank dependent weights with power
functional form (RP), rank dependent weights with Quiggin’s functional form
(RQ), and Yaari’s dual model (YD). I will not estimate RI, or YD because
of poor performance in Hey and Orme’s tests, and to reduce clutter. For
a complete discussion I refer readers to Hey and Orme’s section on these
models. I use the following form for the limited learning model

R
¡
¾2l

¢
= b

¡
ln

¡
¾2l + 1

¢¢
; (38)

L
¡
¾2l

¢
= 1¡R

¡
¾2l

¢
(39)

p0 (x) = etx: (40)

Here the parameters to be estimated are b and t: In addition, I must also
estimate the utility levels, U (10) ; U (20) ; U (30) : I have set U (0) = 0: It
would require too much space to present all results of the tests within this
paper, but in the following I will present many tests similar to those run by
Hey and Orme.
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RN EU DA PR QU RI RP RQ WU LLM
Data Set 1 7.51 3.20 3.69 4.05 5.70 7.35 3.21 2.04 4.55 3.70
Data Set 2 7.61 2.90 3.93 2.99 5.75 7.64 3.71 2.76 3.96 3.75
Data Set 3 8.48 4.11 4.42 3.16 4.66 5.98 3.75 3.05 3.31 4.06

Table 2: Average Ranking using AIC

RN EU DA PR QU RI RP RQ WU LLM
Data Set 1 8.00 3.00 3.00 2.50 6.00 8.00 3.00 2.00 5.00 4.00
Data Set 2 9.00 2.50 4.00 2.00 6.00 8.00 3.50 2.00 4.00 4.00
Data Set 3 9.00 5.00 4.50 3.00 6.00 7.00 4.00 3.00 3.00 4.00

Table 3: Median Ranking using AIC

7.1 Comparing to Hey and Orme

I estimated the 10 models using maximum likelihood, estimating a sepa-
rate functional for each individual, just as Hey and Orme. This procedure
was conducted for three separate data sets, responses to questions from the
…rst session (100), responses to questions in the second session (100), and
responses from questions in both sessions (200). The Akaike Information
Criterion (AIC) is a Bayesian approach to ordering models of this type. The
speci…c loss function used to construct the AIC in this context is [2]

AIC = ¡2 logL (b®)
T

+
2k

T
; (41)

where L (b®) is the likelihood function evaluated at it’s optimum, T is the
number of observations, and k is the number of parameters. The AIC was
used to rank each model for each of the 80 individuals in the experiment.
Table 2 contains the mean rank of each model for each data set, and 3 the
median rank.

The LLM places near the middle using this type of ranking within each of
the data sets, while RQ and PR appear to do the best. Hey and Orme also
compare the models to expected utility using likelihood ratio tests. Table
4 contains the number of individuals for each of the repective models, for
which the data reject the hypothesis of expected utility behavior in favor of
each of other models at the .01 level. This test was only conducted using
data set 3.
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Figure 3: Weighting of the Prior Density

DA PR QU RI RP RQ WU LLM
34 33 25 9 35 44 30 38

Table 4: The Number Rejecting EU using Likelihood Ratio at the .01 Level

RN EU DA PR QU RI RP RQ WU LLM
Data Set 1 1.41 1.12 1.10 2.47 1.15 1.39 1.09 1.05 1.12 1.08

(.31) (.41) (.40) (2.70) (.36) (.36) (.40) (.39) (.37) (.38)
Data Set 2 1.29 .94 .93 1.45 1.00 1.23 .95 .91 .93 .91

(.31) (.42) (.38) (1.81) (.33) (.35) (.39) (.38) (.33) (.36)
Data Set 3 1.36 1.04 .99 1.02 1.00 1.08 .99 1.01 .98 .99

(.30) (.45) (.37) (.38) (.37) (.39) (.37) (.40) (.37) (.39)

Table 5: Average AIC and Standard Deviation for each Decision Model
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Figure 4: Problem 1 A: circles represent prior probabilities, diamonds repre-
sent the likelihood function, and crosses the posterior.
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Figure 5: Problem 2 C: circles represent prior probabilities, diamonds repre-
sent the likelihood function, and crosses the posterior.
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Figure 6: Problem 2 D: circles represent prior probabilities, diamonds repre-
sent the likelihood function, and crosses the posterior.
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Figure 7: The Marschak-Machina Triangle

Table 5 presents the average AIC for each model, with the standard de-
viation in parenthises. The average AIC tells quite a di¤erent story. Here it
appears that many of the models that rank highly, have large errors for many
individuals. In particular, PR does poorly in the smaller samples. LLM, does
well in this respect, having both a low average AIC, and little variation. The
standard deviations for each model is large enough to suggest that it would
be hard to statistically di¤erentiate between many of these models. Hey and
Orme also use a combination of the likelihood ratio test and the AIC to
…nd what they call the best model to explain each individuals behavior. For
each individual if only one model is signi…cantly better than EU based on
the likelyhood ratio test, this model is designated best. If more than one is
signi…cantly better, then the model among those that are signi…cantly bet-
ter with the lowest AIC is called best. If none are signi…cantly better, then
the model with the lowest AIC is called best. Table 6 presents the number
of individuals for which each of the models was best. Again the LLM does
not appear to perform well using this measure, while PR and RQ appear to
dominate.
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DA PR QU RI RP RQ WU LLM
9 20 8 2 12 15 6 8

Table 6: The Number of Individuals for which Each Model was “Best”
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Figure 10: LLM for gains (or losses) of $600, $400, and $0.
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RN EU DA PR QU RI RP RQ WU LLM
Parameters 2 4 5 5 10 7 5 5 6 6
Data Set 1 .64 .76 .77 .71 .79 .70 .77 .78 .78 .78

(.09) (.10) (.10) (.18) (.09) (.12) (.10) (.09) (.09) (.09)
Data Set 2 .67 .81 .81 .80 .82 .74 .81 .82 .81 .82

(.13) (.11) (.11) (.14) (.09) (.12) (.11) (.09) (.09) (.10)
Data Set 3 .64 .77 .77 .71 .79 .72 .77 .79 .78 .79

(.11) (.10) (.10) (.18) (.09) (.11) (.10) (.08) (.09) (.09)

Table 7: Prediction Rates for Each Decision Model

Within the rest of this subsection I will present other measures of per-
formance that might be useful in assessing these models of decision under
uncertainty. While the tests Hey and Orme use focus on the individual, it
seems unlikely econometricians will be able to apply a separate functional
for each individual in a data set. Further, even if di¤erent models could be
used for each individual, it would be impossible to tell a priori which model
…t with which individual. This means pre-testing would need to be done,
diminishing the ability to subsequently test any hypotheses. A di¤erent ap-
proach is to test the hypothesis that all individuals were conforming to one
model of decision-making. I will …rst present some summary statistics, and
then conduct two tests.

Table 7 presents the prediction rates for each of the models with stan-
dard deviation of rates within parenthases. The prediction rates are slightly
better for QU, RQ and LLM, but the standard deviations are such that it
would be hard to distinguish between many of these models statistically.
The prediction rates seem to be higher for the second data set, although the
same questions were asked in each of the sessions (only with left and right
switched). This might re‡ect some sort of learning taking place between the
sessions.

Now consider the hypothesis that each individual is behaving according
a speci…c model, with individual speci…c parameters. This may be tested by
treating the data set as 200£80 = 16000 observations, and 80£k parameters
to be estimated in each model. By assuming uninformative prior odds, it is
possible to derive posterior odds for the model speci…ed by all maximum-
likelihood parameters of LLM versus each other model. The correct form
for this is just the ratio of likelihood functions. The results are presented in
table 8. Here 1 denotes that the denomonator was small enough to cause the
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EU RN DA PR QU RI RP RQ WU
1 1 3:1£ 10111 1 2:2£ 106 1 1:3£ 10141 1:8£ 10¡6 7:8£ 10180

Table 8: Posterior Odds in Favor of LLM

EU RN DA PR QU RI RP RQ WU LLM
1.09 1.36 1.02 2.45 1.02 1.26 1.03 .99 1.05 .99

Table 9: AIC for Models of All Individuals

odds to exceed the measurement capability of my computer. According to
these numbers, the LLM is prefered to all but RQ. Care must be taken when
interpreting these odds, as they do not account for the number of parameters
in each model, treating each model as a …xed stochastic process which might
have generated the observations.

A better way to assess these behavioral models may be to use the AIC to
rank the models ability to describe all individuals’ behavior. Here the AIC
is given by the following formula

AIC = ¡ 2l

16000
¡ 80k

16000
; (42)

where l is the sum of log likelihood functions for all individuals evaluated at
their respective maxima, and k is the number of parameters in the model
describing each individual. The AIC for each model is displayed in table
9. When taking into account the number of parameters, I …nd that LLM,
and RQ perform the best. As was noted earlier, RQ is often violated when
comparing choices of large outcome prospects to those of small. With data
covering a wider range of outcomes, it may be easier to distinguish between
these two models.

7.2 A Strict Interpretation

Maximum likelihood estimation is very sensitive to threshold estimates such
as that of ¿ in the above estimations. Beyond this there are procedural
questions about using responses of indi¤erence. In particular, there is no
way to give incentives to respond with indi¤erence when the person is truly
indi¤erent. For this reason it might be instructive to examine results from
estimation using di¤ering methods. In particular I compare four di¤erent
models: the ordered probit model of Hey and Orme, one that assigns all
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RN EU DA PR QU RI RP RQ WU LLM
Right 8.56 4.08 4.76 2.80 4.64 4.50 3.91 2.93 3.80 5.01
Left 8.51 4.08 4.83 2.88 4.86 4.36 3.98 2.81 4.06 4.64
Random 8.51 4.04 4.73 2.86 4.84 4.32 3.98 2.88 3.93 4.91
Dropped 8.54 3.83 4.81 2.81 4.98 4.48 3.81 3.08 3.91 4.76
Threshold 8.48 4.11 4.42 3.16 4.66 5.98 3.75 3.05 3.31 4.06

Table 10: Average Ranking using AIC for Several Indi¤erence Methods

RN EU DA PR QU RI RP RQ WU LLM
Right 9.00 4.00 5.00 3.00 5.00 4.50 4.00 2.00 4.00 5.00
Left 9.00 4.00 5.00 3.00 6.00 5.00 4.00 2.00 4.00 5.00
Random 9.00 4.00 5.00 2.50 6.00 4.00 4.00 2.00 4.00 5.00
Dropped 9.00 3.00 5.00 3.00 6.00 4.50 4.00 2.50 4.00 5.00
Threshold 9.00 5.00 4.50 3.00 6.00 7.00 4.00 3.00 3.00 4.00

Table 11: Median Ranking using AIC for Several Indi¤erence Methods

responses of indi¤erence to the lottery presented to the right, one that assigns
all responses of indi¤erence to the lottery presented to the left, one that
randomly assigns (.5 probability) to each of the lotteries presented, and one
that drops all indi¤erent observations. In tables 10 and 11 I present the mean
and median ranking according to AIC using each of these methods for data
set 3. It appears that the median AIC is particularly sensitive to the use of
¿ : Perhaps further research should disallow indi¤erence between two lottery
choices in order to reduce estimation error.

7.3 Conclusion

I have used a combination of the methods employed by Hey and Orme,
and other techniques to demonstrate the viability of LLM as a behavioral
model. While the model performs about average using the techniques of
Hey and Orme, their techniques are designed to select a di¤erent model
for each individual, and then select as best the model that is chosen most
often. This sort of voting can cause the same problems in model selection
as individual voting can cause in welfare analysis. In other words it may
ignore the model that explains everyone’s behavior, only to select the model
that best explains a minority of individuals’ behavior. Econometricians are



DRAFT: Learning and Recall in Bayesian Decision-making. 45

unlikely to have the freedom this sort of testing implies in model selection.
If non-expected utility models are to come into wide use, we need to have a
single model that describes all individuals (or at least most) over wide ranges
of events. It is unlikely that designing models to …t experimental data alone
will produce such a model. Tests for the best overall model suggest that
both LLM and RQ models performed best describing behavior within this
experiment. Experiments of this nature may be more helpful if the range of
prizes is varied more widely, however, limitations on research funds almost
guaruntee this will never happen. For this reason, it may be best to test
models that have been designed to explain experimental observations outside
of the laboratory. This will most certainly increase the power of the tests,
and may make obvious which models more closely conform to actual behavior
in the aggregate.

8 Applications

There are many important areas of agricultural economics dealing with uncer-
tainty, making it likely that perception of uncertainty will play an important
role in modeling many agricultural decisions [24]. In this section I will present
two scenarios where I think the limited learning model may be of particular
importance: crop insurance and production contracts. Within each of these
models I will assume that actors have accurate perceptions of underlying un-
certainty, until some change occurs. The reaction to the change will depend
upon how well one is able to accurately update ones beliefs. This ability
to make optimal use of information should be dependent upon the resources
available to the …rm in question [47]. The next two examples will illustrate
the importance of human capital in this context.

8.1 Crop Insurance

Suppose that farmers have pro…t function in any year given by

y = ¼ + g²; (43)

where ¼ is the mean pro…t, g is a scale factor, and ² is some random distur-
bance term distributed normally with mean 0 and variance 1; independent
accros time. The government o¤ers the individual crop insurance that is
actuarially fair. If ² < ²; then the government will pay I

©(²)
; where I is the
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premium paid annually. The farmer can choose I each year, or choose not
to insure (I = 0): The farmer that maximizes expected utility of wealth will
face the problem

max
I¸0

Z 1

²

U (¼ + g²¡ I)Á (²) d²+
Z ²

¡1
U

µ
¼ + g²+ I

µ
1¡ ©(²)
© (²)

¶¶
Á (²) d²; (44)

This model ignores the ability of farmers to defer risk through altering pro-
duction practices, but may be instructive in describing other risk behavior.
This model also assumes that the level of wealth remains stable each year.
The …rst order neccessary condition is

¡
Z 1

²

U 0 (¼ + g²¡ I)Á (²) d²+

(1¡ ©(²))
Z ²

¡1
U 0

µ
¼ + g²+ I

µ
1¡ © (²)
© (²)

¶¶
Á (²) d² = 0: (45)

Assuming that the individual has a concave utility function ensures an inte-
rior solution. Suppose now that the individual may not perceive g to be its
true value. If the individual displays overcon…dence, he will perceive g to be
closer to 0. Let eg be the perceived level of g: This new level will also e¤ect the
distribution used to calculate expectations. The individual will now believe
a payment to occur whenever eg² < g²; or when ² < g

eg ²; the level set by the
government. The …rst order condition in this case will be

¡
Z 1

g
eg ²
U 0 (¼ + eg²¡ I)Á (²) d²+

(1¡ ©(²))
Z g

eg ²

¡1
U 0

µ
¼ + eg²+ I

µ
1¡ © (²)
© (²)

¶¶
Á (²) d² = 0: (46)

Here the government has set a payment schedule, and, hence, the percep-
tion has no e¤ect on payment level, but only on expectation (how often the
payment will be given). It is now possible to conduct comparative statics
on the …rst order conditions, and …nd the e¤ect of perception of g on level
of insurance. As expected, level of insurance increases with eg (if the second
derivative of U does not change too sharply). This is simply the result of a
mean preserving spread.
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Figure 12: Simulated Crop Insurance with Limited Learning.

The limited learning model predicts that perception of both the mean
and variance of the distribution will depend too heavily on the immediately
preceding period’s pro…ts. Let us now consider a simulation of this crop
insurance decision over several periods. Let U (x) = 1¡ e¡:00001x; ¼ = 10000;
g = 10000; ² = ¡2:12 I will employ the weighting function displayed in
(16). In each period, the farmer observes the pro…t levels of 5 identical (but
independent) regions and updates using the normal distribution with mean
and variance equal to the sample values as the likelihood function. With
correct perception, the optimal level I is about $950. I endowed the farmer
with correct perception in the …rst period. A graphical plot of I and average
² for periods 3 through10 is displayed in …gure 12.This simulation paints the
picture of a farmer that learns too much from realized pro…ts (or yields) in any
given year. He will only insure his crops using actuarily fair insurance after a
bad year, or after a large variance year. When weather returns to normal, he

12Estimates of true parameters of risk aversion all assume that individuals have perfect
information. Without a reasonable estimate for this parameter, using true values for other
parameters adds no degree of realism.
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will cease to insure, forgetting how common catastrophic outcomes may be.
This is exactly the behavior described by Glauber and Collins [15] describe
following a low yield year in 1982. Following a year of extremely low yields,
U. S. crop insurees increased sharply. After a year of normal yields, the
number of enrollees was again reduced to the 1982 level. Since there were no
changes in the crop insurance program over these years, Glauber and Collins
attribute this to the especially low yields of 1982. In this case it appears that
farmers are learning more than they should from an outlying event.

Roberts [39] describes a similar phenomenon. He …nds that farmers ad-
just their planting (which is somewhat related to insurance) each year in
response to the previous years yields. Roberts suggests their behavior is due
to problems in learning, and assigning too much weight to current yeild levels
when planning for the next year. While the supporting evidence given here
is anecdotal (at best), it is compelling. Further research could include esti-
mation of the LLM in farm management. It would be useful for governments
to be able to predict (and react to) wide shifts in program participation due
to learning problems in outlying years. There is also the possibility that be-
havior we have previously assumed was due to curvature of a utility function
(or some other theoretically imovable object) may be due to poor training, or
education (see Just [24]). Government programs that deal with risk should
take these psychological factors into account, possibly by providing training
with the program.

8.2 Production Contracts

Another area where perceptions may cause some testable distortion, is within
agricultural production contract relationships. Typically large processing
plants or shippers contract each year with farmers individually, although
many of the contracts are designed by commodity associations. Presumably,
farmers have fewer resources and less human capital than the large processing
plants they contract with. Contracts are typically described by economists
as a way to overcome asymmetric information, or to share risk. Incorrect
perception may compound (or mitigate) the problem of assymetric informa-
tion. Put simply, if the principal knows the tails of the distribution better
than the agent, he may be able to design contracts that favor the principal
in outlying events. Here, I will illustrate this point with a formal model
following Hueths and Ligon’s [23] application of the standard moral hazard
model to the case of fresh tomato contracts.
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In this case the farmer can take unobservable actions that a¤ect the qual-
ity of his output. The amount of output is assumed to be …xed, but the price
of output to the shipper (principal), p; is random and conditioned on ob-
served quality, q: The shipper contracts with the farmer, specifying a wage,
w (p), that is a function of the realized price for the goods. Due to the time
involved in shipping, the shipper cannot directly observe quality. Represent
the distribution of prices as h (pjq) ; and the distribution perceived by the
farmer as g (pjq) : The farmer wishes to maximize his expected utility given
the wage schedule o¤ered by the shipper, or

max
q

Z
U (w (p)) g (pjq) dp¡ z (q) ; (47)

where z (q) is the cost of producing at quality level q (this assumes separa-
bility of revenues and costs in the utility of wealth). Assuming the utility
function is concave enough, and that the production costs are well behaved,
the farmer will behave so that

Z
U (w (p)) gq (pjq) dp¡ zq (q) = 0: (48)

Employing this assumption is suitably called the …rst-order approach (see
[32]). The shipper o¤ers the contract that solves

maxq;fw(p)g
R
V (p¡ w (p))h (pjq) dp subject toR
U (w (p)) g (pjq) dp¡ z (q) ¸ U; andR
U (w (p)) gq (pjq) dp¡ zq (q) = 0;

(49)

where U is the reservation level of utility. The solution to this problem is
characterized by the following expression

V 0 (p¡w (p))
U 0 (w (p))

= µ
g (pjq)
h (pjq) + ¹

gq (pjq)
h (pjq) ; (50)

where µ and ¹ are the Lagrangian multipliers of the individual rationality
and incentive compatibility constraints respectively.

It will be helpful here to contrast these conditions from the case of truthful
perception. The incentive compatibility constraint will not bind if quality re-
quirements are low, or incentives of the farmer happen to match those of the
shipper. From (50), if h (pjq) = g (pjq) ; then a non-binding incentive com-
patability constraint will result in a …xed wage. However, suppose g (pjq) has
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thinner tails than h (pjq) : Let pm be a price falling in the center of the distri-
butions (assuming they are close to one another), and pt be a price falling in
the tail of the distribution. Then with a non-binding incentive compatability
constraint, V

0(pm¡w(pm))
U 0(w(pm))

> V 0(pt¡w(pt))
U 0(w(pt))

: Assuming that U is concave, and that
V is not convex implies that w (pt) < w (pm) : Hence the wage will not be
…xed, even if incentives are not con‡icting.

Next let us examine the second term on the right hand side of (50). If
h (pjq) = g (pjq) then this term may be called the likelihood ratio, and is
commonly interpreted as the ability to infer q from p: The ability to create
incentives for greater q will be greater if the likelihood ratio is larger. Hence
w (p) will vary more widely with p: If again we assume that perceptions di¤er
from the true distribution, then this likelihood ratio is an interaction of how
much information the farmer believes is carried in the price signal and the
true density. If the farmer believes that more information is carried in the
signal, (a higher gq (pjq)) then he will require a higher wage for the higher
prices.

While it is di¢cult to run simulations with this model, it is easy to see
some implications of the limited learning model in this context. As we have
seen earlier, the farmer will tend to narrow the distribution, except following
years with especially outlying realizations of price, or years with widely var-
ied prices realized. After years with outlying realized prices, the contracts
will perform more like the optimal contracts described in the literature. Most
years, the principal will be able to take advantage of misperceptions of the
distributions by increasing wages for middle prices and decreasing those for
outlying prices. This prediction is not too di¤erent from the observed con-
tract in Hueth and Ligon’s research [23]. Their Figure 2 demonstrates that
the observed contract appears to pay more than that considered optimum
with truthful perceptions over some range of prices toward the center of the
range of prices, and pay less than optimal toward the edges of the range
of prices. If distorted perceptions are truly the cause of this deviation in
pay schedule, the limited learning model would suggest that prices must be
skewed downward, since super optimal pay occurs to the right of the center
of the distribution of prices. As a symptom of the changing perceptions, the
limited learning model also implies that the required quality may also change
from year to year. Incorrect perceptions, and lack of informational resources
might be one reason many contracts are negotiated with commodity asso-
ciations. Farmers may be able to pool their resources and allow a better
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informed negotiator to help design the contract. There is a question then,
however, of whether the farmer is able to recognize when a better contract
has been negotiated.

9 Conclusions

Within this paper I present a model of learning based on the hypothesis
that individuals have a limited ability to learn or store di¤use information.
This model not only appears to describe behavior consistent with the lit-
erature on judgment bias, but also the violations of expected utility theory
commonly observed. Standard empirical measures of performance using ex-
perimental data suggest that this model is comparable to the leading models,
but several questions are raised regarding the usefulness of these measures in
determining the best preference functional describing decision-making under
uncertainty. The purest advantage in using the model I have described is
its wide applicability. The model appears to (at least anecdotally) describe
behavior in widely varying situations, including large …nancial markets, and
small experimental choices. I demonstrate here the plausibility of predictions
within crop insurance and production contract negotiation.

Further research needs to be done to …nd reasonable functional forms for
the limited learning model, and to test for its implications in various settings.
The model may be most applicable in the areas of …nance, and agricultural
marketing. The limited learning model makes several predictions that seem
not only novel, but reasonable.Underlying the parameters of this model are
the human capital and ability of the decision-maker. It is not clear that these
parameters are …xed, and monility of these parameters may be an important
issue for policy-makers. When policy is designed to alter risk, perceptions
need to be accounted for when predicting reactions, and changes in welfare.
Further, it is not clear that policymakers have correct perceptions of the world
when prescribing risk policy. In fact, there may be little incentive for poli-
cymakers to know relevant distributions beyond those that a¤ect their own
district. Researchers may need to account for low incentives when publishing
research for use by policy-makers. By lowering the level of e¤ort needed to
understand research, it may be that our work will have wider applicability.
Personal incentives of economic and other researchers, however, may con‡ict
with the goal of applicability, as academic prestige seldom comes with low
level work.
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A Mathematical Proofs

These proofs follow (nearly verbatim) those provided by Rabin [38], I have
only modi…ed the proofs where necessary to include a weighting function,
and reference point.

Proof of Theorem 1, part 1: Let r (zjw) ´ U (zjw) ¡ U (z ¡ ljw) = 1:
Then by concavity of U(¢jw), U (z ¡ ljw)¡U (z ¡ 2ljw) ¸ 1: The assumption
2l > g > l implies that z¡2l+g 2 (z ¡ l; z) : By concavity of U (¢jw) we know
that U (z ¡ 2l + gjw)¡ U (z ¡ ljw) ¸ g¡l

l
= g

l
¡ 1: Thus, U (z ¡ 2l + gjw)¡

U (z ¡ 2ljw) ¸ g
l

¡ 1 + 1 = g
l
: So, if z ¡ 2l ¸ U¡1

µ
U(Ájw)
2¼(:5)

jw
¶
; then

U (z ¡ 2ljw) ¡ U (z ¡ 3ljw) ¸ g
l

since U (z ¡ 2l ¡ ljw) + U (z ¡ 2l + gjw) <
1

¼(:5)
U

³
eÁjw

´
= 2U (z ¡ 2ljw) ; where eÁ = U¡1 (2¼ (:5)U (z ¡ 2ljw) jw) ; by

assumption. By concavity, we know U (z ¡ 3ljw)¡U (z ¡ 4ljw) ¸ g
l
: We can

extend this result to the general case, if z ¡ 2kl ¸ U¡1
µ
U(Ájw)
2¼(:5)

jw
¶
; then

U (z ¡ (2k ¡ 1) ljw)¡U (z ¡ 2kljw) ¸ U (z ¡ 2 (k ¡ 1) ljw)¡U (z ¡ (2k ¡ 1) l) ;
which implies that

U (z ¡ 2kl + gjw)¡ U (z ¡ 2kljw) ¸
g

l
[U (z ¡ 2 (k ¡ 1) ljw)¡ U (z ¡ (2k ¡ 1) ljw)] : (51)
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This last inequality implies that

U (z ¡ 2kljw)¡ U (z ¡ (2k + 1) ljw) ¸
g

l
[U (z ¡ 2 (k ¡ 1) ljw)¡ U (z ¡ (2k ¡ 1) ljw)] : (52)

This expression yields a lower bound on marginal utilities, which, in turn,
provides a lower bound on utility U (zjw) ¡ U (z ¡ xjw) ; by summing over
intervals. Note that the weighting function precludes this proof from applying
to prospect theory. I wished to use the more widely used weighting function.
A proof using the weighting function in Kahneman and Tversky [26] is much
simpler.

Proof of Theorem 1, part 2: Let r (zjw) ´ U (zjw) ¡ U (z ¡ ljw) = 1:
Then U (z + gjw)¡ U (zjw) � 1: By the concavity of U (¢jw) ; U (z + gjw)¡
U (z + g ¡ l) � l

g
: If z+g � U¡1

µ
U(Ájw)
2¼(:5)

jw
¶
; then U (z + 2gjw)¡U (z + gjw) �

l
g

(see the proof to part 1) by assumption. Again it is possible to gener-

alize this result, if z + mg � U¡1
µ
U(Ájw)
2¼(:5)

jw
¶
; then U (z +mg + gjw) ¡

U (z +mgjw) ¸ l
g
[U (z +mgjw)¡ U (z +mg ¡ gjw)] : This inequality im-

plies upper bounds on marginal utilities, and, hence, on utility U (z + xjw)¡
U (zjw) in part 2 of the theorem.

Proof of Corollary: From the theorem, we know U (zjw)¡U (z ¡ 2kljw) ¸
2

kP
i=1

¡
g
l

¢i¡1
r (zjw) and U (z +mgjw) ¡ U (zjw) �

m+1P
i=0

³
l
g

´i
r (zjw) : Thus,

if U (zjw) ¡ U (z ¡ 2kljw) < U (z +mgjw) ¡ U (zjw) ; then 2
kP
i=1

¡
g
l

¢i¡1
<

m+1P
i=0

³
l
g

´i
: Solving this inequality for m yields the formula. If g > 2l; we need

only that U (zjw)¡U (z ¡ 2kljw) ¸ 2k (U (zjw)¡ U (z ¡ 1jw)) to obtain the
desired result.


