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ABSTRACT:

This paper introduces a comprehensive data set of patents issued in the U.S. between
1975 and 1998 in the biological sciences applied to plant agriculture. Novel sampling
techniques are employed along with a multinomial econometric model to analyze the
differences in patenting across the R&D sectors of the economy.

Hypotheses are presented that universities and public institutions specialize in basic
research and patent research results with the greatest uncertainty in terms of the value of
the outcomes; entrepreneurial private innovators such as startup companies and
individual inventors specialize in turning basic innovations into applied innovations and
marketing these for industrial use, and undertake research of somewhat more certain
value; corporations specialize in incremental applied innovations that concentrate on the
production of final outputs, not on enabling further innovation, and patent with greatest
certainty of the value of outcomes.

Analysis of the distributions of adjusted forward patent citations, an established proxy for
patent value, reveals significant differences between university, startup, and corporate
inventors in terms of the mean values and the level of uncertainty of values their
respective patented inventions, with universities and public research organizations
achieving the highest mean value and highest variance of values, startups with an
intermediate mean and variance of value, and corporations with the smallest mean
variance of value. Discrete outcome estimation results are preliminary, but appear to
support the hypothesis of universities undertaking early research in the evolution of
technologies, followed by startups, with corporations concentrating in later
developments.
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1. INTRODUCTION

It has been contended in some corners that the generation of biotechnologies for
agricultural application has become the domain of large multinational corporations and
that they have eclipsed the role of the public sector in providing agricultural technologies.
However, it may be countered that, while the managers of major agricultural enterprises
may spend their days competing against one another with new releases of the latest
technologies designed to win greater market shares, those same managers are kept up at
night with real worries about what next unexpected development will come out of a
university laboratory.

In that spirit, this paper seeks to demonstrate that each of the three basic R&D sectors of
the agricultural economy enjoys particular comparative advantages in different parts of
the innovation process, and that the three sectors work together in a dynamic process to
carry new technologies from initial ideas to implemented products. The three sectors
include (1) universities and public research institutions, (2) small entrepreneurial private
innovators such as startup biotech firms, small independent seed companies, cooperatives
and growers associations, and individual inventors, and (3) established (incumbent)
corporations, including agrochemical producers, pharmaceutical and food corporations,
and the largest established seed companies.

Three basic hypotheses about the economic roles of the three R&D sectors are posed as
follows:

1. Universities and public institutions specialize in basic research and undertake
projects of more uncertain value.

2. Small private innovators such as biotech startups, small independent seed
companies, or individual inventors specialize in turning basic innovations into
applied innovations and the marketing of these for industrial use; they undertake
projects that are less uncertain than the work undertaken in universities in terms
of value. They are vehicle for the development of technology portfolios
characterized by greater uncertainty of commercial value than those typically
pursued by incumbent corporations, but which are often internalized by
incumbent corporations.

3. Incumbent corporations specialize in incremental applied innovations that
concentrate on the production of final outputs, not on enabling further innovation,
and are characterized by less uncertainty than either universities or startups in the
value of what they patent.

The general subject of the differential and complementary roles is debatable in principle
and is challenged in specific ways. With the widespread emergence of molecular biology
and genetics as agricultural technologies, the establishment of new intellectual property
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protection of life forms in many countries, and the rapid growth and consolidation of the
agricultural inputs industry around these new proprietary biotechnologies, longstanding
models of the relationship between the research efforts of the public sector and private
industry in the field of agriculture are being flexed, changed, and challenged.

Based on the general agreement that technology is a key determinant in economic growth
at the national level (Solow, 1957; Romer, 1990) technology generation by public
institutions and captured for private use should be, in theory, beneficial to everyone, yet
critics argue that universities and pubic researchers have gone too far in “behaving more
like for-profit companies” and are neglecting their funded mandate to provide public
services and commercially unbiased research (Press and Washburn, 2000). To what
extent do universities look like for-profit companies, in terms of the ‘for-profit’ output
that their R&D generates?

Others note with concern the discrepancy between intensive private investments in the
research and development of proprietary industrial agricultural technologies in industrial
countries, where agricultural productivity is already high and food supply is in surplus,
and the diminutive public provision of technologies designed for and deployed in
problematic areas of the globe where needs for agricultural and nutritional solutions are
most acute (and therefore the potential for social welfare gains are highest), such as
environmentally sustainable agricultural systems in sensitive ecosystems (Altieri, 1997)
and productivity improvements for impoverished regions in developing countries (de
Janvry et al, 1999). The actual roles of the different sectors, particularly the public sector,
is important in the debate over how and how much to publicly fund research in
agriculture, and are currently framed against the backdrop of a long running decline in
real terms of public funding for research and a gradual strengthening of environmental
standards for agriculture in the United States. Should public funding of agricultural
research be intensified in order to compete with spending on agricultural research and the
fruits of innovation in the private sector as they rival, surpass and, according to some
perspectives, come to dominate the efforts of the public sector? Others respond in the
opposite by questioning the relevance of spending public dollars to maintain a large
public research infrastructure in the face of a vigorous and seemingly more efficient
private sector. In general terms, to what extent are the output of the different sectors
substitutes and to what extent are they complements?

Since patents are issued to all organizations (public and private) they thus measure
contributions of a comparable scientific caliber made by organizations across all three
R&D sectors. This paper analyzes a unique data set of 3092 U.S. patents issued between
1975 and 1998, organized into categories or clusters of closely related or ‘homologous’
technologies that describe the growth or evolution over time of new ‘families of
biological innovations for agriculture’ that follow identifiable sequences or ‘trajectories’.
The disaggregation of the patent data into separate technological trajectories helps to
control for a number of technology-specific effects and allows a comparative analysis of
the R&D sectors, and even allows the possibility of extending the analysis to individual
research organization, a task that would be difficult or impossible in more aggregate
patent data sets. As a branch in a family tree of agricultural knowledge, each patent
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makes a contribution to the stock of knowledge, as proxied by variables that measure
aspects of the ‘quality’ or ‘value’ of the underlying invention. The stock of knowledge in
a given technology, gives rise both to new measurable knowledge represented by new
patents added each year and to new follow-on product developments. The basic question
to be answered is who tends to contributes what kinds of knowledge and when.

2. BACKGROUND AND HYPOTHESES

2.1. Public and Private R&D: Cross-sectoral analyses of innovation

Kenneth Arrow (1962) observed that the results of innovation (i.e. knowledge) are
innately characterized by indivisibility, inappropriability, and uncertainty and concluded
therefore that perfect competition fails to optimally allocate resources for innovation, and
the resulting underinvestment is mitigated by non-optimal interventions. Two broad areas
of economic investigation concentrate on the two broad types of such interventions:
private and public. The former has focused more closely on institutions and incentives for
the private supply of innovation and the industrial organization of R&D (Mansfield,
1968; Nordhaus, 1969; Rosenberg, 1971; Nelson and Winter, 1982; Griliches, 1984;
Scherer, 1984; Cohen and Levin, 1989). The latter has concentrated on the public supply
of innovation, a tradition particularly strong among agricultural economists (Huffman
and Evenson, 1993; Alston, Norton, and Pardey, 1998).  Empirical studies in these two
literatures have also, by in large, focused on one sector or the other. Cross reference in
empirical work between sectors is rare, with studies of one sector tending to give only
partial, passing, or ‘exogenous’ treatment to the other sector. This state of affairs in
empirical work seems to be due largely to the widely divergent types and availability of
data across the public-private divide.

Four specific lines of work, however, have attempted to make (or have at least left room
for) direct systematic comparison of public and private R&D across the sectoral divide.
Many of them seek to address or to test a fundamental conventional hypothesis that
policy makers, business managers, and economists have long used: the reductionistic
sequential or ‘linear’ model of the innovation-commercialization process, in which a new
idea is characterized to flow from its inception as basic science in a publicly sponsored
research lab through the proverbial R&D pipeline until it is applied as a technology in
commercial products and is taken to market.

Research theoretic and induced innovation models (Hayami and Ruttan, 1985; Evenson
and Kislev, 1973; Binswanger, 1974): Distinctions are not drawn in these models as to
whether the research decision maker is a private or a social optimizer. The decision to
invest is determined by the expected returns to a random innovation process, which
depend upon economic conditions particularly upon the relative endowments and thus the
relative prices of inputs in the economy. The technological innovation outputs are
economically differentiated as labor-saving or capital-saving.
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Political economy of public goods investment (de Gorter and Zilberman, 1990; Gardner,
1988): These models analyze political economic considerations for investment in public
goods, determining levels of investment and shares of the investment burden between
public and private sources. A common simplification in these studies is to treat the public
good output of the innovation process as essentially homogeneous.

Public research spending as complement or substitute to private research spending
(Reviewed in David and Hall, 1999 and David, Hall, and Toole, 1999): Complementarity
and substitution between public and private R&D efforts are measured in amounts of
R&D dollars invested: when public investment in R&D changes, how are returns to
private R&D calculated to change?

Patent bibliometric analyses: Who cites whom? Who collaborates with whom?
(Cockburn and Henderson, 1996; Jaffe and Trajtenberg, 1996; Perko and Narin, 1997;
Jaffe, Fogarty, and Banks, 1998): Such studies analyze the patterns of patent citations to
other patents and to scientific publications in order to track flows of knowledge across
institutional boundaries. Others analyze co-invention of patents and co-authorship of
scientific papers as evidence of research collaboration and knowledge sharing. Cockburn
and Henderson empirically examine the immediate flow of knowledge between public
and private researchers in the pharmaceutical industry in their analysis of coauthorship of
research papers. They find a significant amount of coauthorship between public and
private resarchers, leading them to appraise the “simple linear model of the relationship
between public and private research” as “misleading”.

A number of other studies that have examined the relationship between public and private
sector R&D and have challenged the applicability of a model of directed or ‘linear’
progression in research and innovation between the sectors. Rosenberg (1994) points to
the bi-directional flow of knowledge between high-powered corporate research labs and
universities, on what he calls the “two-way street”. Etzkowitz (1998) envisages
technology transfer as “a two-way flow from university to industry and visa versa,” or
more elaborately as “a non-linear recursive interaction between theory and practice,
academia and industry.” Gibbons et al (1994) point out specifically that, “Recent
examples of research in which theoretical advances have occurred in tandem with the
invention of devices or innovation in methodology in transistors/semiconductors,
superconductivity, and genetic engineering have called into question the one-way flow of
knowledge from basic to applied research in industrial innovation.” Specifically in
agriculture, Huffman (1998) dismisses a direct one-way relationship between science and
technology, citing the long history in agriculture of practical on-the-farm problem solving
driving the agenda for basic research.

Several disparate challenges encumber the cross-sectoral analysis of R&D and makes
generalizations about the relative roles of the sectors difficult to formulate. Data itself
tends to be sector-specific, both in how it is collected and in what it reflects even if it
appears on the surface to correspond. Also, multiple levels of analysis and frames of
reference present themselves for analysis of the relative roles of R&D. Not all are
meaningful or appropriate to such questions such as how and whether public sector
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research informs private sector development. In an attempt to overcome some of these
challenges and provide comprehensive cross-sectoral analysis, the following approaches
are explored in detail: the use of comprehensive patent data that spans all R&D sectors,
the construction of samples containing highly homologous technologies as an optimal
level of controlled comparison, and the use of patent citations and other indicators of
economic heterogeneity to characterize qualitative differences.

2.2. Patents as systematic indicators of R&D output

The use of patent data for economic analysis has been well established and the place of
patents in the complex economic knowledge generation process has been clarified
(Griliches, 1990). Patents are considered a proxy measure of knowledge capital:
according to Griliches the generation of economically valuable knowledge can be
specified as a general knowledge production function in which patents are created as a
byproduct. While knowledge goes on to produce ultimately valuable outputs, a patent
remains as a static claim over an invention that was made at one point in time.

Patents by no means represent all of the economically useful knowledge generated in the
economy, nor even in just the private sector. An econometric valuation study of French,
British, and German patents by Schankerman and Pakes (1986) implies that the aggregate
value of patents is only 10 to 15 percent of the total national expenditures on R&D.
Duguet and Kabla (2000) find that on average French firms register patents for only one
third of their innovations. It is clear that there is not a one to one relationship between
underlying technological innovations (which are not always observed) and the legal
documents issued to protect the intellectual property rights of the inventing party
(observed).

A patent is a standardized legal document that is granted to any R&D organization or
inventors from any R&D sector of the economy following consistent standards when a
basic set of criteria is met. As a result the U.S. Patent and Trademark Office (USPTO)
has provided in the public patent record a source of data useful for systematically
comparing the inventive outputs of the different R&D sectors.

2.3. Heterogeneity of research paradigms and natural trajectories of inventions

Research and development does not advance uniformly but rather proceeds according to
characteristically variegated patterns. New technological advances tend to cluster within
specific ‘research paradigms’, general accepted or feasible ways to approach solutions to
specific sets of problems (Nelson and Winter, 1977). Radical innovations may define a
new approach to solve an existing problem, but may also create imbalances that cause
new problems, calling for incremental inventions to fix and fine tune the technological
solutions offered under a given paradigm (Rosenberg, 1974). As inventions inspire
inventions over time, the technologies defined within the boundaries of specific
paradigms are observed to grow along ‘natural trajectories’. Such technological
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trajectories are sequences of innovations where “advances seem to follow advances in a
way that appears somewhat ‘inevitable’ and certainly not fine tuned to changing demand
and cost conditions,” as opposed to following the logic of optimization on the margin as
predicted by induced innovation models (Nelson and Winter, 1977). A natural trajectory,
therefore, is defined by the opportunities for advancement, which are in turn defined by
technological parameters.

However, a set of highly similar or related innovations that constitute a single trajectory
while assumed to face similar conditions of technological opportunity (technology push),
also face similar levels of demand for application in final goods markets (demand pull)
and contemporaneous administrative policies, regulatory requirements, and treatment
under intellectual property law (transaction costs). Since research in all sectors in the
same technology faces the same ultimate environmental factors equally, identifying
patents to belong to a specific technological trajectory serves to control for the effects of
these environmental factors on propensities to patent. Yet, within a designated set of
technologically related patents, there is still significant variation in other, more standard
qualitative characteristics. Thus, for the purpose of comparing R&D outcomes of
different sectors, the technological trajectory offers, in principle, a naturally way to
construct a patent sample.

2.4. Qualitative economic heterogeneity among inventions

Statistical methods based on the previously untapped richness of patent data have
recently been developing standardized measures of qualitative technological and
economic aspects of innovations (Henderson, Jaffe, and Trajtenberg, 1995).  By
definition, all technologies share the common economic characteristic that they produce
an outward shift in a production possibilities frontier. Beyond that, technologies have two
other basic common economic characteristics: their use is, in principle, non-rival, and
their invention is, by in large, uncertain. But the assumed similarities end there. The most
interesting heterogeneous characteristics of innovations that have been elucidated in
recent studies with patent data are basicness, quality (or importance), value, and
uncertainty. Not all of these characteristics are separable in practice.

Basicness:  By definition, basic innovation precedes and enables applied innovation
(NSF, 1995). As pointed out by Trajtenberg, Henderson, and Jaffe (1997) this distinction,
as commonly used in policy discussions is made in reference to the research inputs of an
innovative process, but that it similarly applies to the outputs of an innovation process,
which are measured by patents.

The ‘basicness’ of innovation outputs has both a scientific-technical interpretation and an
economic interpretation. In the scientific-technical interpretation, as tools that enable
further innovation, basic innovations will tend to occur earlier in a trajectory all other
things being equal; yet, it is not uncommon for engineers to create applied technologies
without fully understanding the science that explains why they work. Similarly,
sometimes it is only possible to go further in the basic research of a particular technology
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field after certain applied innovations have been made. In the economic interpretation,
basic innovations, when considered as knowledge capital, exhibit low degrees of asset
specificity and can be deployed in a wide range of production activities. Applied
innovations, on the other hand, when viewed as assets, are constrained by high degrees of
specificity to a narrow range of production activities. Bresnahan and Trajtenberg (1995)
describe basic ‘enabling technologies’ as opening up new opportunities for application in
multiple economic sectors.

Trajtenberg, Henderson, and Jaffe (1997) propose several measures of the basicness of a
patented innovation based on data from the patent records: the number of subsequent
patents that cite the subject patent; the number of previous patents cited by the subject
patent; and the number of other scientific and technical paper references cited by the
subject patent. The most significant predictor of basicness in their model is the count of
forward patent citations.

In this use, as a measure of basicness, forward patent citations represent a link, a causal
or teaching relationship between the respective documents, a knowledge flow. If a patent
has been shown to cause or to teach more patents after it, the innovation that it represents
is considered more basic. Similarly an innovation is considered more basic if its patent
draws on or synthesizes from a greater breadth of cited sources, both previously
published patents and scientific papers. Patents with fewer citations in either direction are
considered more narrowly focused on a particular problem, and thus more ‘applied’.
Whereas this use of citations to measure basicness is in some sense ‘self-referential’
(because the definitions of ‘basicness’ and the significance of a ‘citation’ are
interdependent), two recent studies show that the citations measure of patent quality is
statistically correlated to real measures of the welfare impact of the cited patent.

Quality or Social Value:  While the quality or social value of the underlying
economically significant knowledge is not observable, the quality of a representative
patent can be significantly estimated ex post by a number of indicators, the most
important of which is forward patent citations (Trajtenberg, 1990). In speaking of the
quality or importance of an invention there is also emphasis on its purely scientific and
technical impact.

Lanjouw and Schankerman (1999) use a latent variable model to estimate a composite
index of the quality of a patent based on the following quality indicator variables
including: the number of claims made by the patent, the number of citations that a patent
makes to other patents, the number of citations a patent receives after five years,
being part of a large ‘patent family’. They find that the composite index of quality is
significantly correlated with two kinds of costly economic decisions: whether to defend
the rights to the patent in court (litigation opposition) and whether to pay the requisite fee
to renew the patent with the USPTO.

Private Value:  Another closely related characteristic, by which the ‘size’ of a new ‘piece
of knowledge capital’ can be measured, is a patented invention’s value, that is, the
magnitude of the impact that the new knowledge will have on the private welfare of the
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producer or other immediate user of that intellectual capital. At the current level of
precision, empirical studies do not effectively differentiate ‘private value’ from ‘social
value’, as the two are highly correlated in the available indicators. In speaking of ‘private
value’ there is greater emphasis on demonstrable or measurable economic impact of an
invention.

Hall, Jaffe, and Trajtenberg (1999) find that the number of eventual citations to a patent
held by publicly listed firms is positively correlated with a market valuation of that patent
as calculated from the ‘announcement effect’ of that patent’s issue on the firm’s stock
market value. They find that, as a measure of the expected value of a patent, forward
citations are as significant as R&D expenditures, which has long been established as the
best available prediction of a patent’s value (Griliches, Pakes, and Hall, 1987). In the
analysis. Because of significant variation in patent citation frequencies across time and
technologies and a severe truncation problem, the citations measure is quite noisy. Hall et
al work out several corrections for these by fitting a model for the probability of citations
to an extremely large historical set of patent, thereby deriving weighs to correct for
changes in frequency and truncation.

Harhoff, Scherer, and Vopel (1999) find the following indicators to be significantly
correlated with the value of patent rights as revealed by German patent holders in a
detailed valuation survey: the number of citations a patent receives; the number of
citations that a patent makes to other patents; the number of citations that a patent makes
to the non-patent scientific literature; a patent being upheld against litigation opposition;
and a patent being part of a large “patent family” (i.e. one of corresponding patents taken
out in different countries on the same invention).

In this use as a measure of value, forward patent citations are treated almost as responses
in a survey of experts in the particular field of knowledge who have been selected by the
fact that they have themselves applied for and received a patent (or they are the patent
examiner reviewing the application for a patent). The legal role of patent citations is both
to identify the similarities and to establish the differences between inventive works. A
citation is essentially a response to the question, “What are the most valuable inventions
made in this field of technology, such that either you have built upon their contributions,
or you need to establish that the scope of those inventions do not encroach upon the
claims you have made to have invented something novel and non-obvious?”

Uncertainty:  The research-theoretic (Evensen and Kislev) and induced innovation
(Binswanger) models specify that when contemplating new research projects, researchers
have expectations about the mean and variance of the probabilities of success given the
particular technological fields in which they are working and the stock of knowledge in
those fields that has already accumulated and on which they are attempting to build. By
choosing different lines of research, the individual researcher is choosing different
lotteries. The researcher’s problem is the same as an investor’s problem, but instead
deciding on a research portfolio rather than an investment portfolio.
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Taken together, the use of patent data in order to observe systematically the output of all
R&D sectors, sampling from ‘technological trajectories’ to control for exogenous
systemic effects linked to specific types of technologies represented by patents, and
measuring the qualitative heterogeneity of technologies represented by patents within
technological trajectories, provides a new empirical framework within which to revisit
questions of the relative roles of different kinds of research organizations.

2.5. The questions of this study

A starting point for forming hypotheses about the roles of public and private researchers
in generating biotechnologies for agriculture is found in a systematic compilation of case
studies of the biotechnology industry by Zilberman, Yarkin, and Heiman (1998).
Drawing from numerous interviews with practitioners in biotechnology, they report five
common sequential patterns through which new technologies are developed, scaled up,
and commercialized. These patterns vary according to which kind of organization
undertakes which stage of a technology’s commercialization.

Table 1. Alternative Mechanisms for Product Innovation
Pattern Research Development Registration Production Marketing
1 U I M M M
2 U M M M M
3 U I I M M
4 M M M M M
5 I I M M M
U = University,  I = Startup,  M = Major corporation
Source: Zilberman, Yarkin, and Heiman (1998)

This collection of patterns shows that, while in some phases of the innovation process,
notably in the ‘research’ phase, involvement may be observed of any of the three types of
organizations, and ‘lateral R&D spillovers’ between technologies may be observed to
flow in any direction among organizational types. The key observation here, however, is
that the progressions along the stages of innovation and commercialization always
consist of ‘university’ before ‘startup’ or ‘corporation’ and always ‘startup’ before
‘corporation’, and never ‘corporation’ before either ‘university’ or ‘startup’. In order to
trace these patterns, however, it is important to be talking about a single particular
technology. If two different technologies are of different patterns or are at different points
of progression of the same pattern at the same point in time, comparing across those
technologies would mean blurring together distinctions of their individual patterns.

By more clearly defining the assumed relationships among the abstract concepts and the
observable characteristics of research outputs, a framework can be constructed in which
hypotheses of the relative roles of the different R&D sectors can be meaningfully
formulated and cast in the form of questions that can be answered with the available data.
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Assumption 1: Basic � Earlier in trajectory

If certain innovations in an identified technological trajectory are more basic than others,
in the sense that the basic innovations are antecedent to other innovations in that
trajectory, we would expect the patents protecting those basic innovations to show up
earlier in the trajectory, all other things being equal.

Assumption 2: Basic � (high Uncertainty = high variation in Value or Quality)

Because of the uncertainties involved in basic research1, the basic innovations2 that result
from it tend to vary more widely in terms of their value or quality than applied
innovations. The mean expected value of basic innovations may be equal to the mean
expected value of more applied innovations, but the variance is greater: there is a greater
probability of very high value and of very low value among basic innovations than
among applied.

Assumption 3: Value or Quality � Citations

The value or quality or importance of an innovation is revealed by citations made to the
patent protecting that innovation. Those patents that garner the most citations in a
technological trajectory represent the trajectory’s most important or valuable innovations.

Implication 1: Basic � (high variation in Citations)

Implied by the combination of assumption 2 and assumption 3.

Implication 2: (Highly cited = High Value or Quality) ⇒ Basic

Implied by the combination of the upside of the uncertainty in assumption 2 and
implication 1. Looked at another way, a basic research project that does not succeed gets
little or no citations, with more probability than applied innovations. Basic “failures” are
not often cited. On the other hand a basic research project that does yield a success, will
get many citations, also with more probability than applied innovations. Therefore, if a
patent is observed that has many citations, it is more likely to be a basic innovation.

Note that because of the nature in assumption 2 of uncertainty having both an upside and
a downside, implication 2 does not run backward: A basic innovation is not necessarily
highly cited. There is not a one-to-one between basic innovations and citations.

Implication 3: Higly cited � Earlier in trajectory

                                                
1 Here ‘basic’ defines parameters of the knowledge production function…
2 …while here ‘basic’ characterizes the output from that function. However, it should not be interpreted as

a general rule that only ‘basic’ research generates ‘basic’ research outputs, or visa versa, see Henderson,
Jaffe, and Trajtenberg, 1995, for an insightful discussion on the relationship between characteristics of
research inputs and outputs. This paper concentrates on characteristics of the outputs.
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Implied by the combination of implication 2 and assumption 1.

Finally we have yielded a question that data allow to be asked:

Question 1: In an identified technological trajectory, do the most highly cited patents
(after citation counts are corrected for truncation) show up earlier in the trajectory?

The answer to this question tests the integrity of these arguments, the construction of the
technological trajectories and the patent citations measures against the predictions of the
theoretical arguments.

Now, with the exception of implication 2, the above assumptions and corollaries can be
inverted for applied innovations.

Assumption 4: Applied � Later in trajectory

If some innovations in an identified technological trajectory are more applied than others,
in the sense that the applied innovations are descendents of other innovations in that
trajectory, we would expect the patents protecting those applied innovations to show up
later in the trajectory, all other things being equal.

Assumption 5: Applied � (Low Uncertainty = low variation in Value or Quality)

Applied innovations cover a narrow spread of values or qualities. Because of the greater
certainties involved in applied research, the applied innovations that result from it tend to
vary much less in terms of their value or quality than basic innovations. The expected
value of applied innovations may be equal to the expected value of more basic
innovations, but the variance is less: there is less probability of very high quality and of
very low quality among applied innovations when compared to basic innovations.

Implication 4: Applied � (low variation in Citations)

Implied by the combination of assumption 5 and assumption 3.

Now based on these assumptions and implications, hypotheses about the specialization of
different types of research organizations can be stated and tested.

Hypothesis 1: University and Public � Basic Innovation

If universities and public research institutes truly have a comparative advantage in
technological genesis and specialize in basic innovation, we would expect to observe
patents that belong to universities and public institutes according to the predictions of the
above assumptions and implications about basic innovations.
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Question 2: In an identified technological trajectory, do universities and public research
institutions tend to patent more in the early phases of a technological trajectory than in
later phases of the trajectory?

Question 3: In an identified technological trajectory, do universities and public research
organizations tend to have a higher proportion of the most highly cited patents compared
to other organization types?

Question 4: In an identified technological trajectory, do universities and public research
organization patents tend to have a higher variance of citations than others?

Hypothesis 2: Corporation � Applied Innovation

If corporations have a comparative advantage in technology utilization and specialize in
applied innovation, we would expect to observe patents that belong to corporations
according to the predictions of the above assumptions and implications about applied
innovations.

Question 5: In an identified technological trajectory, do corporations tend to patent more
in the late phases of a technological trajectory than in earlier phases of the trajectory?

Question 6: In an identified technological trajectory, do corporations tend to have a
lower proportion of the most highly cited patents than others?

Question 7: In an identified technological trajectory, do corporate patents tend to have a
lower variance of citations than others?

Hypothesis 3: Startups � Between Basic and Applied Innovation

If entrepreneurs and startups companies have a comparative advantage and thus
specialize in the development, commercialization, and marketing of basic innovations
(i.e. in turning basic innovations into applied innovations), we would expect to observe
patents that belong to entrepreneurs and startups to split between the predictions made for
basic and applied innovations.

Question 7: In an identified technological trajectory, do startups tend to patent more in
the middle phases of a technological trajectory?

Question 8: In an identified technological trajectory, do entrepreneurs and startups tend
to have a higher proportion than corporations but a lower proportion than universities of
the most highly cited patents?

Question 9: In an identified technological trajectory, do the patents of entrepreneurs and
startups tend to have a higher variance of citations than corporations but lower than
universities?
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Figure 2 illustrates the general hypothesis that universities have a higher probability of
contributing to the stock of knowledge near the beginning of a trajectory, corporations are
more likely to contribute to the stock of knowledge toward the end of a trajectory and
startup companies more likely to be found filling the gap between the two.

Figure 1. Hypothesized trends in the probabilities of the three types of research
organization contributing to the stock of knowledge over the course of a technological
trajectory

Universities                   Startups                          Corporations

           Beginning of trajectory    end

3. THE DATA

3.1. U.S. patents on agricultural biotechnologies, 1975-1998

In order to answer these questions, a comprehensive database was constructed of all U.S.
patents for biological inventions pertaining to crop agriculture granted to all types of
assignees (public and private) over the 23 years from 1975 through 1998. A complex
sampling problem was faced in trying to identify which patents out of the millions issued
between 1975 and 1998 represented the knowledge stock of biology for agriculture.

The U.S. patent data contain two different coding systems for the technologies described
in a patent: one is the U.S. Patent Classification (USPC) system; the other is the
International Patent Classification (IPC) system. Both of these systems intend to provide
an indexation to aid inventors and examiners in searching the patent data for ‘prior art’
when a new patent is applied for, in order to verify that a previous patent has not already
been issued that already makes claims over aspects of the new invention. The USPC
system has evolved slowly over the more than 200 years that the U.S. Patent and
Trademark Office has been issuing utility patents and thus lacks the benefit of hindsight
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categorization, particularly in high technology areas such as biotechnology. The IPC
system was more recently devised and thus makes a more careful parsing of technologies.
Several IPC categories are specific to plant biology and agriculture. However, most
agricultural biology patents are located under other classifications not specific to plant
biology or agriculture, and a large fraction of the patents within the classes that contain a
preponderance of the agbio patents are not agbio patents.

A four-pronged search strategy was employed and iterated exhaustively. First, keyword
searches were carried out utilizing a long list of technology terms derived from the CAB
Abstracts and several industry reviews as well as English and Latin names of all major
crop and experimental plant species. The patents retrieved as results of each search were
then read over and reviewed: those that were clearly agricultural biology patents were
retained in the growing sample, while all others were discarded. Second, IPC subclasses
found to be commonly occurring in the sample resulting from the first step were
searched. Again, the resulting new patents were read and reviewed, with agbio patents
retained and added to the sample and all others discarded. Third, all patents that were
cited by the patents in the growing sample were read and reviewed, and respectively
added to the sample or discarded. Finally, all patents that cited the patents in the sample
were read and reviewed. The search process was considered complete and exhaustive
once the iterated searches consistently turned up only patents that were already in the
sample. By that point the sample consisted of 3092 U.S. patents.

3.2. Constructing technological trajectories from patents in the sample

Once all agricultural plant biology patents were isolated, the next immediate question
was how to organize them into separate research paradigms, in order to be able to trace
the growth of the natural technological trajectories of agricultural biology with the patent
data. However, experience shows that neither the USPC nor the IPC system is able to
categorize patents with sufficient precision to cluster patents into economically
meaningful ‘technological trajectories’3.

Instead, when each of the 3092 patents was read it was determined to belong to one or
more of a set of agricultural biology classifications created for this purpose. (An
exhaustive list is provided in Appendix A.) These classifications serve as unique
identifiers of all the different types of research paradigms and associated technologies
encountered in the comprehensive search for agricultural biotechnology patents. They are
highly specific and designed to capture the dual criteria of (1) ‘novelty’ and (2) ‘utility’
of the invented technology4: how it represents a technically new contribution and how it
is expected to be economically useful in solving real problems in agriculture.

                                                
3 For example, patents over “plant genetic transformation methods” are scattered over a dozen different

major IPCs.
4 The third basic requirement of “nonobviousness” is no longer germane after a patent has been published.
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These combined novelty-utility disclosures dictate each of the technical-economic
agricultural biology classifications and allow each of them in theory to encompass an
emerging technological trajectory. The relatively high degree of ‘technological
homology’ among patents in each of the agricultural biology classifications is verified
both by the tight similarity of key technology concepts and interrelationships via citations
inter-linkage among the patents. The iterative keyword and the cited and citing searching
technique established the integrity of this ‘trajectory’ nature of the individual agricultural
biology class. Indeed, in some cases several ‘generations’ of citing and cited patents were
gathered together in a single agricultural biology class.

It is not practical for purposes of statistical analysis however to use the individual
agricultural biology classes as separate samples; they contain on average such small
numbers of observations as to challenge any asymptotic assumptions that would be
necessary for most estimation techniques. Instead these agricultural biology
classifications were aggregated, with 2428 of the patents clustering into thirty major
technology groups that represent more general technological trajectories. The level of
aggregation chosen for these thirty patent samples is a result of the trade-off between
defining a technological trajectory narrowly enough to effectively control for systematic
effects versus defining a trajectory widely enough to have a sufficient number of
observations to allow for statistically meaningful analysis.

Table 2 shows for each technology the total number and the percentage of patents that
have accrued to each type of institution in the years 1975-1998. A total of thirty
‘technological trajectories’ have been constructed with an average of 100 patents per
trajectory. The smallest trajectory has 37 patents and the largest has 298 patents. Patents
are each allowed to span up to four trajectories. For instance, a patent for a hybrid corn
parent variety modified with a male sterility gene will be identified as a contribution to
both the “corn germplasm” trajectory and the trajectory of “genetic traits for control of
reproduction”.

3.3. Variables

Data collected for each patent includes all of the patent’s “front page” matter, which
includes information such as the patent number, title, inventor, assignee, application and
issue dates, IPC and USPC codes, and more. Textual content of the patent, such as the
abstract, the list of legal claims made by the patent, and the body of the patent were used
to decide upon the agricultural biology classification of the patent, for which a code
variable was assigned. Additional data include the lists of reference citations, both the
prior patents and the scientific literature that the applicant and the reviewing patent
examiner deemed relevant to the patent. From these raw data a number of variables can
be extracted or constructed to serve as indicators of the techno-economic characteristics
(Section 2.4) of the patent and the state of the relevant technological trajectories (Section
2.3) to which the patents belong.
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Weighted forward patent citations: Direct measures of the degree of ‘basicness’, social
value, and private value of patents have all been significantly correlated in the literature
with the counts of the forward citations made to the patents, establishing this variable as a
significant indicator of the fundamental technological and economic impact of the
invention represented by a patent, which can be most generally thought of as the patent’s
contribution to the (unobservable) stock of economically significant knowledge or the
value of its ‘knowledge capital’.

For a patent n, applied for in year t, the weighted sum of forward patent citations, cnt,
made to by patents applied for after year t but before the present (or terminal) year T
when the number of citations is observed, is designated

WCITESn = ( )∑ ntjtA cω .

Because the forward citations of more recent patents are truncated by not being able to
know now (in terminal year T) citations that will be made in the future (after T), the
forward citations count is weighted by ωA, which is a correction derived from a fitted
citations lag distribution (Hall et al, 1999) and is specific to the age of the patent at the
time T when citations are counted: A= T − t.

The existing stock of economically valuable knowledge in a technological trajectory:
Over time, the stock of knowledge capital grows by the addition of new knowledge from
each patent. The total existing stock of knowledge in trajectory j at the time that a patent
n is applied for can be represented by the sum of weighted forward citations of all the
patents in the sequence of trajectory j prior to the arrival of patent n:

ESTOCKn  = ( )∑ ∑
−

=









1

1

n

i
itjAi cω

Note that the contribution of patent n itself is not included in this sum. This variable
attempts to measure the point of progress in the technological trajectory at which an
invention is made. It also represents, within the limitations posed by the use of patents
alone, the amount of general knowledge or prior precedents within that particular
paradigm from which an inventor might have drawn in making her contribution.

In this framework it is not necessary to include explicit terms for the obsolescence of old
knowledge because the weights used, ωA, calculated from sample distributions of actual
citation lags, account for the drop-off in the trend of citation that accompanies the aging
of a technology.

Other qualitative indicator variables, suggested by the studies reviewed in Section 2.4,
which can be derived either directly from the raw patent data or from other secondary
sources, include the following:
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•  The number of previous patents cited (backward citations), as a measure of
basicness

•  The number of scientific and technical paper references (non-patent citations), as
a measure of basicness

•  The number of claims made by a patent, to measure quality/importance/value;
•  A dummy variable for having faced litigation, as a measure of

quality/importance/value
•  A dummy variable for having faced an administrative review or opposition at the

patent office, as a measure of quality/importance/value
•  A dummy variable for being a member of an international patent family (or at

least for having a PCT filed) as a measure of quality/importance/value
•  Ratio of forward patent citation made by the patent’s assignee (self forward

citations), as a measure of the appropriability of the knowledge capital
represented by a patent

•  Ratio of forward patent citations made from patents outside its designated
technological trajectory, as a measure of basicness

3.4. Descriptions of the data

Table 2 summarizes the distribution of weighted forward citations for the total of 2428
patents in the thirty technological trajectories separated out by sector. The data in this
table already begin to answer the questions posed by the hypotheses of differential roles
in Section 2.5. This will be further developed in the results in Section 5.

In order to provide some perspective on what specific organizations are most involved in
the biology of agriculture, the top thirty organizations with the most patents in the
database are listed in Table 3 below. Notice the presence in these top rankings of a
mixture of government (USDA), universities, small biotech firms, and large corporations.

Table 3. The top 30 patenting organizations in the dataset
Organization Number of

Patents
Organization Number of

Patents
Pioneer Hi-Bred International 245 DeKalb 33
Mycogen 160 Sandoz 33
USDA 126 Iowa State University 31
Monsanto 101 Hoechst 30
Asgrow Seed 64 University of Wisconsin 28
Calgene 63 Lubrizol 25
Ciba-Geigy 57 W. R. Grace 23
Zeneca 54 Rhone-Poulenc 22
University of California 53 Agracetus 21
Du Pont 51 Michigan State University 20
Novartis 51 Texas A&M University 20
Holden's Foundation Seed 47 Agricultural Genetics Company 19
DNA Plant Technology 43 American Cyanamid 19
Cornell University 42 Ecogen 19
Plant Genetic Systems 38 North Carolina State University 19
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The assignee with the most patents in this data set is Pioneer Hi-Bred, the leading seed
company in the U.S. The large majority of their patents cover varieties and hybrids of
corn, although Pioneer also commands an impressive portfolio of biotechnologies. The
USDA is the largest and most prolific public research institution, with several universities
hosting strong agricultural and biology departments also taking prominent positions.
Several of the leading agbiotech companies, including Mycogen and Plant Genetic
Systems make the list. The corporations on the list, beginning with Monsanto, constitute
the corporate sector core of the industry.

Figure 2 showcases plant genetic transformation patents—technology group 9 from Table
2, “Plant genetic transformation vectors and systems: Agrobacterium, electroporation,
biolistics, viral vectors, etc.”—to illustrate the structure of the trajectory of growth of a
particular kind of knowledge. In the first panel the arrival of new inventions is displayed
by year. A patent applied for in a given year contributes a height to the bar equal to the
weighted number of forward citations that the patent eventually receives in the color of
the R&D sector to which the patent is assigned. In the second panel the proportion of
each year’s new knowledge contributed by each sector is displayed and rather clearly
confirms the general hypothesis that university and public researchers contribute
relatively more of the early knowledge (a preponderance of blue in the lower left),
corporations contribute relatively more of the knowledge late in the trajectory (a
preponderance of maroon in the upper right), and startups fill in between the two (heavy
emphasis of yellow in the middle.) The third panel displays a cumulative running total of
the contributions of each sector to the stock of plant transformation knowledge.

4. AN ECONOMETRIC MODEL

4.1. The data generating process

Research and development in the biological sciences applied to agriculture is assumed to
proceed within distinct research paradigms such that the resulting technologies are
generated along naturally occurring trajectories, k = 1…K, each of which is assumed to
be ensconced within the classification a technological sub-field. Not all technological
trajectories are at the same point of maturity in their growth or evolution: some constitute
new (and thus perhaps poorly defined) areas of research with little accumulated prior
knowledge; others are mature areas with large stocks of existing knowledge already in
place.

There are J distinct R&D sectors, j = 1…J, in the economy where for simplicity

1 for universities and public research laboratories
j  = 2 for individuals, entrepreneurs, startups, and small businesses

3 for corporations.
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The underlying behavioral model consists of several distinct steps for each observation:

1. A joint decision is made, in one of the sectors, j, by a researcher and her research
administrator or funding source to undertake a project in a specific research sub-
field, k. It is presumed, although not observed, that the expected (joint) returns
from this research project exceed the expected returns from the next best
deployment of the researchers time and talents and the expended resources.

2. With a certain probability, a successful research result is produced that meets the
standard criteria for patentability of being a novel, non-obvious, and useful.

3. Another joint decision is made by the researcher and the administrative/funding
organization as to whether the (novel, non-obvious, and useful) research result be
patented (and thus privatized) or simply published in the public domain. It is
presumed, although again not observed, that the expected (joint) returns to having
a patent, subject to policy and transaction cost constraints, are non-negative. Thus,
with a certain probability, or propensity, depending to no small extent on the type
of organization, a patentable research result is applied for and granted.

4. The patent, n, the R&D sector of the assignee, j, the technological trajectory to
which it contributes, k, and qualitative attributes of the patent, Xn, are observed.

4.2. The statistical model

Econometric analyses of discrete random outcomes, such as the multinomial logit model,
have traditionally been based on a latent variable model of choice behavior (McFaddin,
1974; Ruud, 2000) where each outcome is interpreted as the choice of an individual agent
whose unobserved or ‘latent’ utility, construed as a random variable, is assumed to have
been maximized by the observed discrete choice, also a random variable, that was
actually made relative to the other available options. However, the statistical model
employed to analyze the joint sample distribution of polytomous data and the behavioral
model used to describe the unobserved latent variable can be viewed as separate models.
Claims that the statistical model is appropriate only if there exists a latent variable are
often asserted too strongly, and, regardless, the existence of the latent variable, while
useful for the internal consistency of the behavioral hypothesis, is often unverifiable in
practice (McCullagh and Nelder, 1989). For the current purposes of this study, instead of
identifying a single, behaviorally meaningful latent variable, I simplify the complex
decisions effected by the many unobservable parameters and latent behavioral variables
at play in the data generating process into a single latent ‘black box’ probability index
that relates the qualitative characteristics of a patent with the probability that it is
observed to arise from research at a university, a startup, or a corporation.
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Thus, for each observed patent, n, in each technological trajectory, k, the probability
index that the technology is invented and patent by the jth organizational type is denoted
by

y*nj  =  XnjB  +  εεεεnj,

where Xn is a vector of attributes of the nth patent and the B are unknown coefficients.
The εnj are the unobserved differences in the probability of that patent arising in the jth

type of R&D organization, resulting from unobserved features of the behavioral model
including the institutional features of the organization, and are assumed to be i.i.d.
random variables with a Weibull probability distribution.

When the jth organizational type actually undertakes the research and receives the nth

patent, the observed outcome is described with the J dummy variables where

ynj = 1 if the nth patent is issued to the jth organizational type, and
ynj = 0 otherwise.

From the probability index equation the probability of the nth patent coming from the jth

organizational type is

Pnj = Pr[ynj = 1 | Xn]
= Pr[y*ni ≤ y*nj, ∀ i ≠ j | Xn]
= Pr[εni  −  εnj  ≤   (Xnj −  Xni)`B, ∀ i ≠ j | Xn]

Which is equivalent, given the assumptions made about the distribution of the εs, to

Pnj = P(ynj = 1) =
∑

=

J

i

BX

BX

ni

nj

e

e

1

This can be normalized and written as the multinomial logit:

Pnj =
∑

−

=

+
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1
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i
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nj

e

e ,        ∀ i ≠ j

where the values of the J different ‘P’s are conditional probabilities of a patent’s
occurrence in the J different institutions given the explanatory variables.

Because they do not enter the probabilities linearly, the organizational coefficients on
these patent attributes, the Bs, cannot be interpreted directly. However, an interpretation
is possible from the definition
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or more conveniently for calculations:

( )jon
no

nj BX ′= exp
Pr
Pr

which is the probability ratio of selecting research organization type j relative to research
organization type o. The q parameters in the vector B are the marginal effects of the qth
regressor in Xn on the odds ratio.

Since the multinomial logit system is solved by maximum likelihood, testing hypotheses
about coefficients follows standard hypothesis testing methods based on the covariance
matrix from the maximum likelihood estimation.

5. PRELIMINARY RESULTS

The first set of interesting results from this analysis are found in the totals at the end of
Table 2: the three sectors have contributed rather comparable total levels of patented
knowledge in agricultural biotechnology, with startups contributing the most, garnering
8360 forward citations (after weighting), followed by the public sector and universities
contributing patents receiving a total of 7172 forward citations, and corporations
contributing the least, with 6710 total citations, despite the fact that corporations received
a significantly greater absolute number of patents. The mean value of university patents,
measured by an average of 8.8 forward citations per patent, is thereby estimated to be 39
percent greater than the mean value of startup patents, which have an average of 7.8
forward citations per patent, and 57 percent greater than the mean value of corporate
patents, with an average of just 5.6 forward citations per patent.

In the aggregate it is also observed that the values of university patents are considerably
more variable. The standard deviation of forward citations to university patents is 19.8,
32 percent greater than the standard deviation of biotech startup patent values, which
show a standard deviation of forward citations of 15.0, and 75 percent greater than the
standard deviation of corporate patent values. In all three sectors the spread of forward
citations is quite high relative to the mean, with standard deviations roughly double the
means. As portfolios these intellectual assets are quite volatile. Figure 3 displays
aggregate histograms of the numbers of forward citations to patents from each of the
three sectors. These histograms show the highly skewed shape of the distribution of
patent values in all three sectors, which are emphasized by the fact that the maximum
valued university patent has 230 forward citations, the maximum valued biotech startup
patent has 175 forward citations, and the maximum valued corporate patent has 127
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forward citations. This skewness of values is in accordance with a number of other
studies that demonstrate the lion’s share of value from a relatively few of the most
valuable patents (Castillo et al, 1999; Scherer, Harhoff, and Kukies, 2000).

Regression results for the aggregate data set are displayed in Table 4 below.

Table 4. Multinomial logit maximum likelihood estimations on the aggregate data

1 2 3

University and
Public
  WCITES  .0113  (.0044) -.0013 (.0000) .0001 (.0051)
  ESTOCK -.0001 (.0046) -.0000 (.0000)
  FAMILY -.8747  (.1366) -.9173 (.1385) -1.3868 (.1482)
  CONTINUATION  .1536 (.1091) -.2286 (.1224)

  Constant -.2433  (.0640)  .8328 (.1685)

  Trajectory dummies
  (average)

-.0190 (.3572)

Startups
  WCITES  .0123  (.0042)  .0029 (.0042) .0007 (.0045)
  ESTOCK -.0001 (.0000) -.0000 (.0000)
  FAMILY -.7354  (.1199) -.7693 (.1210) -.9615 (.1334)
  CONTINUATION  .2101 (.0996) -.0285 (.1145)
  Constant  .0255  (.0597)  .7622 (.1625)

  Trajectory dummies
  (average)

-.1059 (.3358)

Log Likelihood -2604 -2573 -2171
Pseudo R2 0.0138 0.0256 0.1779
“Corporate” is base category.
Standard errors in parentheses.

The aggregate and somewhat dilute result nonetheless display consistently negative
effects of existing stocks of knowledge on the propensities of universities and startups to
patent lending support to the general hypothesis that universities tend to patent earlier in a
technological trajectory, when the existing stock of knowledge is still quite small. As the
stock grows the probability that a university will continue to patent in that trajectory falls
relative to the probability of corporate patenting.

Thirty disaggregated multinomial regressions were run separately for the thirty
technological trajectories. In 22 out of the 30 regressions the effect of existing knowledge
stock on probability of university patenting vis-à-vis corporate patenting was negative;
similarly in 23 out of the 30, the effect on startup patenting was negative. Ten trajectories
(less than half) showed the hypothesized trend of universities most likely to patent when
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the existing stock of knowledge is low, startups follow after universities, and corporations
most likely to patent when the existing stock of knowledge is high.

6. PRELIMINARY CONCLUSIONS

Preliminary results are promising but further work is still needed to adequately test the
hypotheses presented herein.  Comments and suggestions are solicited.
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