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Abstract

Climate policy benefits future generations at the expense of current ones.

We propose a system of transfers that allows future generations to compen-

sate the current one for its mitigation effort and demonstrate the effects in

an OLG model. When the marginal benefit to a—possibly distant—future

generation is greater than the cost of compensating the current generation

for its abatement effort, a Pareto improvement is possible by a combina-

tion of mitigation policy and transfer payments. However, the transfers are

costly as they discourage saving. We derive the conditions for the Pareto

frontier achievable through such policies: a Samuelson Rule modified for

the real costs of the transfers and for the persistent effects on physical and

natural capital.

1 Introduction

Most climate policy assessments model greenhouse gases (GHGs) as an externality

the emission of which is beneficial at the date it is emitted, while its contribution

to the atmospheric stock causes economic damages at all future dates. Policy

appraisal under the infinitely lived representative agent paradigm will propose

emission abatement to the point at which the abatement cost equals the sum of

the benefits from the reduction in damages. If the infinitely-lived agent is taken to

represent a sequence of non-overlapping generations, such ‘optimal’ policies have
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implications with respect to the welfare of different generations. Since almost

all of the benefits accrue after the individuals who incurred the abatement cost

have passed away, the abating generation will incur a net loss from such a policy.

Indeed, it is often claimed that climate policy is ‘unfair’ precisely in this sense:

those currently alive have to pay for reducing GHG emissions, with the benefits

accruing to later generations.

Such arguments run against a very basic result from public economics: the

presence of an uncorrected externality implies the possibility of Pareto improve-

ments. What is required to realise these improvements is that those who benefit

from the correction of the externality compensate those who bear the cost. In the

case of climate change, the implication is that future generations have to com-

pensate current generations. This is straightforward when generations overlap:

a chain of transfers between a sequence of overlapping generations can transfer

resources ‘back in time’.

In this paper we use an overlapping-generations (OLG) model to explicitly con-

sider the welfare of different generations while maintaining decentralised invest-

ment decisions. Emission abatement is interpreted as a public policy prescription

which restricts current production possibilities in form of an abatement cost. In

return, future production possibilities expand as less rapid accumulation of GHGs

reduces future damages to output. Capital savings, on the other hand, are inter-

preted as the result of the private inter-temporal consumption decisions of finitely

lived agents. Current abatement policy creates value well beyond the finite lives

of the agents alive at the date of abatement. Therefore, abatement policy will be

desirable to agents in the distant future, even once the current ones have done

what is optimal amongst themselves. If these distant generations could somehow

compensate the current ones for some additional abatement effort, and this com-

pensation has a lower marginal cost to the compensators than the marginal benefit

of an additional unit of abatement, a Pareto improvement is possible.

We achieve just such a compensation by taking advantage of the contempo-

raneity of old and young in an OLG model. The young could compensate the old

at a date t, in return for costly abatement policy undertaken at t − 1. This is

essentially a pay-as-you-go pension. Furthermore, the young at t + 1 could com-

pensate the old at t+ 1, who themselves are the young at t and could pass on the
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compensation to the old at t for even more abatement at t − 1. This system of

reverse transfers can be achieved for an arbitrary number of generations.

Being a pay-as-you-go transfer, such policies have well-known deleterious ef-

fects on the incentives to save, and therefore on the capital accumulation process.

Taking this into account we are able to demonstrate that even for arbitrarily dis-

tant generations it is beneficial to enter a contract with the current one (and all

the intermediate ones who must act as conduits) in which the current generation

abates in return for a pension at a later date. What is more, we can show that

once a set of adjacent generations have exhausted all the mutual gains from such

contracts, the possibility of adding one yet more distant generation to the contract

results in Pareto improvements over the best that the subset of generations could

achieve.

We characterise the set of policies that dominate the business-as-usual policy

as well as the set of Pareto efficient policies. The condition for efficiency amongst

any subset of adjacent generations takes a form that is similar to the Samuelson

rule, where efficiency is determined by the policy level at which marginal cost (of

abatement) is equal to the sum of the marginal benefits. However, because the

beneficiaries are separated in time from the abaters, the compensation mechanism

(the sequence of pay-as-you-go transfers) is itself costly, resulting in a modification

of the rule whereby the marginal cost of compensating the abater including the

cost of compensation is equalised to the marginal benefit. We derive an easily

interpretable condition for this and use it to establish that such abatement-pension

policies can provide significant mutual improvements in welfare.

We do not take a normative stance on which point on the Pareto frontier (or,

indeed, outside it) would be preferable, but only point out that business-as-usual

is likely to be Pareto-dominated by some set of policies mandating mitigation and

compensatory transfers. The wider point of the present paper is that the conflict

between generations, often seen to be one of the stumbling blocks for effective

climate policy, may be an illusion. In this sense, the intragenerational conflict—

free-riding between states—is the real problem in trying to tackle climate change.

3



1.1 Literature

Previous literature has covered related issues. In the context of a representative

agent model, Rezai et al. (2012) and Foley (2007) propose that abatement effort

come combined with a reduction in savings. If the reduction in savings is chosen

correctly, the consumption in the period during which abatement takes place is not

reduced and the benefit to subsequent generations is positive as the lower capital

stock is compensated for by reduced climate damages. However, in such a model

it is unclear whether a single agent lives across periods, in which case it is not

necessary to ensure that consumption is greater in every period as long as the

agent’s total welfare is increased; or whether separate generations live just for one

period, in which case the the savings behaviour is unmodeled since (non-altruistic)

agents living for a single period would presumably not save of their own volition.

Bovenberg and Heijdra (1998) look at Pareto improving mitigation in a Blanchard-

Yaari OLG model in which investment is decentralised and the compensation of

mitigating generations is achieved contemporaneously by adjustment of public

debt. However, they focus on a particular efficient allocation—one in which the

gains from the policy are distributed ‘evenly’ across generations—and focus only

on cases in which the economy starts from a steady state. We characterise the

entire Pareto frontier in a very intuitive fashion, for any dynamic equilibrium.

Gerlagh and Keyzer (2001) expand a pure exchange OLG model (Gale, 1973)

by adding a productive non-renewable natural resource with amenity value. They

then show that allocating property rights to the natural resource to a trust fund,

tasked with providing each generation a given income flow, yields a Pareto im-

provement over zero extraction: the productive resource is used, with some of the

consumption gain transferred forward to compensate future generations for lower

resource amenities. The authors again focus on a single point on the Pareto fron-

tier. More importantly, as the model does not feature physical capital, the impact

of intergenerational transfers on capital accumulation is not studied. We work in

the standard Diamond OLG setup, and so can study such issues.

John and Pecchenino (1994) develop an OLG model with two assets, physical

and natural capital, both of which create a positive externality on the subsequent

generation. The share of output that is invested is exogenous, but the relative
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shares going into physical and natural capital are made endogenous. They find

that the allocation of investment between the two capital stocks may be inefficient,

since the agents don’t live infinite lives. They also demonstrate, much as we do,

that Pareto improvements are possible even if the economy is dynamically efficient

(with respect to both types of capital stocks). However, they do not give conditions

for efficiency. We do, while also endogenising the consumption-savings decision.

Karp and Rezai (2012) consider long-lived capital stocks in an OLG setup. The

productivity of capital depends on the state of the environment, as well as current

emissions. They show that an improvement in the future state of the environment,

by increasing future productivity, leads to appreciation in the value of the physical

assets held by the current old relative to the wage of the young. Climate policy

then induces a cost on both generations alive at the date in question, but since

the young must acquire the appreciated assets from the old, the old may achieve a

net benefit with the entire cost of abatement falling on the young. Thus, a Pareto

improving policy would involve the current beneficiaries of the climate policy—the

old who hold the appreciated capital—to compensate the current young. Future

generations benefit as well, but their marginal benefit is not exhausted, so that

increasing abatement would yield further Pareto improvements. Thus, the paper

tells a story about intergenerational distribution, but one which goes somewhat

against the grain of the conventional thinking that current owners of capital stocks

might lose out from mitigation policies. We tell a complementary story. The

main difference in our paper is that we do not consider adjustment costs related

to investment, so that the price of capital is always equal to one. Thus capital

cannot appreciate, and the transfers we find run from the future towards the

present. We also incorporate the benefit to distant future generations into the

current abatement decision.

Howarth and Norgaard (1992) work in a general equilibrium OLG framework

similar to ours, but only consider sustainability of consumption paths under so-

cial welfare maximisation, and do not consider indexation of the intergenerational

transfers to the state of the environment. Instead of sustainability issues, we are

more interested in policies which take the economy to points on the Pareto frontier

which dominate the business-as-usual outcome.
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Rangel (2003) and Boldrin and Montes (2005) consider whether non-altruistic

overlapping generations are able to sustain the provision of a public good (edu-

cation) by linking it to social security provision once agents are old. The present

paper takes the policies as exogenous, and so does not consider strategic incen-

tives the various generations have to renege on policies. Our framework allows

private saving to perfectly substitute for public saving, and we consider a very

persistent public good, so that the mechanisms employed in these papers cannot

be directly transposed into our setup. Future work will extend the present model

by considering mechanisms which allow the policy variables to be endogenised.

1.2 Organisation of the paper

In Section 2 we outline the OLG framework and the nature of climate externality.

In Section 3 we state the main result of the paper, Theorem 1, and discuss its im-

plications. In Section 4 we assume specific functional forms for the production and

utility functions which allow us to explicitly solve OLG model for the equilibrium

prices and quantities. This explicit solution is used throughout Sections 5 to 7 to

demonstrate the intuition of the result, namely that Pareto improvements are pos-

sible by linking the magnitudes of pay-as-you-go pensions to the abatement cost.

We show that including more generations into such an intergenerational contract

in which pensions are used to compensate for the mitigation effort yields greater

improvements. That is to say, accounting for the marginal damage to N+1 gener-

ations immediately succeeding the abatement policy in question results in greater

abatement and a Pareto improvement over the policy that only accounts for first

N succeeding generations. Finally, in Section 8 we generalise our results to more

general functional forms than the ones assumed in Section 4. Theorem 3, which is

the main result of the section, is the complete statement of Theorem 1.

2 The model

Our model consists of a production economy augmented by a persistent externality

on output given by the atmospheric stock of greenhouse gases (GHGs). Capital is

saved by overlapping generations (OLG) of consumers who live for two periods (see
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Diamond (1965)). The carbon stock is accumulated as a byproduct of economic

output the reduction of which is costly. Denoting gross output by F t, the cost

of emissions reduction (abatement) by Φt, and the economic damage from climate

change by Ψt, our model is simply a modification of Diamond’s OLG model in

which net economic output is given by

Y t = F t − Φt −Ψt. (1)

2.1 Production and damage

In each period t, following date t, the economy is endowed with a gross produc-

tive capacity net of depreciation represented by a function, F t, that has constant

returns to scale (CRS) in physical capital and labour. More formally,

(Kt, Lt) 7→ F t(Kt, Lt). (2)

For all functions we will omit the arguments when no confusion is possible as to

what values these take. When a function is subscripted by an argument it denotes

the derivative with respect to the argument in question.

Industrial emissions are modeled as an additional output of production, the

quantity of which can be reduced by a costly abatement effort. The GHGs emitted

during period t are given by

Et = (ēt − at) · F t, (3)

where ēt is an exogenous parameter referred to as the business-as-usual emission

intensity or emission-to-output ratio, and at is the abatement effort at date t. The

actual emission-to-output ratio is et = ēt−at. The cost of abatement during period

t is given by

Φt = Bt(at) · F t (4)

where Bt(at) is the abatement cost per unit of output. This is similar to the

approach taken in the integrated assessment model RICE-2010. By varying ēt and

the functional form of Bt this formulation is sufficiently flexible for the realistic

modeling of the productivity, cost of extraction, substitutability and time value of
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fossil fuel energy inputs.

Greenhouse gas emissions add to the stock of atmospheric carbon. A proportion

of the stock dissipates over time and the actual atmospheric stock is presumed to

cause climate change and thereby an externality as a damage to future output.

Following Golosov et al. (2011), the stock of carbon in the atmosphere at date t

is modeled as

St =

t−T0∑
i=1

(1− di)Et−i, (5)

where T0 is the date at which industrial GHG emission began, and the dissipation

parameters have the properties di ∈ (0, 1) and di ≤ di+1. The interpretation of

these is as follows. Of the emissions in period t a proportion (1 − di) remains in

the atmosphere in period t+ i. The damage at date t is

Ψt = Dt(St) · Lt, (6)

where Dt(St) is the per capita climate damage. At this stage it may be useful to

point out that there are several ways in which damages can be modeled in such

a framework. In a decentralised economy the labour wage is set to the marginal

product of labour and the interest rate (return on capital) to the marginal product

of capital. If the damage enters as proportional to labour, the climate damages

result in a loss only to the wage, as can be seen from equations (11) and (12).

Conversely, if the damages enter as proportional to capital, rather than labour,

the damages result in a loss on the return on capital. The damage can be modeled

as proportional to any CRS function of labour and capital without disrupting the

decentralised logic that labour and capital shares exhaust output. Damages could

thus be proportional to output itself, or any other function aggregating labour and

capital in a CRS manner. The result would be that loss terms would appear both

in the wage and interest rates ((11) and (12)) in some proportion. That is to say

the way in which the damage function enters net output determines how the loss

is distributed amongst the different parts of the population.

The choice of damage function also determines how the magnitude of the effect

of a given stock of carbon changes over time. In this regard, modeling damages as

proportional to capital or output may seem more desirable than to population. The
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magnitude of the damage at a given stock of atmospheric carbon will depend on

what is affected (rather than who bears the loss). The cost of the loss of coral reefs

and UNESCO world heritage sites can reasonably be thought of as proportional

to the amount of people who will be around to enjoy them. There are, of course,

damages that are more likely to be proportional to capital.

The choice to model damages as proportional to population is based on the

incidence of the loss. Having the loss accrue exclusively to the wage earners without

affecting the capital return simplifies the accounting of damages as each generation

is only affected once, during the period it earns its wages. This allows for a

clearer exposition of the main features, at the possible cost of misrepresenting

the magnitude. If we relax the assumption of perfect competition, and impose

that the complete loss – whether the damage affects capital productivity or labour

productivity – falls on the wage share and none on the capital share (as in (11) and

(12)), then the results of this chapter extend to any specification of the damage

function.

2.2 Net output

Under assumptions (4) and (6) net economic output becomes

Y t(Kt, Lt, St, at) = (1−Bt(at))F t(Kt, Lt)−Dt(St)Lt (7)

The damage functions Dt and abatement costs Bt are taken to satisfy the following

assumptions.

Dt
S(·) > 0; Dt

SS(·) ≥ 0 (8)

Bt
a(·) ≥ 0; Bt

aa(·) > 0 (9)

Bt(0) = Bt
a(0) = 0; lim

a→ēt
Bt
a(a) =∞ (10)

Conditions (8) state that the damage is increasing and the marginal damage is

weakly increasing as a function of the carbon stock. The convexity assumption

is not strictly necessary, but simplifies the exposition as the alternative necessary

condition is more involved and has a less intuitive interpretation. In (9) we as-

sume that abatement cost is weakly positive and stricly convex as a function of
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abatement. Furthermore, at zero abatement both the cost and the marginal cost

are assumed zero. The presumption underlying the latter is that ēt is set at just

the emission level that is considered optimal by the competitive factor markets at

date t, and thus the first unit of emissions reduction is virtually costless. Condition

(10) is akin to an Inada condition and guarantees that the first order conditions

are satisfied in the interior, at ∈ (0, ēt).

2.3 Firms

Economic output is produced by firms that are modeled as perfectly competitive

and profit maximising. This yields the well-known result that the wage and interest

rates are equated to the marginal products of labour and capital respectively:

wt =
[
1−Bt(at)

]
F t
L(Kt, Lt)−Dt(St) (11)

rt =
[
1−Bt(at)

]
F t
K(Kt, Lt). (12)

The net production function (equation (7)) has constant returns to scale in capital

and labour which ensures that output is exhausted by the labour and capital

shares, i.e.

Y t = W t +Rt := wtLt + rtKt.

We refer to W t as the total wage and Rt as the capital rent.

2.4 Overlapping generations of consumers

Consumers live for two periods, youth and retirement, and are grouped together

into homogenous generations consisting of one unit of population – or labour. The

generation born at date t is denoted by Gt. It derives utility from consumption

goods and saves capital to transfer them between youth and retirement. The

savings of generation Gt constitute the entire capital stock at date t+ 1. Denoting

Gt’s youth and retirement consumption by C1t and C2t+1 its maximisation problem
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can be written as

max
C1t,C2t+1

U(C1t, C2t+1) : (13)

C1t +Kt+1 = M t (14)

C2t+1 =
[
1 + rt+1

]
Kt+1 + Zt+1 (15)

where the endowments of consumption goods during youth and retirement are

denoted by M t and Zt+1 and the rate at which wealth can be transferred between

the two periods is given by the growth factor (1 + rt+1).

Generations are born without assets and earn a wage during youth. Absent

intergenerational transfers the entire wage is either consumed during youth or

saved for retirement when the entire principal plus the capital rent is consumed;

there are no bequests. In period t generation Gt pays Gt−1 a (possibly nil) pension

denoted P t. Including these transfers the endowments in the budget constraints

(14) and (15) become

M t = wt − P t (16)

Zt+1 = P t+1. (17)

In addition to the endowments M t and Zt+1 the capital rent Rt+1 = rt+1Kt+1 is

the remaining source of wealth to Gt.
Consider abatement at date m. As we explain in greater detail later, this will

have a detrimental effect on the welfare of the generations alive during period m,

and a positive effect on all future generations. The former can be seen by the effect

abatement has in reducing the wage of Gm (equation (11)) and the capital rent of

Gm−1 (equation (12)). The latter is a consequence of the fact that such an effort

will reduce the carbon stock in all future periods and thereby the damages in all

periods t ≥ m+ 1. Notice that climate damages enter only in the wage and not in

the capital rent (equations (11) and (12)). Therefore, even though Gm will be alive

at m+ 1, when the first benefits from reduced damages appear, it will not benefit

from the abatement at date m. The benefits will only accrue to generations from

Gm+1 onwards.

As a function of the wealth variables, the solution to optimisation (13) yields a
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savings function such that Kt+1 = s(M t, Zt+1, rt+1). Recall that given the factor

market equilibrium (equations (11) and (12)) and pension transfers (equations (16)

and (17)) the three arguments of the the savings function are given by

M t =
[
1−Bt(at)

]
F t
L −Dt(St)− P t, (18)

Zt+1 = P t+1, (19)

rt+1 =
[
1−Bt+1(at+1)

]
F t+1
K (Kt+1, Lt). (20)

The equilibrium capital is therefore determined as the fixed point Kt+1
∗ :

Kt+1
∗ = s

(
M t, Zt+1,

[
1−Bt+1

]
F t+1
K (Kt+1

∗ , Lt)
)
. (21)

How these variables affect the welfare of Gt is measured by the value function,

which is defined as the utility evaluated at the consumption levels that maximise

(13), i.e.

V t = U(M t −Kt+1
∗ , Kt+1

∗ + rt+1Kt+1
∗ + Zt+1). (22)

where the equilibrium capital, Kt+1
∗ , is defined by (21).

Defining the equilibrium capital rent, Rt+1
∗ = rt+1Kt+1

∗ , we have that M t, Zt+1,

and Rt+1
∗ are the sources of wealth of Gt, therefore changes in the policies that

increase these variables will be beneficial to Gt’s welfare and changes that re-

duce them will be detrimental. The relative magnitudes of any gains or losses

are essentially the content of the value function (22). However, due to the gen-

eral equilibrium adjustment of capital – equation (21) – the relationship is not a

straightforward one. The effect of policies on welfare will depend jointly on (18),

(19), (20), (21) and (22).

3 Main result

Denote the initial period by m. Consider a policy vector

P = (am, Pm, am+1, Pm+1, am+2, Pm+2, . . . , am+N , Pm+N , . . .) ∈ R∞ (23)
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At any date t, the policies at and P t are implemented by the generations alive,

Gt−1 and Gt. Therefore, any complete policy vector P must be implemented as an

agreement or contract between all generations, starting at date m. This raises is-

sues of credibility of such a ‘commitment’ policy from which we currently abstract.

In the following we will analyse policy vectors, which improve the welfare of all

generations, conditional on the credibility of the policy. Extensions analysing the

strategic aspect of such policies are under consideration.

Assume that policies before date m were zero. A given history (. . . , Km−1, Km)

combined with a vector P completely determines the equilibrium evolution of

capital, {Kt}t>m, and carbon, {St}t>m (See (5) and (21)). By (22) this also

determines the sequence of values {V t}t≥m. We will write V t(P) to denote the

dependence of these on the policy, while suppressing the dependence on the history.

Loosely speaking our main result states that any policy PN which which reverts

to the zero policy (at = 0, P t = 0) from date N+1 onwards can be Pareto improved

upon by one which includes non-zero policies at date N + 1. More formally,

Definition 1. A policy P is efficient between the set of generations {Gm+i : i =

0, 1, . . . , N} if there is no policy Q such that

V t(Q) ≥ V t(P), ∀t = m+ 1,m+ 2, . . . ,m+N

with a strict inequality for at least one t.

Theorem 1. Suppose

PN = (amN , P
m
N , a

m+1
N , Pm+1

N , am+2
N , Pm+2

N , . . . , am+N
N , Pm+N

N , . . .) ∈ R∞+

is efficient between {Gm+i : i = 0, 1, . . . , N} and that P t
N = 0 for all t ≥ m + N .

Then there is a policy

PN+1 = (amN+1, P
m
N+1, a

m+1
N+1, P

m+1
N+1 , a

m+2
N+1, P

m+2
N+1 , . . . , a

m+N
N+1 , P

m+N
N+1 , . . .)

such that

1. amN+1 > amN
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2. P t
N+1 > P t

N for all m ≤ t ≤ N + 1

3. V t(PN+1) ≥ V t(PN) for all m ≤ t ≤ N + 1

where strict inequality holds in 3 for at least one generation.

According to point 3, policy PN+1 Pareto dominates PN for the generations

under consideration. Thus, any policy PN that is efficient between the first N

generations is Pareto dominated by a policy PN+1 which includes the (N + 1)’th

generation. The improvement involves a higher initial abatement level (point 1,

amN+1 > amN), and greater pension transfers in between all generations from the

current one to the (N + 1)’th (point 2, P t
N+1 > P t

N). Since the damages are

persistent, considering efficiency between any subset of generations will no exhaust

all gains. The theorem shows that such additional gains can be distributed in such

a way that the very first generation incurring the abatement cost is sufficiently

compensated.

Consider the business-as-usual policy, denoted by Pm0 ≡ ~0. This is the policy

for which both abatement and pensions are always zero.1 Note that Pm0 is efficient

between the generations alive during period m. This is because for the generations

alive at date m, Gm−1 and Gm, abatement is costly at no benefit as the benefit

only starts to accrue to the next, currently unborn, generation, Gm+1. Applied

to Pm0 , the theorem states that a Pareto improvement is possible by increasing

the abatement level in period m, am and the pension levels Pm and Pm+1. The

intuition behind this is that since Gm+1 benefits from abatement at date m, it is

possible to find a pension Pm+1 it would be willing to pay which is sufficiently

high to compensate Gm−1 and Gm for the abatement costs they incur.

What is remarkable about our result is that the same logic holds for any future

beneficiary of current abatement policy, no matter how distant. Provided the right

sequence of intermediate pensions are implemented, Pareto improvements can be

achieved by redistributing part of the benefit of the future beneficiary back to the

current generation incurring the abatement cost.

1Pensions may actually be at some positive level reflecting the fact that pay-as-you-go pensions
exist independently of abatement policy. The essential feature of the business as usual policy is
not altered by that, since only differences in pensions matter.
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Since policies that are not efficient between a subset of generations, {Gm+i :

i = 0, 1, . . . , N}, are dominated by an efficient one, and for any efficient one, we

can find a policy that is superior to it by including a further generation into the

agreement, the theorem shows that any policy can be dominated by one which

includes further generations into the agreement.

Furthermore, we derive a condition, similar to the Samuelson rule which deter-

mines whether a given policy is efficient for the inclusion of a given number, N , of

generations. The condition tells us whether efficiency holds and the direction in

which policies must be adjusted if efficiency doesn’t hold. This makes a numerical

policy assessment based on a calibration of the model easy to implement.

4 Specific functional forms

In this section we will make assumptions about the functional forms of the produc-

tion and utility functions which allow us to get a simple and intuitive expression

for the value function – equation (22) – as well as an analytical description of

the endogenous capital accumulation process which highlights the key equilibrium

effects – equation (21). These assumptions will be taken to hold in the analysis of

Sections 6 through 7 before we state the more general result in Section 8.

4.1 Leontief utility and logarithmic production

Definition 2. The Leontief utility for the two-period inter-temporal consumption

problem is defined by

(C1, C2) 7→ min{βC1, C2}. (24)

The parameter β quantifies the relative preference of second-period over first-period

consumption.

The solution to the optimisation (13) with Leontief utility is given by the

savings function

Kt+1 =
βM t − Zt+1

1 + β + rt+1
(25)

Setting βC1t = C2t+1 and solving (14) and (15) for Kt+1 as a function of M t, Zt+1

and rt+1 establishes this.
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Definition 3. The logarithmic production function in capital and labour inputs is

defined by

(Kt, Lt) 7→ AtLt ln

(
Kt

Lt

)
(26)

Note that the function has constant returns to scale in capital and labour.

As is shown in the Appendix, in the acceptable domain (K ≥ L ·e) the function

has the requisite properties of decreasing and convex isoquants in (L,K)-space.

That is, given the right choice of units, it is a well-behaved production function.

Notice that

F t
K =

AtLt

Kt
(27)

and therefore the gross capital rent F t+1
K Kt+1 = At+1Lt+1. That is, the capital rent

is independent of the amount of capital saved.2 The term Rt+1
∗ = rt+1Kt+1

∗ in (22)

is therefore independent of the equilibrium capital Kt+1
∗ . We can therefore drop

the asterisk subscript in Rt+1. This fact, along with the simple savings function

resulting from the Leontief utility provides for the great simplification of the value

and capital accumulation equation that results from Proposition 1.

2In this respect the logarithmic production technology can be seen as the limit of the Cobb-
Douglas production technology with vanishing capital share. Recall the Euler identity for ho-
mogenous functions, F (K,L) = FL · L + FK ·K. By differentiating both sides with respect to
K, we get that for every CRS production function:

FK =
∂

∂K
(FLL) +

∂

∂K
(FKK), (28)

i.e. the increase in output due to an increase in the amount of productive capital – the produc-
tivity of capital – is shared between the wage and the capital rent. In our notation equation (28)
becomes rt = W t

K +RtK . For the Cobb-Douglas function with capital share α we have that

W t
K = (1− α)rt; RtK = αrt

For the logarithmic production function it is as if α = 0:

W t
K = rt; RtK = 0

Another way to see that the second order properties mimic a Cobb-Douglas function with α
going to zero is the limit below:

L ln

(
K

L

)
= lim
α→0

KαL1−α − L
α
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Proposition 1. Suppose U(C1t, C2t+1) is Leontieff, F t(Kt, Lt) is logarithmic and

Kt ≥ Lt · e. Then the equilibrium interest rate is

rt+1 =
[1 + β]Rt+1

βM t − Zt+1 −Rt+1
(29)

and the equilibrium consumption and savings of Gt are given by

C1t =
M t + Zt+1 +Rt+1

1 + β
=
C2t+1

β
(30)

Kt+1
∗ =

βM t − Zt+1 −Rt+1

1 + β
(31)

where

M t =
[
1−Bt(at)

]
F t
L(Kt)−Dt(St)− P t (32)

Zt+1 = P t+1 (33)

Rt+1 =
[
1−Bt+1(at+1)

]
At+1 (34)

Proof. Note that (for Lt = 1) by (12) and (27)

rt+1 =
[
1−Bt+1

] At+1

Kt+1
=
Rt+1

Kt+1
(35)

Substituting (35) into the Leontief savings function (25) yields

Kt+1
∗ =

βM t − Zt+1

1 + β +Rt+1/Kt+1
∗

(36)

Therefore

Kt+1
∗ [1 + β] +Rt+1 = βM t − Zt+1 (37)

and thus,

Kt+1
∗ =

βM t − Zt+1 −Rt+1

1 + β

This establishes (31). The interest rate is shown to be (29) by substituting the

equilibrium capital into (35) and the consumptions are shown to be (30) by sub-
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stituting the equilibrium capital into the budgets (14) and (15).

With the analytic expression for the equilibrium capital (31) we will now drop

the asterisk subscript and in subsequent sections and refer to the equilibrium

capital simply by Kt+1. Furthermore, having assumed that the population is

constant across time and fixed at Lt = 1, we will drop the population argument

in the production function and its derivatives.

5 Value, policies, and states

This section summarises all the effects that policy and state variables have on the

welfare of different generations as well as the effect on the evolution of the capital

stock. These relationships are used repeatedly throughout the subsequent sections.

5.1 The effect of policy on different generations’ welfare

In equilibrium Gt’s youth and retirement consumptions satisfy C2t+1 = βC1t and

therefore its equilibrium utility simplifies to

U(C1t, C2t+1) = min{βC1t, C2t+1} = βC1t.

Thus, the value of Gt is simply the equilibrium retirement consumption. For no-

tational convenience we will renormalise the utility function by (1 + β)/β so by

equation (30) we get the value

V t = M t + Zt+1 +Rt+1.

Replacing for M t, Zt+1 and Rt+1 with (32), (33) and (34) we get the value as a

function of the state and policy variables (Kt, St, at, P t, at+1, P t+1):

V t =
[
1−Bt(at)

]
F t
L(Kt)−Dt(St)− P t + P t+1 +

[
1−Bt+1(at+1)

]
At+1 (38)

Consider the direct effects that changing policy variables in period m has on the

welfare of Gm and Gm−1. Abatement in period m has a negative effect on the wage
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of Gm and on the capital rent of Gm−1 thus reducing their wealth and thereby

welfare:

V m
am = −Bm

a F
m
L ; V m−1

am = −Bm
a A

m (39)

A pension transfer Pm simply reduces the welfare of Gm and increases that of Gm−1

by the same unit:

V m
Pm = −1; V m−1

Pm = 1 (40)

5.2 The effect of policy on capital accumulation

As in (38) replace for M t, Zt+1 and Rt+1 in (31) to get

Kt+1 =
β ([1−Bt(at)]F t

L(Kt)−Dt(St)− P t)− P t+1 − [1−Bt+1(at+1)]At+1

1 + β
(41)

Consider the effect of abatement on the capital stock. If anticipated in period

m− 1 we have that

Km
am =

Bm
a A

m

1 + β
. (42)

That is, a promise of future abatement increases the the incentive to save for Gm−1

as the abatement reduces its capital rent (Rm = [1 − Bm(am)]Am). A pension

has the opposite effect, as it increases Gm−1’s retirement budget, thus reducing the

incentive to save:

Km
Pm =

−1

1 + β
(43)

The effect am and Pm on Km+1 is negative as both reduce the endowment Mm.

Km+1
am = − β

1 + β
Bm
a F

m
L (44)

and

Km+1
Pm = − β

1 + β
(45)
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5.3 The value of capital

The effect of a change in the capital stock at date m on the value of Gm is given

by

V m
K =

[
1−Bt

]
F t
LK (46)

Since Fm
LK = Fm

L for the logarithmic production function, by (12), (46) becomes

V m
K = rm (47)

6 Abatement at date m

Consider the decision to abate at date m. As can be seen from the equations (39),

am has a negative effect on Gm and Gm−1, the two generations alive during that

period. The benefits due to a reduction in the carbon stock only appear in the

values of {Gt; t > m}. Thus, it is not in the economic interest of those alive in

period m to choose any positive level of abatement.

However, since Gm is alive in period m+1, it can take compensation from Gm+1

in form of a pension Pm+1 to cover the abatement cost (to Gm and Gm−1). Without

the dynamic features of the problem the Samuelson rule would state that Pareto

improvements are possible if the marginal abatement costs to Gm−1 and Gm are less

than the marginal damage avoided by Gm+1. However, such an improvement would

require a side-payment, or it wouldn’t be a Pareto improvement at all. Because

the abaters and beneficiaries are separated in time additional effects come into

play, and therefore efficiency is not characterised by marginal cost being equal to

marginal benefit. In this section we propose the pay-as-you-go pension transfer as

the mechanism for the side payment and characterise the efficient policies as those

upon which no Pareto improvements are possible, given that the side-payments

are themselves costly as they have a negative effect on the accumulation of capital.

We establish that under general assumptions the business-as-usual policy of zero

abatement is dominated by a set of policies involving non-zero abatement and

pension levels.
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6.1 Pareto improving abatement

Throughout the paper the notation dx will be used to denote a sufficiently small

change in the variable x so that the effects on the related variables may be described

by the first order approximation. In this section we determine the conditions on

the relative magnitudes of such small changes in the policies am, Pm and Pm+1

such that the result is an improvement to the welfares of Gm−1,Gm and Gm+1. Any

point at which such a joint improvement is not possible will be said to be on the

efficiency frontier.

6.1.1 Indifference of Gm−1 and insensitivity of Km

To better focus on the improvements possible to future generations we will restrict

ourselves to policies that leave Gm−1 indifferent. Such policies have the effect of

leaving the incentives to save of Gm−1 unchanged and therefore have no effect on

the capital stock Km even if the policies were anticipated. For this purpose, we

will fix the pension Pm at

Pm = Bm(am)Am (48)

When this is the case the value of Gm−1 (see equation (38)) is

V m−1 = Fm−1
L −Dm−1 − Pm−1 + Am +

Pm︷ ︸︸ ︷
Bm(am)Am−Bm(am)Am

Thus, the cost of the abatement effort is compensated in full by the pension.

Furthermore, if both am and Pm are anticipated and (48) holds, the effect on

Gm−1’s savings behaviour is neutralised. From equation (41) we get that

Km =
β
(
Fm−1
L −Dm−1 − Pm−1

)
− Am −Bm(am)Am +Bm(am)Am

1 + β

6.1.2 The welfare of Gm

The share of the abatement cost that accrues to Gm is proportional to the gross

wage Bm(am)Fm
L . Setting the pension that Gm must pay Pm = Bm(am)Am results

21



in a total cost to Gm of

Bm(am)[Fm
L + Am] = Bm(am)[Fm

L + Am] = Bm(am)Fm

Setting the pension that Gm pays Gm−1 to just the level that makes Gm−1 indifferent

results in a combined (pension and abatement) cost to Gm that is exactly equal

to the total abatement cost Φm = Bm(am)Fm (see (4)). Taking (48) to hold as

an identity throughout the remaining analysis, we can rewrite the value of Gm to

explicitly reflect this

V m = Fm
L (Km)−Dm(Sm)−Bm(am)Fm(Km)+Pm+1+[1−Bm+1(am+1)]Am+1 (49)

Thus, the effect of dam and dPm+1 on the welfare of Gm is

dV m = −damBm
a F

m + dPm+1. (50)

Therefore, dV m ≥ 0 if and only if

Bm
a F

mdam ≤ dPm+1. (51)

By a minor abuse of terminology will will refer to the curves in (am, Pm+1)−space
along which Gm has constant utility as indifference curves. The slope of these is

given by
dP

da

∣∣∣∣
Um

:= Bm
a (am)Fm (52)

Notice that the magnitude of the slope (52) depends on the level of abatement am,

but not on the pension level Pm+1. This is because the marginal cost for which

Gm must be compensated is an increasing function of am, but independent of the

pension level. By (51), any (sufficiently small) increase in policy (dam, dPm+1)

such that

dam · dP
da

∣∣∣∣
Um

< dPm+1 (53)

will lead to a welfare level for Gm that is greater than Um.
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6.1.3 The welfare of Gm+1

Using equation (38), the change in value to Gm+1 is given by

dV m+1 = (1− d1)FmDm+1
S dam − dPm+1 + V m+1

K dKm+1 (54)

The first term in dV m+1 contains the beneficial effect of abatement at date m

on the welfare of Gm+1: the reduction of damages through the lower carbon stock.

The second term is simply the direct cost of the pension it must pay as a reduction

of its wealth. In addition to those effects, both am and Pm+1 have a negative effect

on capital accumulation. By (43) and (44) we get that

dKm+1 =
−βBm

a F
mdam − dPm+1

1 + β
(55)

The value to Gm+1 of an additional unit of capital dKm+1 is V m+1
K = rm+1 (see

(47)). Thus (54) becomes

dV m+1 = (1− d1)FmDm+1
S dam − dPm+1 + rm+1

[
−βBm

a F
mdam − dPm+1

1 + β

]
and dV m+1 ≥ 0 if and only if

dPm+1

[
1 +

rm+1

1 + β

]
≤ dam

[
(1− d1)FmDm+1

S − βrm+1Bm
a F

m

1 + β

]
(56)

The left-hand-side of (56) contains the twofold negative effect on the welfare of

Gm+1 of paying a pension dPm+1. In addition to the direct cost of the pension,

such an anticipated transfer of income in retirement will have the effect of reducing

the previous generation’s capital savings, and thus result in a lower capital stock

at m + 1.3 The right-hand-side contains the benefit to Gm+1 from abatement due

to reduced climate damages as well as the negative effect costly abatement policy

has on the incentives to save and therefore the capital accumulation of Gm.

In analogy to (52), the slope in (am, Pm+1)−space of Gm+1’s indifference curves

3This is the well known effect that pay as you go pensions have on the capital accumulation
process.
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is given by

dP

da

∣∣∣∣
Um+1

:=
(1− d1)FmDm+1

S − βrm+1Bm
a F

m

1+β

1 + rm+1

1+β

(57)

By (56) any (sufficiently small) increase in the policies (dam, dPm+1) such that

dPm+1 < dam · dP
da

∣∣∣∣
Ūm+1

(58)

leads to an outcome in which the welfare level of Gm+1 is greater than Um+1. Thus,

by (53) and (58) if
dP

da

∣∣∣∣
Ūm

<
dP

da

∣∣∣∣
Ūm+1

(59)

there exists an increase in the policies (am, Pm+1) that constitutes an improvement

to both Gm and Gm+1.4

Proposition 2. Suppose that the gross production function is logarithmic and each

generation has Leontief utility. Then there exist policies (dam, dPm, dPm+1) such

that

dam > 0 (60)

dPm = Bm
a A

mdam (61)

0 < dPm+1 <
(1− d1)FmDm+1

S (Sm+1)

1 + rm+1

1+β

dam (62)

and if dam is sufficiently small, such policies will keep Gm−1 indifferent to and

make Gm and Gm+1 strictly better off than the business-as-usual (BAU) policy am =

0, Pm = 0, Pm+1 = 0.

Furthermore, under such a policy the capital stock Km+2 is greater than and the

carbon stock Sm+2 is lower than under the (BAU), thus providing greater economic

opportunities for the following generation.

Proof. Firstly, every term in the fraction on the right hand side of (62) is positive,

so policies satisfying (60), (61) and (62) exist. Denote Gm and Gm+1’s utilities

4If the strict inequality in (59) goes the other way, there is a decrease in that is a mutual
improvement.
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Pm+1

am

BAU = (0, 0)

V m = Um
a

V m+1 = Um+1
b

V m+1 = Ūm+1

V m = Ūm

QP

dam

dPm+1

Figure 1: Pareto improvements

at the BAU by Ūm and Ūm+1 respectively. Recall that at BAU the marginal

abatement cost Ba(0) = 0. Therefore by (52) and (57)

dP

da

∣∣∣∣
Ūm

= 0

and
dP

da

∣∣∣∣
Ūm+1

=
(1− d1)FmDm+1

S (Sm+1)

1 + rm+1

1+β

> 0

and consequently
dP

da

∣∣∣∣
Ūm

<
dP

da

∣∣∣∣
Ūm+1

Policies (dam, dPm+1) for which (60) and (62) hold satisfy

dP

da

∣∣∣∣
Ūm

<
dPm+1

dam
<
dP

da

∣∣∣∣
Ūm+1

and by (53) and (58) are therefore strict improvements to Gm and Gm+1. The
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condition (61) ensures that Gm−1 is indifferent.

The policies in question have a twofold effect on the carbon stock Sm+2. By

(3) and (5) we have that the change in the carbon stock relative to the business

as usual is

dSm+2 = −(1− d2)Fmdam + (ēm+1 − am+1)Fm+1
K dKm+1 (63)

Since dKm+1 is given by (55) is must be negative and therefore dSm+2 < 0. To

see that the change in capital stock Km+2 is positive, first note that, due to (38)

and (41) we have that, for all t

Kt+1 =
β

1 + β
V t − P t+1 −

[
1−Bt+1(am+2)

]
At+1 (64)

Replacing t = m+ 1 and noting that dPm+2 = dam+2 = 0 we get that

dKm+2 = dV m+1β/(1 + β)

Since dV m+1 > 0 due to the fact that the policies were (strictly) Pareto improving,

we get that dKm+2 > 0.

Proposition 2 is illustrated in Figure 1. At the BAU the slope of the indifference

curve of Gm is zero and the slope of the indifference curve of Gm+1 is strictly

positive. The slope of the segment BAU-QP is strictly in between the two, and

therefore QP is inside the lightly grey shaded area, which contains all possible

mutual improvements to Gm and Gm+1. In the figure the slopes of the indifference

curve that go through QP are drawn so that Gm+1’s is steeper than Gm’s. By the

same logic the dark grey shaded area consists of the improvements over QP .

The indifference curves are drawn as convex and concave respectively. That

this is in fact the case is shown in the Appendix.
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6.2 Efficiency between Gm−1,Gm and Gm+1

From the preceding discussion it is clear that the points in (am, Pm+1)− space at

which the slopes of the indifference curves are equal, i.e.

dP

da

∣∣∣∣
Um

=
dP

da

∣∣∣∣
Um+1

no improvement to both Gm and Gm+1 is possible.5 By equations (52) and (57)

this is the case when

[
1 + rm+1(am, Pm+1)

]
Bm
a (am)Fm − (1− d1)FmDm+1

S (Sm+1(am)) = 0 (65)

Condition (65) contains explicitly all the dependences on the policies am and

Pm+1.6 This makes it clear that the condition defines a locus in (am, Pm+1)−space,
which we draw as the dotted line going through in Q∗ Figure 2. One way of un-

derstanding the locus is to consider a point Q0 at which the welfare of Gm is U0

and
dP

da

∣∣∣∣
Um

<
dP

da

∣∣∣∣
Um+1

.

Moving north-eastwards along Gm’s indifference curve defined by ensures that Gm
remains indifferent. So long as the indifference curves of Gm+1 are steeper than the

indifference curve of Gm they are being crossed in the direction of its preference

and Gm+1’s welfare is being increased, i.e. Ūm+1 < Um+1
1 < Um+1

2 . At Q∗ the

indifference curves are tangent and the mutual gains are exhausted. At that point

(65) holds.

The efficiency locus is drawn with a negative finite slope. That it must be

so is easily shown by implicitly differentiating (65). The logic behind the result

is the following. The efficiency locus is determined by the amount of abatement

that Gm+1 can compensate Gm for, given that the compensation itself has an addi-

tional negative effect through the reduction of the Gm’s incentive to save and the

resulting capital accumulated at date m+ 1. This additional cost of the compen-

sation mechanism is proportional to the interest rate at m + 1, since the interest

5Note that Gm−1 is being kept indifferent throughout by (48).
6The dependence on Pm is contained in am and the condition that Pm = Bm(am)Am.
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Pm+1

am

V m = Um
0

V m+1 = Um+1
2

V m+1 = Um+1
1

V m+1 = Ūm+1

Q0

Q∗

(0, 0)

Figure 2: Efficiency frontier

rate determines the marginal value of capital. Since the equilibrium interest rate

depends positively on the pension Pm+1 (see equation (29)), compensation for an

additional unit of abatement is greater at a higher pension level, and therefore

the efficiency frontier has a lower abatement level at higher pension levels. The

intuition is illustrated graphically in Figure 3. Consider a point Q◦ directly under

Q∗. Both points have the same abatement level, but Pm+1
∗ > Pm+1

◦ . Therefore

rm+1
∗ > rm+1

◦ (see equation (29)). All the other terms in (65) are independent of

Pm+1 and therefore the left hand side of condition (65) must be less than zero

at Q◦; the lower pension reduces the equilibrium interest rate which reduces the

compensation cost to Gm+1. More abatement can be compensated for, so the in-

tersection of the frontier with the indifference curve of Gm going through Q◦ is to

the northeast of Q◦. The above is summarised in Proposition 3.

Proposition 3. Suppose that the gross production function is logarithmic and the

each generation has Leontief utility. Then the efficiency frontier between Gm−1,Gm
and Gm+1 is given by the monotonically decreasing locus in (am, Pm+1) space de-

fined by (65).
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Pm+1

am
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Q∗

V m = Ūm
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V m = Ūm
a

am∗ = am◦

Pm+1
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Pm+1
◦ Q†

(0, 0)

Figure 3: Higher cost at higher pension

Pm+1

am

Q†

Q‡

(0,0)

V m+1 = Ū1

V m = Ūa
Q∗

Figure 4: Pareto improvements and the frontier
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Remark 1. The left hand side of (65) embodies the cost to Gm+1 of a unit of

abatement conditional on paying Gm a pension that keeps it indifferent, accounting

for the direct benefit and cost of abatement and the pension, as well as the indirect

cost both abatement and pensions induce through the negative effect on the equilib-

rium capital stock at date m + 1. When it is negative, it is not a cost, but a net

benefit to Gt+1.

Figure 4 illustrates the results in Propositions 2 and 3. The grey shaded

area consists of all the policy pairs that constitute Pareto improvements over the

business-as-usual policy and the dotted line represents the efficiency frontier. The

policies denoted by Q† and Q‡ represent those policies on the frontier which make

Gm and Gm+1 respectively indifferent to the business-as-usual. The policy Q∗ rep-

resents an outcome at which the surplus is shared between those two generations.

7 Even more abatement at date m

Throughout this section, when not otherwise stated we will be assuming that any

Pareto improvements that are possible are those achievable by modifying only

the abatement at date m and the pension payouts in subsequent periods. The

abatement levels at all future dates t > m are assumed fixed at exogenous levels.

This section generalises the results of Section 6 to an arbitrary number of gen-

erations, N ∈ N. In Subsection 7.1 we derive the conditions that define the locus

policies that are efficient between the set of generations {Gm+i : i = 0, 1, . . . , N}.
In Subsection 7.2 we use these conditions to establish that policy vectors that are

efficient between {Gm+i : i = 0, 1, . . . , N} can be (Pareto) improved upon by the

inclusion of Gm+N+1 and a change in policy involving a greater level of abatement

at date m and a positive pension Pm+N+1.

7.1 The N-pension frontier

We now consider the welfare of Gm+2 in addition to that of Gm−1,Gm and Gm+1.

Condition (65) defines policies at which mutual gains are exhausted from changes

in policies am, Pm and Pm+1. We now allow for a further pension Pm+2 to be paid

to Gm+1 by Gm+2. Equation (50) still describes the change in Gm’s value from the
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policy changes considered. By (38) the change in Gm+1’s value differs from (54)

by the inclusion of dPm+2,

dV m+1 = Dm+1
S (1− d1)Fmdam − dPm+1 + rm+1dKm+1 + dPm+2. (66)

The change in the value of Gm+2 is essentially analogous to that of Gm+1 with

the difference that there are two mechanisms whereby the carbon stock at m + 2

is lower. From (3) and (5) it is easy to see that the direct effect on Sm+2 from

abatement in at date m is (1 − d2)Fm. There is an additional effect on Sm+2

given by the fact that the capital stock Km+1 is changed, which (by (3)) leads to

a change in Em+1 given by

Em+1
K dKm+1 := (ēm+1 − am+1)Fm+1

K dKm+1, (67)

where we denote by Et
K the increase in period t emissions due to a unit increase

in the stock of productive capital at date t. Thus, the total effect on the welfare

of Gm+2 is given by

dV m+2 = Dm+2
S [(1− d2)Fmdam − Em+1

K dKm+1]− dPm+2 + rm+2dKm+2. (68)

By (50), Gm is made indifferent if the policies are such that

dPm+1 = Bm
a F

mdam (69)

Notice that, by (55) this yields dKm+1 = −damBm
a F

m = −dPm+1. Conditional

on Gm being kept indifferent then, by (66), Gm+1 is made indifferent if

dPm+2 = [(1 + rm+1)Bm
a F

m −Dm+1
S (1− d1)Fm]dam (70)

So when (69) and (70) hold we have that Gm and Gm+1 are indifferent. The key

step in the generalisation of Proposition 3 to Gm+2 and more generations is the

realisation that in this case, by (38) and (41), for all t,

Kt+1 =
β

1 + β
V t − P t+1 −

[
1−Bt+1(am+2)

]
At+1. (71)
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Since dam+2 = 0 by assumption and dV m+1 = 0 by construction (see (70)) we get

that

dKm+2 = −dPm+2 (72)

Define

Hm
1 = (1 + rm+1)Bm

a F
m −Dm+1

S (1− d1)Fm

and

Hm
2 = (1 + rm+2)Hm

1 −Dm+2
S

[
(1− d2)Fm + (1− d1)Em+1

K Bm
a F

m
]

Then by (69), (70), (72) and (68) the policy changes that keep Gm and Gm+1

indifferent increase the welfare of Gm+2 if

Hm
2 dam ≤ 0 (73)

Notice that at the frontier between Gm and Gm+1, Hm
1 = 0 (see equation (65)).

When Hm
1 > 0 the marginal cost to Gm+1 to compensating Gm for a unit of abate-

ment is greater than the marginal benefit it experiences via the reduced damages.

Thus, when Hm
1 > 0 too much abatement has taken place from the point of view

of just Gm and Gm+1 and the policies must be to the East of the frontier drawn in

Figure 4. For those two generations to be kept indifferent to an additional unit

of abatement when policies are past the frontier, Gm+1 requires a pension transfer

dPm+2 = Hm
1 dam (see equation (70)). The net cost of such a policy to Gm+2,

accounting for the negative effect of the capital stock is (1 + rm+2)Hm
1 dam (see

equation (72)). The benefit to Gm+2 stems from the lower damages resulting from

the reduced carbon stock:

Dm+2
S

[
(1− d2)Fm + (1− d1)Em+1

K Bm
a F

m
]

When the cost equals the benefit (to Gm+2) efficiency is achieved, i.e. at Hm
2 = 0.7

7Notice that Hm
1 = 0 (equation (65)) implicitly defined the Pareto frontier in (am, Pm+1) −

space. Similarly, Hm
2 = 0 implicitly defines the points in (am, Pm+1, Pm+2) − space that are

efficient between Gm,Gm+1 and Gm+2. In addition to the dependence on am and Pm+1 within
Hm

1 outlined in Figure 3, Em+1
K depends on am and Pm+1 and rm+1 depends on am, Pm+1 and

Pm+2.
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For the generalisation to the inclusion of {Gm+i : i = 0, 1, . . . , N} for arbitrary

N ∈ N we introduce the following notation. Denote by

Pm = (at, Pm+1, Pm+2, . . . , Pm+N , 0, 0, . . . ) ∈ RN
+

a vector of policies in question.8

Lemma 1. Define the functions Hm
i (Pm) recursively by

Hm
0 (Pm) = Ba(a

m)Fm

Hm
1 (Pm) = (1 + rm+1)Hm

0 F
m −Dm+1

S (1− d1)Fm

Hm
i (Pm) = (1 + rm+i)Hm

i−1(Pm)−Dm+i
S

[
(1− di)Fm +

i−1∑
j=1

(1− dj)Em+i−j
K Hm

i−1−j

]
(74)

Suppose the gross production function is logarithmic and each generation has Leon-

tief preferences. Then

Hm
N (Pm) = 0 (75)

is a necessary condition for the Pm to be on the efficiency frontier between the

generations Gm,Gm+1, . . .Gm+N

The formal proof of Lemma 1 is in the Appendix.

7.2 Pareto improvements

Denote by V t(Pm) the welfare of generation Gt under the policy Pm. Define the

binary relation � on Euclidian space by

a� b ⇐⇒ ai > bi ∀i = 1, 2, . . . , |a| (76)

With this we can state our main result.

8Recall that the abatement levels in all future periods are assumed fixed at some non-negative
level.
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Theorem 2. Suppose that the gross production function is logarithmic and each

generation has Leontief preferences. Then, if PmN = (amN , P
m+1
N , . . . , Pm+N

N , 0) is on

the efficiency frontier between {Gm+i, i = 0, 1, . . . , N}, there is a policy

PmN+1 = (amN+1, P
m+1
N+1 , . . . , P

m+N
N+1 , P

m+N+1
N+1 )

such that

PmN+1 � PmN (77)

and

V t(PmN+1) ≥ V t(PmN ), ∀t ≥ m (78)

with strict inequality for at least one t ∈ {m,m+1,m+2, . . . ,m+N+1}. Further-

more, under PmN+1 the capital stock Km+N+2 is greater than and the carbon stock

Sm+N+2 is lower than under PmN , thus endowing Gm+N+2 with greater economic

possibilities.

The theorem states that any outcome that is on the efficiency frontier between

{Gm+i : i = 0, 1, . . . , N} can be improved upon by the inclusion of Gm+N+1.

Proof. By Lemma 1 any efficient point PmN must satisfy Hm
N (PmN ) = 0. If that is

the case, then Hm
N−1(PmN ) > 0 and in fact Hm

i (PmN ) > 0 for all i = 0, 1, . . . , N − 1.

Consider the policy change

dam > 0, (79)

dPm+i = Hm
i (PmN )dam for i = 0, 1, 2, . . . , N − 1 (80)

Such a sequence of policies changes will make {Gm+j : j = 0, 1, . . . , i−1} indifferent.

Since Hm
N (PmN ) = 0 a pension dPm+N+1 such that

0 < dPm+N+1

will will lead to a strict improvement in the welfare of Gm+N (given (79) and (80)).
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Furthermore

Hm
N+1(PmN ) =(1 + rm+N+1)Hm

N (Pmi ) (81)

−Dm+N+1
S

[
(1− dN+1)Fm +

N∑
j=1

(1− dj)Em+N+1−j
K Hm

N−j

]
(82)

=−Dm+N+1
S

[
(1− dN+1)Fm +

N∑
j=1

(1− dj)Em+N+1−j
K Hm

N−j

]
< 0

(83)

So there is a strictly positive benefit to Gm+N+1 to the policies defined by (79) and

(80). Thus, dPm+N+1 such that

dPm+N+1 < Dm+N+1
S

[
(1− dN+1)Fm +

N∑
j=1

(1− dj)Em+N+1−j
K Hm

N−j

]
dam (84)

will result in a strict improvement in the welfare of Gm+N+1. Thus, defining

dP = (dam, dPm+1, . . . , dPm+N+1) (85)

for some dPm+N+1 > 0 that satisfies (84) and

PmN+1 = PmN + dP (86)

we have that PmN+1 � PmN and V t(PmN+1) = V t(PmN ) for t = m,m+1, . . . ,m+N−1

and V t(PmN+1) > V t(PmN ) for t = m+N,m+N + 1.

To see that the capital stock is greater under PmN+1 than under PmN , notice that,

by (64), it must be the case that

dKm+N+2 =
β

1 + β
dV m+N+1 − dPm+N+2 (87)

So if the change in Gm+N+1’s welfare is positive and there is no change in the

pension level it receives, the change in the capital it accumulates in equilibrium

must also be positive. That Sm+N+2 decreases is as simple consequence of (3) and

(5) and the fact that dam > 0 and dKm+i < 0 for i = 1, 2, . . . ,m+N+1. The latter
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is a consequence of (87) and the fact that dPm+i > 0 for i = 1, 2, . . . ,m+N + 1.

This establishes the claim.

8 The general result

The assumptions of logarithmic production and Leontief utility allow for a very

simple, albeit highly stylised solution to the inter-temporal choice problem. They

are relaxed in this section. In what follows we will assume that the utility func-

tion to be a general monotonically increasing and twice differentiable function of

consumption: U(C1t, C2t+1). As mentioned in Subsection 2.4, the solution to the

inter-temporal optimisation problem (13) yields a savings function

(M t, Zt+1, rt+1) 7→ s(M t, Zt+1, rt+1) = Kt+1 (88)

We make no assumptions on the gross production function other than that it

have constant returns to scale. The wage and interest rates are then give by (11)

and (12), and we will write

wtK = (1−Bt)F t
LK and rtK = (1−Bt)F t

KK

for their derivatives with respect to capital.

8.1 Policies and frontier

We can now state the generalisation of Lemma 1.

Lemma 2. Suppose the gross production function has constant returns to scale

in capital and labour and the each generation has a twice differentiable utility

function resulting in a savings function (88) as the solution to each generations
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inter-temporal consumption problem. Define the functions Gm
i (Pt) recursively by

Gm
0 = (1 + rm+1)TmBm

a (am)Fm (89)

Gm
1 = (1 + rm+2)Tm+1

[
RmGm

0 −Dm+1
S (Sm+1)(1− d1)Fm

]
(90)

Gm
i = (1 + rm+i+1)Tm+i

[
Rm+i−1Gm

i−1 −Dm+i
S

∂Sm+i

∂am

]
(91)

with

J t =

(
1 +

rt+1
K Kt+1stM

(1 + rt+1)(1− rt+1
K str)

)
(92)

N t =

(
1 +

rt+1
K Kt+1stZ
1− rt+1

K str

)
(93)

Qt =
(st−1
M − stZ)

(1 + rt)(1− rtKstr) + rtKK
tst−1
M

(94)

Rt =1 + wt+1
K Qt (95)

T t =
J t

N t
(96)

∂St

∂am
= (1− dt−m)Fm +

t−m−1∑
j=1

(1− dj)Et−j
K Gm

t−m−j−1Q
t−j−1 (97)

Then, provided the policies at date m are unanticipated by Gm−1,

Gm
N(Pm) = 0 (98)

is a necessary condition for efficiency between Gm,Gm+1, . . .Gm+N

Note that apart from the factors (92) to (96), the functions Gm
i in Lemma

2 are identical to the functions Hm
i in Lemma 1. In particular, the qualitative

dependence of Gm
i+1 on Gm

i is the same as that of Hm
i+1 on Hm

i . Since this is the

only feature required for the proof of Theorem 2, we can state its generalisation

without further proof.

Theorem 3. Suppose the gross production function has constant returns to scale in

capital and labour and the each generation has a twice differentiable utility function

resulting in a savings function (88) as the solution to each generations intertempo-
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ral consumption problem. Suppose further that the policies implemented at date m

were unanticipated by Gm−1 at date m−1. Then, if PmN = (amN , P
m+1
N , . . . , Pm+N

N , 0)

is on the efficiency frontier between {Gm+i, i = 0, 1, . . . , N}, there is a policy

PmN+1 = (amN+1, P
m+1
N+1 , . . . , P

m+N
N+1 , P

m+N+1
N+1 )

such that

PmN+1 � PmN (99)

and

V t(PmN+1) ≥ V t(PmN ), ∀t ≥ m (100)

with strict inequality for at least one t ∈ {m,m + 1,m + 2, . . . ,m + N + 1}.
Furthermore, under PmN+1 the capital stock Km+N+2 is greater than and the carbon

stock Sm+N+2 is lower than under PmN .

8.2 Qualitative and quantitative difference

Notice that the relative magnitude of the points on the Pareto frontiers defined by

(75) and (98) is somewhat determined by the product of the coefficients Rt ·T t. If

Rm · Tm = 1 the frontiers defined by (75) and (98) for N = 1 are identical. If that

were the case, the different simplifications assumed in Section 4 would cancel out

exactly.

For TmRm ≤ 1 it is the case that the frontier defined by (75) has uniformly

greater abatement levels than (98). This is essentially because it is less costly to

Gm+1 to compensate Gm for any unit of abatement. The converse is also true, i.e.

if TmRm ≥ 1 the frontier defined by (75) has uniformly lower abatement levels

than (98).

The frontiers for N > 1 are not as easy to characterise. This is because the

frontier is partially determined by the emissions that are reduced by virtue of the

reduction in capital stock at the intermediate dates t = m+1,m+2, . . . ,m+N−1

– the summation on the right hand side of (97). If TmRm ≤ 1 and Qt ≤ 1 the effect

on the capital stock is greater in equation (74) than in (91) so even though the cost

of compensation is less in the general case than in the simplified case, the benefit is

also slightly lower. However, if the coefficients Et
K for t = m+1,m+2, . . . ,m+N−1
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are sufficiently small, one can also conclude that the frontiers defined by (75) have

a uniformly greater abatement level than the ones defined by (98). In this case,

the simpler model (75) would underestimate the amount of desirable abatement

(at any given level of pensions).

Testing the range of values that can be taken by the product Rt · T t with

Mathematica we can conclude that if the production and decision parameters are

restricted to the domains specified below

• Capital share: α ∈ [0, 1]

• Generational interest rate: rt ∈ (0, 4)

• First period wealth effect: st−1
M ∈ (0, 1)

• Second period wealth effect: stZ ∈ (−1, 0)

• Interest elasticity of savings: str
rt

Kt =: Es,r ∈ (−1, 1)

the product must be in the domain T t ·Rt ∈ (0, 1). For the following specific values

deemed as reasonable by the authors

• α = 0.3

• rt = 1

• st−1
M = −stZ = 0.4

• E ts,r = 0.01

we have that

T tRt ≈ 0.89

and

Qt ≈ 0.46

For those parameter values it would mean that the approximation introduced

in Section 4 underestimates the efficient levels of abatement for the contracts

involving only two generations. Whether or not the contracts involving more

generations under or overestimate the abatement levels depends on the magnitude
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of the parameters Et
K = etF t

K , i.e. the product of the future emission intensities

with the gross productivity of capital.

Either way, the approximation will presumably result in slightly conservative

prescriptions of the same order of magnitude as the more complete model for any

reasonable parameters for the production technology and savings propensities.

9 Conclusion

We have derived the conditions for a policy vector involving abatement in a given

period and compensating intergenerational transfers in all subsequent periods to

be efficient in the sense that any further benefits to future generations from current

abatement are smaller than the cost of compensating the abaters for the cost they

incur. We use this result to establish that Pareto improvements are possible if the

benefits to any generation have not been included into the agreement.

The theoretical exposition is self-contained and complete. This being said,

further work is necessary to exhaust the full potential of this research project. It

would be desirable to include population growth into the analysis. The damages

have been modeled as proportional to the population rather than the more usual

form that makes them proportional to output. As discussed in Section 2.1 this

feature makes our claim of the existence of Pareto improving abatement more

difficult to establish, as damages on output would create an incentive for every

generation to abate simply for the benefit of increasing their capital rent, which

would be affected by damages if they are modeled as proportional to output. Thus,

adding the dependance on output will not yield any new further intuition, but with

a view of calibrating the model to one of the widespread integrated assessment

models it would be useful to model the damages in the standard way. Such a

calibration would allow us to establish the orders of magnitude of the pensions

involved and help determine the political feasibility of such a policy.

From a theoretical point of view there is one extension in particular that may

be worth pursuing. We have used used endowment transfers (pay-as-you-go pen-

sions) as the compensation mechanism to achieve the Pareto improvements. These

have a well-known theoretical property of disincentivising capital accumulation, a

feature which determines the location of the efficiency frontier. It may be pos-
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sible to achieve further gains if the compensation mechanism used is a subsidy

on the capital returns, since these could easily achieve the same amount of com-

pensation at possibly nil disincentive to the savings decision and therefore capital

accumulation.

Finally, the strategic credibility of such intergenerational contracts must be

analysed. There is an existing literature looking at this in OLG models. Most

notably, Rangel (2003) looks at a link between social security and environmental

services in a strategic setting. Our models differ significantly, but an analysis

similar to his could yield interesting results in our framework as well.
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10 Appendix: proofs and mathematical detail

Lemma 3. In the domain D = {(L,K) : L > 0, K > L · e} the isoquants of

F (K,L) = L ln

(
K

L

)
are downward sloping and convex.

Proof. By the implicit function theorem the slopes of the isoquants are given by

∂K

∂L
= −FL

FK
= −K

L

[
ln

(
K

L

)
− 1

]
(101)

which is negative in D. Notice that

L
∂K

∂L
= −K

[
ln

(
K

L

)
− 1

]
(102)

Differentiating (102) with respect to L you get the left hand side

LHS =
∂K

∂L
+ L

∂2K

∂L2

and right hand side

RHS =− ∂K

∂L

[
ln

(
K

L

)
− 1

]
−K

[
∂K

∂L

1

K
− 1

L

]
=− ∂K

∂L

[
−∂K
∂L

L

K

]
− ∂K

∂L
+
K

L

Equating LHS and RHS yields

L
∂2K

∂L2
=
L

K

[(
∂K

∂L

)2

− 2
K

L

∂K

∂L
+

(
K

L

)2
]

=
L

K

[
∂K

∂L
− K

L

]2

≥ 0

Thus the isoquants are convex, which completes the proof.

Lemma 4. The indifference curves (in (am, Pm+1)− space) of Gm are convex and
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within the domain for which they are increasing those of Gm+1 are concave.

Proof. The slope of the indifference curves of Gm is given by

dP

da

∣∣∣∣
Um

= Bm
a (am)Fm (103)

The derivative of (103) with respect to am is

d2P

da2

∣∣∣∣
Um

= Bm
aaF

m > 0

The slope of the indifference curves of Gm+1 is given by

dP

da

∣∣∣∣
Um+1

=
(1− d1)FmDm+1

S − βrm+1Bm
a F

m

1+β

1 + rm+1

1+β

(104)

The derivative of (104) with respect to am is

d2P

da2

∣∣∣∣
Um+1

=
−(1− d1)(Fm)2Dm+1

SS −
βrm+1

1+β
Bm
aaF

m

1 + rm+1

1+β

(105)

−
(1− d1)FmDm+1

S − βrm+1Bm
a F

m

1+β

1 + rm+1

1+β

1 +
rm+1
K

1+β

[
Km+1
am +Km+1

Pm+1
dP
da

∣∣
Um+1

]
1 + rm+1

1+β

(106)

=
−(1− d1)(Fm)2Dm+1

SS −
βrm+1

1+β
Bm
aaF

m

1 + rm+1

1+β

(107)

− dP

da

∣∣∣∣
Um+1

1 +
rm+1
K

1+β

[
Km+1
am +Km+1

Pm+1
dP
da

∣∣
Um+1

]
1 + rm+1

1+β

(108)

Since rm+1
K < 0 and Km+1

am > 0, Km+1
Pm+1 > 0

dP

da

∣∣∣∣
Um+1

≥ 0

is sufficient for
d2P

da2

∣∣∣∣
Um+1

< 0
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Lemma 5. Under the assumptions of Lemma 1 the effect on the welfare of gen-

eration Gt from small changes in past policies up to and including at−1 and P t+1

is given by

dV t = Dt
S

t−m∑
i=1

(1− di)F t−idat−i + dP t+1 + rt
β

1 + β
dV t−1 − (1 + rt)dP t (109)

−Dt
S

t−m−1∑
i=1

(1− di)Et−i
K

(
β

1 + β
dV t−i−1 − dP t−i + At−iBt−i

a dat−i
)

where period m is the first in which there is a change in the abatement policy.

Proof. The value V t is a function of Kt, St, at, at+1, P t and P t+1 so

dV t =
∂V t

∂Kt
dKt+

∂V t

∂St
dSt+

∂V t

∂at
dat+

∂V t

∂at+1
dat+1 +

∂V t

∂P t
dP t+

∂V t

∂P t+1
dP t+1 (110)

We are assuming dat = dat+1 = 0

∂V t

∂P t
= −1 and

∂V t

∂P t+1
= 1 (111)

∂V t

∂St
= −Dt

S and
∂V t

∂Kt
= rt (112)

It remains to be shown that

dSt = −
t−m∑
i=1

(1− di)F t−idat−i +
t−m−1∑
i=1

(1− di)Et−i
K dKt−i (113)

and

dKt =
β

1 + β
dV t−1 − dP t + AtBt

ada
t (114)

(113) is a direct consequence of (5). To see that (114) holds note that by combining

(31) with (38) you get that

Kt =
β

1 + β
V t−1 − P t − At(1−Bt(at)) (115)
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The conclusion follows directly.

Proof of Lemma 1. Consider the vector of policy changes

dPm = (dam, dPm+1, . . . , dPm+N)

Since only abatement in period m is being considered, the hypothesis of Lemma 5

holds for t > m, and by (109)

dV t = Dt
S(1− dt−m)Fmdam + dPt+1 + rt

β

1 + β
dV t−1 − (1 + rt)dPt

−Dt
S

t−m−1∑
i=1

(1− di)Et−i
K

(
β

1 + β
dV t−i−1 − dP t−i

)

Consider policies that leave {Gi; i = m,m + 1, . . . , t − 1} indifferent. That is

dV i = 0 for all i = m,m+ 1, . . . , t− 1. The welfare of Gt then changes by

dV t = Dt
S(1− dt−m)Fmdam + dPt+1 − (1 + rt)dPt +Dt

S

t−m−1∑
i=1

(1− di)Et−i
K dP t−i

Such a policy will leave Gt indifferent if

dP t+1 = (1 + rt)dP t +Dt
S(1− dt−m)Fmdam +Dt

S

t−m−1∑
i=1

(1− di)Et−i
K dP t−i

Therefore, when

dP t+1

dam
= (1 + rt)

dP t

dam
−Dt

S(1− dt−m)Fm −Dt
S

t−m−1∑
i=1

(1− di)Et−i
K

dP t−i

dam
(116)

it is the case that {Gi; i = m,m + 1, . . . , t} are all indifferent to the policy dP .

Since Gm+N+1 is not included, dPm+N+1 = 0 by hypothesis. Thus, for GN to be

indifferent to the policy

(1 + rt)
dP t

dam
−Dt

S(1− dt−m)Fm −Dt
S

t−m−1∑
i=1

(1− di)Et−i
K

dP t−i

dam
!

= 0
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Thus, defining

Hm
i :=

dPm+i+1

dam

and replacing for Hm
i in (116) yields the definitions in the hypothesis and the

condition of the conclusion.

Proof of Theorem 2. In this more general setting, the value function and equilib-

rium capital are defined by equations (18) to (22). Thus, the general form of the

derivatives of the value function and the capital accumulation equation – equations

(39) to (47) – are

V m
am = −Bm

a F
m
L u
′(C1m) +Km+1rm+1

K Km+1
am βu′(C2m+1) (117)

V m
Pm = −u′(C1m) +Km+1rm+1

K Km+1
Pm βu′(C2m+1) (118)

V m−1
am = −Bm

a F
m
KK

mβu′(C2m) +KmrmKK
m
amβu

′(C2m) (119)

V m−1
Pm = βu′(C2m) +KmrmKK

m
Pmβu′(C2m). (120)

The derivatives (135) and (136) are correct provided the respective change in

policy was anticipated and thus allowed for an adjustment in the savings rate. If

the change is unanticipated we get

V m−1
am = −Bm

a F
m
KK

mβu′(C2m) (121)

V m−1
Pm = βu′(C2m). (122)

The dependance of the values on the state variables is given by

V m
Km = wmK

[
u′(C1m)−Km+1rm+1

K Km+1
Pm βu′(C2m+1)

]
(123)

V m
Sm = −Dm

S

[
u′(C1m)−Km+1rm+1

K Km+1
Pm βu′(C2m+1)

]
(124)

The first order effects on future capital savings are given by

Km+1
am =

−Bm
a F

m
L s

m
M

1− rm+1
K sm+1

r

(125)

Km+1
Pm =

−smM
1− rm+1

K sm+1
r

(126)
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and the effect on the current capital stock, if the the policy change was anticipated,

is given by

Km
am =

−Bm
a F

m
K s

m
r

1− rmKsmr
(127)

Km
Pm =

sZ
1− rmKsmr

(128)

Due to the fact that the Euler equation must hold in equilibrium for every

generation we have

u′(C1t) = (1 + rt+1)βu′(C2t+1). (129)

We will divide the derivatives of the value function of Gt by u′(C1t) in order to get

the change in value in first period consumption units. Using the Euler equation

(129), the coefficient βu′(C2t+1 will get replaced by (1 + rt+1)−1. Replacing (125)

through (128) into (133) through (136), defining

Jm =1− (1 + rm+1)−1Km+1rm+1
K Km+1

Pm (130)

Nm =1 +Km+1rm+1
K Km+1

Pm+1 (131)

Λm =1 +
rmKs

m
r

1− rmKsmr
(132)

and with a minor abuse of notation we get that the derivatives of the value function

in first period consumption units become

V m
am = −Bm

a F
m
L J

m (133)

V m
Pm = −Jm (134)

V m−1
am = −B

m
a F

m
KK

m

1 + rm
Λm (135)

V m−1
Pm =

Nm−1

1 + rm
, (136)

V m−1
am = −Bm

a F
m
KK

m(1 + rm)−1 (137)

V m−1
Pm = (1 + rm)−1 (138)
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and

V m
Km = wmKJ

m (139)

V m
Sm = −Dm

S J
m (140)

Consider, as in Proposition 1, the vector of policy changes

dPm = (dam, dPm+1, . . . , dPm+N)

with the additional assumption that dPm+N+1 = 0. The welfare change of Gm−1

is given by

dV m−1 = V m−1
am dam + V m−1

Pm dPm (141)

If the policy changes were unanticipated when Gm−1’s savings decision was made,

the condition on dam and dPm that ensures Gm−1 is indifferent to the business as

usual is

dPm = Bm
a F

m
KK

mdam (142)

The condition for the changes to be welfare improving to Gm,

dV m = V m
amdam + V m

PmdPm + V m
Pm+1dPm+1 ≥ 0, (143)

becomes

dV m = V m
amdam + V m

PmBm
a F

m
KK

mdam + V m
Pm+1dPm+1 ≥ 0, (144)

when dPm is replaced with (142). At the time Gm makes it’s savings decision the

policy changes are assumed to be known and therefore dV m ≥ 0 becomes

(1 + rm+1)−1NmdPm+1 ≥ Bm
a F

mJmdam (145)

The condition for any future generation Gt, for t > m to remain (at least) indiffer-

ent is

dV t = V t
StdSt + V t

KtdKt + V t
P tdP t + V t

P t+1dP t+1 = 0 (146)
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Since abatement only happens during period m, for all t > m

dV t−1 =
st−1
M − stZ

1 + rtst−1
M

dP t +

[
1− rtKstr
st−1
M

+
KtrtK
1 + rt

]
dKt (147)

To see this notice that

V t−1
at−1da

t−1 −
[

1− rtKstr
st−1
M

+
KtrtK
1 + rt

]
Kt
at−1dat−1 = 0 (148)

V t−1
P t−1dP

t−1 −
[

1− rtKstr
st−1
M

+
KtrtK
1 + rt

]
Kt
P t−1dP t−1 = 0 (149)

and

V t−1
P t dP t −

[
1− rtKstr
st−1
M

+
KtrtK
1 + rt

]
Kt
P tdP t =

[
1

1 + rt
− stZ
st−1
M

]
dP t =

st−1
M − stZ

(1 + rt)st−1
M

dP t

(150)

Combining (148), (149) and (150) yields (147). Defining

Qt =
st−1
M − stZ

(1 + rt)(1− rtKstr) +KtrtKs
t−1
M

(151)

we can rewrite (147) into

dKt = Qt

[
(1 + rt)st−1

M

(st−1
M − stZ)

dV t−1 − dP t

]
(152)

By (146) the condition that dV t ≥ 0 conditional on dV t−1 = 0 can be rewritten

to
N t

1 + rt+1
dP t+1 = J t

[(
1 + wtKQ

t
)

dP t +Dt
SdSt

]
(153)

Finally, recall that, by (113)

dSt = −(1− dt−m)Fmdam +
i−1∑
j=1

(1− dj)Et−j
K dKt−j (154)

Substituting (152) conditional on dV t = 0 for t − m = 0, 1, . . . , i − 1 into (154)
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yields

dSt = −(1− dt−m)Fmdam −
i−1∑
j=1

(1− dj)Et−j
K Qt−jdP t−j (155)

Thus, when

N t

1 + rt+1
dP t+1 = J t

[(
1 + wtKQ

t
)

dP t −Dt
S

(
(1− dt−m)Fmdam +

i−1∑
j=1

(1− dj)Et−j
K Qt−jdP t−j

)]
(156)

holds for t = m+1, . . . ,m+N−1, the generations {Gt, t = m, 1, 2, . . . ,m+N−1}
are indifferent to dP . Since dPm+N+1 = 0, the condition for Gm+N to be indifferent

is

(
1 + wtKQ

t
)

dP t −Dt
S

(
(1− dt−m)Fmdam +

i−1∑
j=1

(1− dj)Et−j
K Qt−jdP t−j

)
= 0

(157)

Defining Gm
i as in the hypothesis, conditions (156) and (157) yield the conclusion.
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