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Abstract

Previous work on the regression discontinuity (RD) design has emphasized identi�cation
and estimation of an e¤ect at the selection threshold (discontinuity). Focusing on the so-
called �fuzzy�RD design, this paper examines identi�cation and estimation of the average
treatment e¤ect (ATE) under various forms of selection bias� selection on the observables,
selection on the unobservables, and selection based on heterogeneity in the e¤ects of the
treatment. Easy to implement estimators that are root-N consistent and asymptotically
normal are derived. They allow for general functional forms for the selection biases and
imply speci�cation tests for the plausibility of the statistical assumptions. This paper also
investigates the trade-o¤ between e¢ ciency and bias in estimating the average treatment
e¤ect (and average e¤ects local to the discontinuity) when the e¤ects covary with the ob-
servables and the unobservables. The theoretical results leverage the dual nature of the RD
design� both the �borderline experiment�provided near the threshold and the strong and
valid exclusion restriction provided in the selection equation for the choice of treatment.
This point is demonstrated through Monte-Carlo experiments and empirical applications.

Keywords: fuzzy regression discontinuity design, selection bias, heterogeneous treat-
ment e¤ects, average treatment e¤ect, e¢ ciency-bias trade-o¤.



1 Introduction

The fundamental problem of causal inference on a treatment e¤ect is the unobservability
of the same individual in both the treated and untreated states.1 Since it is impossible to
observe both the factual and counterfactual states at the same time for a given individual,
identi�cation of treatment e¤ects must rely on comparing the outcomes of di¤erent individu-
als with di¤erent treatment status. This leads to questions of di¤erences in outcomes arising
from factors other than the treatment. The most reliable design to deal with this problem
is random assignment of the treatment.2 Unfortunately, for many of the most general ques-
tions in the social sciences, random assignment is either too costly to implement or viewed
as unethical.3

One procedure that society and governments follow to allocate resources� and that is
not viewed as unethical� is the assignment of resources based on merit or need. Often,
this assignment is based on strict eligibility cuto¤s for the program in which the odds of
qualifying for the intervention change substantially at these cuto¤s. While the e¢ ciency
of such policy design can and should be debated, it provides a unique opportunity for the
researcher to evaluate the e¤ect of the intervention while leveraging some of the features
of random assignment. For example, researchers have noted that as long as there is some
�noise�or arbitrariness in the eligibility criteria� that is, the criteria are not perfectly re-
lated to individual outcomes� then near the cuto¤s, the assignment of resources is �close to
random�. This allows for a transparent way to rule out competing hypotheses while testing
the assumption of randomness.
The regression discontinuity (RD) design has been developed to utilize these �discontin-

uous�changes in the probability of treatment at the eligibility cuto¤(s).4 The �sharp�RD
design occurs when the probability of treatment goes from zero to one at the cuto¤. This
study focuses on the so-called �fuzzy�RD design (Trochim 1984), in which the change in
the probability of treatment is less than one but still substantial, as this design is closer to
the design of most policy interventions.
Much of the theoretical research on the RD design (Hahn, Todd and Van der Klaauw

2001; Porter 2003) has emphasized measurement of e¤ects at the eligibility thresholds.5 In
the limit� that is, as one approaches the discontinuity� potential biases disappear while the
probability of treatment changes signi�cantly. Its similarity to a �borderline experiment�at

1Such a causal e¤ect is de�ned as the di¤erence between potential outcomes in the presence and in the
absence of a treatment (Rubin 1974; Holland 1986).

2In this study, identi�cation of treatment e¤ects refers to the identi�cation of the e¤ect of a treatment
intervention, not the e¤ect of a self-selected treatment. The former has implications for policy design; the
latter can mislead policy making.

3Besides issues of feasibility, random assignment is still subject to threats to both internal and external va-
lidity, such as substitution bias (noncompliance), randomization bias (di¤erent participants), and Hawthorne
e¤ects (measurement errors) (Winship and Morgan 1999; Cobb-Clark and Crossley 2003).

4For a history and overview of the RD design, see Thistlethwaite and Campbell (1960), Goldberger (1972a,
1972b) and Cook (2007).

5Porter (2003) derives the optimal rate of convergence for estimating treatment e¤ects at the selection
threshold. Sun (2005) generalizes the local polynomial estimator that Porter (2003) proposes to allow the
order of the polynomials to be jointly determined by the data through an adaptive procedure. Lee and
Card (2007) further extends the applicability of an RD design to the case where the selection variable has a
discrete support.
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the eligibility threshold has also been recognized and exploited by many empirical studies.6

However, two concerns have arisen about the measurement of the e¤ects at the threshold.
First, empirically, the de�nition of �the limit�can be ad hoc and, if made narrow enough, will
preclude inference due to a paucity of data. Indeed, almost all applied studies implementing
the RD design use data away from the discontinuity or assume a functional form for the
selection bias due to observables to derive estimates and to form con�dence intervals.7 In
some of these applications, such as Angrist and Lavy (1999) and Chay, McEwan and Urquiola
(2005), as data away from the discontinuity are trimmed, the con�dence intervals grow large
enough to disallow the rejection of many hypotheses.
Second, in the presence of heterogeneity in the e¤ects of the treatment, near the discon-

tinuity, only the average e¤ect for a particular population can be identi�ed under certain
conditions (such as monotonicity),8 instead of the average e¤ect for a randomly selected
member of the population� also known as the average treatment e¤ect (ATE). While the
former is still useful for policy analysis as it measures the impact of the eligibility criteria
that were used by the program, the latter is often viewed as more useful for forecasting the
relative bene�ts of policies under consideration.
This study attempts to address these concerns by integrating the results from the litera-

ture on selection biases with the RD design literature. The theoretical results derived in this
paper leverage the dual nature of the RD design� that it provides both a �borderline exper-
iment�near the discontinuity and a strong and valid exclusion restriction in the selection
equation for the choice of treatment. The second point allows one to theoretically examine
identi�cation and estimation of the average treatment e¤ect under various forms of selection
bias� selection on the observables, selection on the unobservables, and selection based on
heterogeneity in the e¤ects of the treatment. In particular, since the probability of selection
changes signi�cantly due to the eligibility cuto¤, which can be excluded from the poten-
tial outcome equation, the discontinuity e¤ectively provides a strong and valid instrumental
variable for treatment choice.
Given that a causal e¤ect is de�ned as the di¤erence between potential outcomes in the

presence and in the absence of a treatment (Rubin 1974; Holland 1986), this paper formalizes
this potential outcome problem in terms of the following regression model:

6For example, Berk and de Leeuw (1999), Black (1999), Buddelmeyer and Skou�as (2003), Lee (2007),
Lemieux and Milligan (2007), Ludwig and Miller (2006), and Van der Klaauw (2002). Some studies further
o¤er empirical tests of the validity of an RD design (Black, Galdo and Smith 2005; Cook and Wong 2007)
using various parametric and nonparametric estimators.

7For example, Angrist and Lavy (1999), Chay and Greenstone (2003), Chay, McEwan and Urquiola
(2005), DiNardo and Lee (2004), Ludwig and Miller (2006) and McCrary and Royer (2003).

8This is the local average treatment e¤ect (LATE) (Imbens and Angrist 1994; Angrist, Imbens and Rubin
1996).
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y0 = g0(z
�) + u0;E(u0jz�) = 0

y1 = g1(z
�) + � + u1;E(u1jz�) = 0; gj(z�) continuous in z�, j 2 f0; 1g

y = dy1 + (1� d)y0 where
�
y1 is potential outcome in the presence of a treatment
y0 is potential outcome in the absence of a treatment

u = du1 + (1� d)u0: unobservables that a¤ect observed outcome y

j: potential state indicator =
�
1
0

in the presence of a treatment intervention
in the absence of a treatment intervention

d: observed treatment status =
�
1
0

receiving treatment
not receiving treatment

�: the pure randomness induced by the treatment and � is independent of (d; z�)
uj: unobserved heterogeneities that a¤ect potential outcome yj

In this model, the average treatment e¤ect (ATE) is de�ned as:

E(y1 � y0) = E [� + (g1(z�)� g0(z�))] � � � ATE

The observed average outcome di¤erence between the treatment and the control groups
contains the following �ve di¤erences:

E(yjd = 1)� E(yjd = 0) =

8>>>><>>>>:
E(�)
+E(g0(z�)jd = 1)� E(g0(z�)jd = 0)
+E(g1(z�)� g0(z�)jd = 1)
+E(u0jd = 1)� E(u0jd = 0)
+E(u1 � u0jd = 1)

(a)
(b)
(c)
(d)
(e)

(�)

Thus, in order to identify ATE, de�ned as E [� + (g1(z�)� g0(z�))], the researcher needs to
identify (a) and takes into account several sources of selection bias, (b) through (e), which
correspond to E [(g1(z�)� g0(z�))].
For the speci�c case of the RD design, we can write the selection equation as follows:

d = 1f�0 + �1z + �2z� + v > 0g
z = 1fz� 6 0g; �1 6= 0; v � Fv(�)
z�: observable selection variable used by a selection rule for treatment assignment
z = 1fz� 6 0g: eligibility indicator speci�ed by a selection rule with zero as the cuto¤ point
v: unobservables that a¤ect selection process

The above equation for the selection process implies that the eligibility discontinuity
provides a valid exclusion restriction from the outcome equation as long as the cuto¤ point
used by the selection is unexpected or does not a¤ect potential outcomes. Further, this
exclusion restriction will be a powerful predictor of selection (i.e., a strong instrument). This
is the �rst paper to theoretically examine how using this as an instrument can allow one to
investigate the potential for selection on the unobservables, i.e. (d) in (*), and self-selection
due to heterogeneous treatment e¤ects, i.e. (e) in (*).
Current theoretical RD papers focus on identi�cation and estimation of treatment e¤ects
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at the threshold. They assume selection only on the observables near the threshold, in which
case biases due to (d) and (e) in (*) vanish close to the threshold. Emphasis is therefore
placed on how to control for g0(�) (Hahn, Todd and Van der Klaauw 2001; Porter 2003;
Ai 2007) and g1(�) (Ai 2007) in order to minimize the bias in estimating the e¤ect at the
cuto¤ point. Although they are important contributions, the estimators derived in these
papers except for Ai (2007) do not achieve a root-N rate of convergence due to the need
for smoothing. Imbens and Lemieux (2007) suggests an easy to implement two-stage least
squares (2SLS) estimator which is numerically equivalent to a nonparametric regression with
a uniform kernel. However, this 2SLS estimator is aimed for the e¤ect at the cuto¤point, and
it does not work if selection on the unobservables occurs. In contrast, my paper reformulates
RD based on the switching regression model, and focuses on identi�cation and estimation of
treatment e¤ects for a prede�ned population away from the threshold, in which case multiple
selection biases, i.e. (d) through (e) in (*), are taken into account. My contribution to the
previous theoretical RD papers can be summarized by the following table.

Table 1: Biases Arising in RD design
Selection Bias Hahn, Todd and Porter Imbens and Ai this paper

due to Van der Klaauw (2001) (2003) Lemieux (2007) (2007)
(b) in (*) X X X X X
(c) in (*) X X
(d) in (*) X
(e) in (*) X

As shown in the above table, this paper aims to account for all four biases listed, in
addition to solving two technical problems. The �rst problem is how to control for (b) and
(c) with the least restrictive assumptions in the absence of (d) and (e). The second problem
is how to correct for the impacts of (d) and (e) when they are present.
In response to the �rst problem, I propose a new estimator� RD robust estimator� for

the ATE of a prede�ned population which is not restrictively at the threshold. It is based
on the moment conditions derived from the conditional mean independence between (u1; u0)
and v when selection is on the observables. This estimator is robust in the sense that it does
not require estimating the conditional expectation of the outcome. It is instead based on the
orthogonality conditions that are functions of the conditional probability of selection� also
known as the propensity score.9 Thus it avoids smoothing and achieves the root-N rate
of convergence. This proposed estimator is shown to be consistent, asymptotically normal
and easy to implement using standard software, compare with nonparametric alternatives
proposed by Hahn, Todd and Van der Klaauw (2001) and Porter (2003) and series esti-
mators proposed by Ai (2007). Furthermore, under selection-on-observables, the exclusion
restriction in the RD design brings e¢ ciency gains to the proposed estimator, which suggests
over-identi�cation tests for the added moment conditions.10

9Note that estimators under selection-on-observables, such as matching (Rosenbaum and Rubin 1983a,
1983b) or inverse probability weighting (Hogan and Lancaster 2004; Wooldridge 2007) are of limited applica-
bility under a fuzzy RD because the �overlapping or common support�identi�cation assumption is di¢ cult
to meet, and it is completely violated under a sharp RD design.
10Battistin and Rettore (2007) also investigates the potential for an RD design to o¤er speci�cation tests

for treatment e¤ects for program participants away from the threshold when individuals self-select into
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To address the second problem, I propose another estimator� correction function estimator�
for the ATE of a prede�ned population which is not restrictively at the threshold and when
selection-on-unobservables is concerned. It uses the eligibility discontinuity as the instrument
for (d) in (*) and it requires correction terms to be added back to the outcome equation.
These correction terms are constructed from the exclusion restriction and exogenous vari-
ables to account for (e) in (*). This correction function estimator allows one to estimate
ATE even in the presence of heterogeneous sorting. In this way, I attempt to integrate the
literature on RD designs with the larger literature on selection biases when one has a valid
exclusion restriction. Further, these approaches allow one to test the assumption of selection
on the observables for estimating ATE. This proposed correction function estimator is based
on Wooldridge (2002), but it extends the existing results to allow for nonlinear selection
due to di¤erential sorting. This improvement is re�ected by adding a quadratic selection
term to Wooldridge (2002)�s speci�cation, and it is useful in many cases where comparative
advantages matter such as unions and sorting based on potential gains.
In summary, my paper makes the following contributions: �rst, I propose two estimators

which extend RD�s applicability to the cases of selection not only on the observables, but
also on the unobservables and on the returns to the treatment; second, I investigate the
e¢ ciency-bias trade-o¤ in estimating various average e¤ects when the e¤ects covary with the
observables and the unobservables; third, the proposed estimators suggest speci�cation tests
for more restrictive models which can be used as falsi�cation tests in empirical applications;
fourth, I rewrite the selection-on-observables problem using moment conditions and derive
estimators which are root-N consistent, asymptotically normal and easy to implement using
standard software; �fth, the proposed estimators can also provide a transparent link between
the economics of the problem and the estimation.
The rest of the paper is organized as follows. Section 2 presents identi�cation results of

average treatment e¤ects with the RD design. Section 3 discusses the proposed estimators�
large sample properties and lays out estimation procedures. Section 4 evaluates �nite sample
performances of the proposed estimators using a series of Monte Carlo experiments. To
illustrate the implementation of the proposed estimators for either removing or correcting
for selection biases, Section 5 o¤ers two empirical applications. Both applications investigate
the trade-o¤ between e¢ ciency and bias in estimating the average treatment e¤ect (and
average e¤ects local to the discontinuity). The �rst one, using data from Chay, McEwan and
Urquiola (2005), highlights how the e¢ ciency gain associated with the RD robust estimator
better evaluate an education intervention that uses test scores to allocate resources. The
other one, using data from Chay and Greenstone (2003), demonstrates how a speci�cation
test implied by RD�s instrumentality can better analyze the impacts from air quality on
infant mortality. This example also presents an extension of RD�s instrumental nature to
the case of a continuous treatment, which in the data is the di¤erent level of air pollution.
Finally, Section 6 concludes. All proofs, supplemental discussions, and additional tables and
�gures are in the appendices.

participation conditional on some eligibility criteria. However, their results directly apply to a sharp RD
design.
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2 Identi�cation of Treatment E¤ects

To exploit RD�s dual nature, on one hand, I use its �borderline experiment�to set up the RD
robust estimator under selection-on-observables where the impacts of (d) and (e) in (*) can
be plausibly removed close to the threshold; on the other hand, I use its �instrumentality�
implied by the selection rule to deal with (d) in (*) and to construct correction terms for the
correction function estimator that accounts for (e) in (*), which also suggests a speci�cation
test to falsify selection-on-observables when it is suspected.
The following graphs help to visualize the dual nature of an RD design, where an arrow

denotes �causing�and an x refers to an instrument for d.

Case 1 (�borderline experiment�) Using an RD design to remove impacts of (d) and
(e) close to the selection threshold:

(A)

z�

. # &
1fz� 6 0g �! d �! y

" "
v  ! u

borderline
=)

experiments
(B)

z�

. # &
1fz� 6 0g �! d �! y

" "
v u

We have selection-on-unobservables in (A) because the outcome (y) and the treatment
status (d) are mutually dependent through the dependence between u and v; as a result
d is not exogenous to y. However, near the threshold as in (B), individuals�positioning
just above or just below the cuto¤ point is likely to be randomly determined. In this
situation, u and v become independent because it is probably the luck that plays a key role
in determining each individual�s treatment status at the margin. This case characterizes
selection-on-observables, where d is exogenous to y. However, in order for this �borderline
experiment� to work, individuals cannot manipulate z� perfectly to qualify themselves for
the treatment. A su¢ cient condition for this situation is that the selection threshold or the
cuto¤ point is unexpected prior to its implementation. This can, to a large extent, avoid
behavioral changes near the threshold, which make z� endogenous and therefore invalidate
this �borderline experiment�.11

Case 2 (�instrumentality�) Using an RD design to instrument for (d) and correct for
(e):

(C)

z�

. # &
1fz� 6 0g �! d �! y

" "
v  ! u

In this situation, 1fz� 6 0g serves as an instrument for d because it a¤ects d directly, and
it a¤ects y only through d. A non-smoothness arises only in the selection process. To inte-
grate the RD�s dual nature, the strategy is to turn (A) into (B) and use (C) as a falsi�cation

11Such a situation may be detectable by checking whether the density of the selection variable is discon-
tinuous at the cuto¤ point (McCrary 2007).
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check to detect any dependence between u and v, which will invalidate (B).12 Since either
removing or correcting for selection biases hinges upon moment restrictions imposed on the
selection process and the pre- and post-treatment outcomes, unlike �smoothing�estimators
root-N consistent, asymptotically normal and moment-based estimators are available. They
allow for general functional forms for the selection biases and imply speci�cation tests for
the plausibility of statistical assumptions. One contribution of the paper is to investigate the
trade-o¤ between e¢ ciency and bias in estimating the average treatment e¤ect (and average
e¤ects local to the discontinuity) in the presence of multiple selection biases. This trade-o¤
intensi�es upon adding more observations away from the selection threshold.
An RD design reveals to a researcher a more informative and transparent selection

process. The selection rule, an indicator for eligibility, is a known and deterministic function
of selection variables.13 The criterion can be generically speci�ed as z = 1fz� 6 0g where the
cuto¤point (threshold) is normalized to zero. Such a criterion changes a potential treatment
status exogenously if the selection threshold is unexpected and the selection variable (z�)
cannot be manipulated perfectly. Building on the potential outcomes framework, we have
two potential treatment states (dj) corresponding to being intervened (j = 1, eligible) and
not being intervened (j = 0, ineligible). Given the discreteness of treatment status, a binary
response model can be used to describe the selection process. If the selection criterion has
no �discrimination�in nature, then such an intervention in the selection process should have
a homogeneous impact on potential treatment status. A model for this idea is speci�ed as
follows: 8<:

dj = 1fd�j > 0g
d�j = �0 + �1j + �2z

� + v
E(d�j jz�) = �0 + �1j + �2z�, if E(vjz�) = 0

Because the eligibility is a deterministic function of the selection variable, z = 1fz� 6 0g,
there is no variation in z after conditioning on z�. Accordingly z is independent of d�j
conditional on z�. And, conditional on z�, z is also independent (�q�) of dj. Therefore, we
have:

(d�0; d
�
1)q zjz� ) E(d�j jz; z�) = E(d�j jz�) and (d0; d1)q zjz�

Lee (2005) provides the following two useful results.

12The supplemental Web Appendix available at http://are.berkeley.edu/~yang/research.html discusses the
following case, where over-identi�cation can take place because two instruments, z and z�, are available for
one endogenous treatment status (d):

z�

. #
1fz� 6 0g �! d �! y

" "
v  ! u

In this situation, the �positioning�z� (selection variable) has no direct impact on y, and it a¤ects d directly
together with 1fz� 6 0g. So both z� and 1fz� 6 0g are valid instruments for d, and the program e¤ect
d! y can be over-identi�ed.
13They are simpli�ed to be a scalar in our analysis.

7

http://are.berkeley.edu/~yang/research.html


Lemma 1 If two potential regression functions, E(d�j jz�) where j 2 f0; 1g only di¤er by a
constant, �1, then we can replace a potential state indicator (j) with an indicator for observed
treatment status (z) if and only if the selection, z, is based only on the observables, z�, i.e.,
E(d�j jz; z�) = E(d�j jz�).

Proof. See Lee (2005, page 34).

Lemma 2 A symmetric version of mean-independence of yj and d refers to Cov (yj; d) =
0, E(yjd) = E(yj)E (d). An asymmetric version of mean-independence of yj from d refers
to E(yjjd) = E(yj). When d is binary and 0 < Pr(d = 1) < 1, the symmetric version of
mean-independence is equivalent to the asymmetric version. Analogously, when d is binary,
conditional on x where 0 < Pr(d = 1jx) < 1, we have

E(yjdjx) = E(yjjx)E(djx)
, E(yjjd; x) = E(yjjx)
, E(yjjd = 1; x) = E(yjjd = 0; x)

Proof. See Lee (2005, page 36).14

From Lemma 1, E(d�jz; z�) = �0 + �1z + �2z� where d� = zd�1 + (1� z)d�0. The observed
treatment status can be written as d = 1fd� > 0g = 1f�0 + �1z + �2z� + v > 0g. A fuzzy
RD design enforces �1 6= 0 (and �1 > 0 without loss of generality), making the eligible more
likely to be selected into treatment. For a sharp RD design, there is no randomness in the
selection process so that d = z = 1fz� 6 0g where the eligibility criterion is used without
exception as the actual treatment assignment rule.
We next model two potential outcomes, together with the selection process, in a switching

regression context. We assume that yj is separably additive in a selection variable z� and
unobserved heterogeneity uj.15

Assumption 1 (Model) A switching regression model with a fuzzy RD design is speci�ed
as follows:

yj = gj(z
�) + uj;E(ujjz�) = 0; gj(z�) continuous in z�, j 2 f0; 1g

d = 1f�0 + �1z + �2z� + v > 0g; z = 1fz� 6 0g; �1 > 0; v � Fv(�)

The average treatment e¤ect (ATE) is:

ATE � E(y1 � y0) = E(g1(z�)� g0(z�))

Identifying ATE hinges upon uj and v. As previously mentioned, when uj and v are
independent, we have selection-on-observables;16 when uj and v are not independent, we

14In general, unless yj is binary with 0 < Pr(yj = 1) < 1, the mean-independence E(yjd) = E(yj)E(d)
does not necessarily imply the other asymmetric mean-independence E(djyj) = E(d), which can be called
the �mean-independence of d from yj�.
15The following discussions on identi�cation and estimation of treatment e¤ects consider no additional

covariates (x�s) to avoid unnecessary complications. Imbens and Lemieux (2007) discusses adjustment for
additional covariates.
16In program evaluation literature, this is also called ignorability or unconfoundedness of the treatment.
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have selection-on-unobservables. Their formal de�nitions are given by Lee (2005).

De�nition 1 (Selection-on-Observables) For yj with a density or probability function
f(�), f(yjjd) 6= f(yj) but f(yjjd; z�) = f(yjjz�) for the observables z�.

A weaker version of this de�nition is: E(yjjd) 6= E(yj) and E(yjjd; z�) = E(yjjz�),
which is su¢ cient for identifying various average e¤ects of a well-de�ned treatment. Un-
der selection-on-observables, the treatment status does not a¤ect the potential outcomes
directly conditional on the observables, z�. Therefore, once the observables are controlled
for, the treatment status becomes exogenous to potential outcomes and functions just like
a �curve shifter�. While it is possible that d is determined by some unobservables, i.e. v,
selection-on-observables requires (u0; u1)q vjz�.

De�nition 2 (Selection-on-Unobservables) For yj with a density or probability function
f(�), f(yjjd; z�) 6= f(yjjz�) but f(yjjd; z�; �) = f(yjjz�; �) for the observables z� and some
unobservables �.

A weaker version of this de�nition is E(yjjd; z�) 6= E(yjjz�) but E(yjjd; z�; �) = E(yjjz�; �)
for observables z� and some unobservables �, which is su¢ cient for identifying various av-
erage e¤ects of a well-de�ned treatment. Under selection-on-unobservables, u0 and u1 are
not independent of v conditional only on the observables, z�. Conditional on z�, we still
encounter omitted variables bias because either u0 or u1 is not independent of v. We also
need to deal with selectivity or sorting bias because the potential gain, u1 � u0, is not in-
dependent of v. This occurs under �cream-skimming�, i.e., when a program or treatment is
assigned to individuals according to their potential bene�ts in order to maximize the prima
facie program e¤ectiveness.
As previously mentioned, z = 1fz� 6 0g is a valid instrument for the treatment status,

which satis�es the following two requirements:

(1) redundancy (exclusion restriction): E(yjjz; z�) = E(yjjz�)
(2) relevancy (inclusion restriction): �1 6= 0) E(djz = 1; z�) 6= E(djz = 0; z�)

For the ATE, we consider the cases of both homogeneous and heterogeneous e¤ects. The
homogeneous ATE implies a constant distance between g1(z�) and g0(z�) for all z� under
Assumption 1. On the other hand the heterogeneous ATE has an observable (explicit) part
and an unobservable (implicit) part, which are idiosyncratic and vary with both observ-
ables and unobservables. For example, a weight training program may be more e¤ective for
young people than old people although both can bene�t from it. Those who have greater
motivation may bene�t even more, which is one unobservable component of treatment e¤ect
heterogeneity. We next discuss how to identify ATE in the presence of both the observ-
able and unobservable part of treatment e¤ect heterogeneity. This discussion includes the
homogeneous ATE as a special case.

Assumption 2 (Homogeneity) ATE� E(y1 � y0) = y1 � y0 � �; g1(z
�) = g0(z

�) and
u1 = u0.

Here, ATE is only a constant distance between E(y1jz�) and E(y0jz�). The treatment
e¤ect is unconditional.
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Assumption 3 (Heterogeneity) ATE� E(y1 � y0) = E(� + �(z�)) � �, where E(y1 �
y0jz�) = � + �(z�); �(z�) is the explicit part of treatment e¤ect heterogeneity and � is the
unobserved and innocuous heterogeneity with � q (d; z�).

Under Assumption 1 and Assumption 3, observed outcomes y can be written as

y = g0(z
�) + (� + �(z�))d+ e, where e � u0 + d(u1 � u0)

It can be rewritten in terms of ATE as

y = g0(z
�) + �d+ (�(z�)� E(�(z�)))d+ ee, where ee � e+ d(� � E(�))

Under Assumption 2, the above model can be simpli�ed to

y = g0(z
�) + �d+ u0

In either case, the observed outcome y takes a partially linear form. The main obstacles to
identifying � are the presence of g0(z�), �(z�) and the relationship between e and v. If e and v
are independent, we are in the situation of selection-on-observables, where the only hindrance
is g0(z�) and �(z�). We next discuss di¤erent identi�cation strategies under selection-on-
observables and selection-on-unobservables when there is no independence between e and
v.

2.1 Identi�cation under Selection-on-Observables

Identi�cation of ATE in the presence of �(z�) requires the following additional assumption
on its structure.

Assumption 4 (Heterogeneity Parameterization) �(z�) can be parameterized as �(z�) =
�(w; ) = w0, where w is a function of z� and corresponding higher order terms.

Under Assumption 1 and Assumption 3, the central idea of identifying � is to utilize the
conditional moment restrictions granted by selection-on-observables, namely v q (u0; u1), to
generate orthogonality conditions that will purge overt biases from g0(z

�) and �(z�).
Under selection-on-observables, we have:

E(eejd; z; z�) = 0 = E(eejz; z�)) E[(d� E(djz; z�))ee] = 0
and, under Assumption 1, we have:

E[(d� E(djz; z�))jz�] = 0) E[g0(z�)(d� E(djz; z�))] = 0

10



The �rst-stage residual, v = d�E(djz; z�), plays a crucial role in orthogonalizing both g0(z�)
and ee. We have the following:

y � �d = g0(z�) + d(�(z�)� E(�(z�))) + ee
E[(y � �d)(d� E(djz�))] = E[d(�(z�)� E(�(z�)))(d� E(djz�))]

� =
E[y(d� E(djz�))]� E[(�(z�)� E(�(z�)))V ar(djz�)]

E[d(d� E(djz�))]

Identi�cation of � is complicated by �(z�). However, if there are only �innocuous�treatment
e¤ect heterogeneities, i.e., �(z�) = 0, then � = E(�) can be identi�ed:

ATE � � = E(�) = E[y(d� E(djz�))]
E[d(d� E(djz�))]

The following theorem shows that ATE still can be identi�ed in the presence of the explicit
treatment e¤ect heterogeneity, i.e., �(z�) 6= 0, with additional Assumption 4.

Theorem 1 Under Assumption 1, Assumption 3 and Assumption 4 and De�nition 1, � �
(�; 0)0 can be identi�ed by the following:

� = E�1 (xx0)E (xy)

where17
x � (x1;x02)

0

x1 � d� E(djz; z�)
x2 � (d� E(djz; z�))(w � E(w))

Furthermore, ATE (�) is identi�ed by

� =
E(x1y)� E(x1x02)E�1(x2x02)E(x2y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

and the explicit treatment e¤ect heterogeneity () is identi�ed and given by

 =
�
E(x2x02)� E(x1x2)E�1(x21)E(x1x02)

��1 E(x2y)
� E�1(x2x02)E(x1x2)E(x1y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

where
E(x21) = E(V ar(djz�))
E(x1x2) = E[V ar(djz�) (w � E(w))]
E(x2x02) = E[V ar(djz�) (w � E(w)) (w � E(w))

0]
E(x1y) = E [(d� E(djz�)) y]
E(x2y) = E [(d� E(djz�))(w � E(w))y]

Proof. See Appendix B.1.

17E�1 (xx0) � [E (xx0)]�1
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Corollary 1 For a fuzzy RD design,
(1) when z� ! 0, the identi�cation result in Theorem 1 accommodates Hahn, Todd and

Van der Klaauw (2001)�s result on identifying ATE at the cuto¤ point:

ATE(0) � lim
z�!0

E(� + �(z�)jz�) = E(�jz� = 0) = limz�#0 E(yjz�)� limz�"0 E(yjz�)
limz�#0 E(djz�)� limz�"0 E(djz�)

(2) when z� ! 0, if we replace Assumption 3 and Assumption 4 with Assumption 2,
then the identi�cation result in Theorem 1 accommodates Hahn, Todd and Van der Klaauw
(2001)�s result on identifying ATE at the cuto¤ point:

ATE =
E[y(d� E(djz�))]
E[d(d� E(djz�))] =

limz�#0 E(yjz�)� limz�"0 E(yjz�)
limz�#0 E(djz�)� limz�"0 E(djz�)

Proof. See Appendix B.2.
It is evident that the identi�cation of treatment e¤ects with an RD design is similar to

�matching estimators�. They both hinge upon the �propensity score�, E(djz�), because they
are both built upon selection-on-observables.

2.2 Identi�cation under Selection-on-Unobservables

It is worth emphasizing that identi�cation of treatment e¤ects with an RD design requires
that the selection variable should not be perfectly manipulated by individuals. Otherwise,
individuals may self-select into the treatment, which induces correlations between the observ-
able z� and the unobservable u0, u1 and v. Such correlations make the eligibility indicator
z endogenous and thus invalidate an RD design�s instrumentality. In practice, several cases
e¤ectively prevent manipulation. First, the cuto¤point is unexpected. If the cuto¤point for
eligibility comes entirely as a surprise, and no one has ever anticipated such a selection rule,
then manipulation of the selection variable is completely avoided. Second, the eligibility
criterion is determined by predetermined variables that are simply not manipulable. Third,
individuals only have partial control over selection variables. In some cases, manipulation
is possible, but impossible to be perfect. Even for an anticipated threshold, within a small
neighborhood, there will still be some randomness that prevents perfect manipulation (Lee
2007).
In the absence of manipulating the selection variable, regarding identi�cation of ATE

under selection-on-unobservables, a �rst reaction may be to apply Theorem 1, but instrument
d by z = 1fz� 6 0g. However, this strategy does not work simply because once conditional on
z�, there is no variation in z. In this situation, z and the �rst-stage residual, d�E(djz�), must
be independent, which invalidates the rank condition for identi�cation with an instrumental
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variable (IV). To clarify this point, consider a case with a homogeneous e¤ect:

y = g0(z
�) + �d+ u0

y � E(yjz�) = �(d� E(djz�)) + u0
instrumenting d by z and using the moment condition E(zu0) = 0
E[z(y � E(yjz�))] = �E[z(d� E(djz�))]
E[z(y � E(yjz�))] = E(zy � zE(yjz�)) = E(zy)� E(E(zyjz�)) = 0
E[z(d� E(djz�))] = E(zd� zE(djz�)) = E(zd)� E(E(zdjz�)) = 0
) � unidenti�able

This example stresses that identi�cation strategies under selection-on-unobservables inevitably
require making untestable assumptions on the functional form of g0(z�). In contrast, such
assumptions can be avoided under selection-on-observables using a partially linear model.
Under Assumption 1 and De�nition 2, we have the following results:

(1) d is endogenous: Cov(d; u0 + d(u1 � u0)) 6= 0
(2) omitted variables bias: Cov(u0; vjz�) 6= 0; Cov(u1; vjz�) 6= 0
(3) selectivity (or sorting) bias: Cov(u1 � u0; vjz�) 6= 0

There are two main streams of analyses on heterogeneous treatment e¤ects under selection-
on-unobservables: the control functions approach and the instrumental variables approach.
The former, aimed at ATE, is in line with Heckman (1979), which is based on �guring out
E(yjd; z�) directly through assumptions on the joint distribution of (u0; u1; v). The latter,
aimed instead for LATE, replaces distributional assumptions with monotonicity restrictions
on the relationship between instruments and potential treatment status. The identi�ca-
tion strategy discussed in this paper under selection-on-unobservables focuses on the case
Cov(u1 � u0; vjz�) 6= 0 because it is often the case that sorting behavior is rational: i.e. and
individuals do (d = 1) the best (Cov(u1�u0; vjz�) > 0) for themselves. The proposed correc-
tion function approach comes as a middle ground between the control functions approach and
the IV approach. It allows for identifying ATE but only requires that the conditional moment
restriction E(u1� u0jv) takes a polynomial form instead of assuming a joint distribution for
(u1; u0; v). The proposed correction function approach is derived from a correlated random
coe¢ cient (CRC) model used by Wooldridge (2002, 2007), which extend Garen (1984), Heck-
man and Vytlacil (1998) and Wooldridge (1997, 2003) to the case of a switching regression
model with a binary treatment. This paper further relaxes Wooldridge (2002, 2007), which
assumes that E(u1 � u0jv) is linear in v, to the case that E(u1 � u0jv) can be nonlinear,
namely quadratic, in v. This extension to nonlinear relationships between the treatment
selection and treatment gains accommodates cases with important economic implications.
For example, an adverse selection occurs when Cov(u1 � u0; v) < 0 and �cream-skimming�
exists when Cov(u1 � u0; v) > 0.

Theorem 2 Under Assumption 1, Assumption 3, De�nition 2, and the following two addi-
tional assumptions:

(A1) E(u1 � u0jv) = E(u1 � u0jv; z�) = �1v + �2v2
(A2) Fv(�) � N(0; 1)
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the observed outcome can be rewritten as:

y = g0(z
�) + �d+ d(�(z�)� E(�(z�)) + ee

+ �1�(�0 + �1z + �2z
�)

+ �2 [�(�0 + �1z + �2z
�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]ee � u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + d(� � E(�))

With two correction functions �(�) and �(�) � (�)�(�) added back in, d instrumented by z,
ATE� E(� + �(z�)) � � is identi�ed by using E(djz; z�) and E(djz; z�) [�(z�)� E(�(z�))] as
the instruments for d and d [�(z�)� E(�(z�))] respectively.

Proof. See Appendix B.3.
Because ee is heteroskedastic due to d(� � E(�)), we may just use z as the instrument

for d in estimation. Also notice that a su¢ cient condition for (A1) is a bivariate normal
distribution:�

u1 � u0
v

�
� N

��
0
0

�
;

�
� 2 �
� 1

��
, where � � Cov(u1 � u0; v)

In Appendix B.4, we give identi�cation results using two control functions to deal with
both omitted variables bias and selectivity bias simultaneously in the same spirit as Heckman
(1979).
Note that if u1 = u0, selection-on-unobservables only causes omitted variables bias. There

is no sorting based on treatment gains. In this situation, an IV estimator is able to identify
ATE.

Theorem 3 Under Assumption 1, Assumption 3 with u1 = u0 and De�nition 2, z is
an instrument for d, and ATE� E(� + �(z�)) � � is identi�ed by using E(djz; z�) and
E(djz; z�) [�(z�)� E(�(z�))] as the instruments for d and d [�(z�)� E(�(z�))] respectively.

Proof. We can rewrite the y-equation:

y = g0(z
�) + �d+ d [�(z�)� E(�(z�))] + ee

u1 = u0 ) e = u0 = u1
) E [eejE(djz; z�)] = E [e+ d(� � E(�))jE(djz; z�)]
= EfE [e+ d(� � E(�))jz; z�] jE(djz; z�)g (generalized law of iterated expectation)
= E[E(u0jz�) + E(djz; z�)E(� � E(�))jE(djz; z�)] = 0

The redundancy restriction of E(djz; z�) is veri�ed. The relevancy restriction of E(djz; z�)
holds trivially.

3 Estimation of Treatment E¤ects

Based on identi�cation results discussed in Section 2, estimators can be constructed straight-
forwardly by the analogy principle (Bera and Bilias 2002).
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3.1 Estimation under Selection-on-Observables

The following two-stage estimator is constructed according to the identi�cation results given
by Theorem 1.

b�RD_robust =  NX
i=1

bxibx0i
!�1 NX

i=1

bxiyi!
where

yi = g0(z
�
i ) + �di + d(wi � �)0 + eeiee � u0 + d(u1 � u0) + d(� � E(�)), E(eejz�) = E(eejd; z�) = 0bxi � h�di � p(z�i ; b�)� ;�di � p(z�i ; b�)� (wi � b�)0i0 , wi is a vector including polynomials of z�ib� � bE(wi); p(z�i ; b�) � bE(dijz�i )

� � (�; 0)0; � � E(� + �(z�)) � ATE; �(z�) � w0

This estimator takes into account both ATE and the explicit part of treatment e¤ect het-
erogeneity. Since there is no �rst-stage for y, which di¤erentiates it from Robinson (1988)�s
two-stage estimator, we will not run the risk of misspecifying E(yjz�). This estimator is
therefore robust to various functional forms of overt biases caused by g0(z�). To implement
this estimator, we only need a consistent estimator for E(djz�) in the �rst-stage. The in-
tuition behind this estimator is to use a �rst-stage to clean up overt biases caused by the
observables, and then use the �cleansed�residual obtained in the �rst-stage to generate or-
thogonality conditions for a moment-based estimation for �. Note that these orthogonality
conditions are implied by selection-on-observables. We next present the large sample prop-
erties for b�RD_robust with its asymptotic variance adjusted for generated regressors which are
the �rst-stage residuals.

Theorem 4 (Consistency and Asymptotic Normality) Under Assumption 1, Assump-
tion 3, Assumption 4, De�nition 1 and the parametric assumption E(djz�) = p(z�;�), we
have p

N
�b�RD_robust � �� d�! N

�
0; A�10 
A

�1
0

�
where

A0 � E(xx0)

 � V ar (x (y � x0�)�B0r(�))
B0 � E

�
(� 
 x0)0 @x

@�0

�
= E

�
(� 
 bx0)0 @f(d;z�;w;�;�)

@�0

�
x �

�
(d� p(z�;�)) ; (d� p(z�;�)) (w � �)0

�0 � f(d; z�;w;�; �)
together with the in�uence function for b�:

p
N(b�� �) = 1p

N

NX
i=1

ri(�) + op(1);E(ri(�)) = 0

Proof. See Appendix C.1.
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The supplemental Web Appendix18 discusses a simpli�cation of b�RD_robust in the absence
of the interactions between the treatment and the observables, i.e. �(z�) = 0.

3.2 Estimation under Selection-on-Unobservables

Based on Theorem 2, the following estimator is constructed to deal with both omitted vari-
ables bias and selectivity bias. We also provide its asymptotic properties in the presence of
generated instruments (used for eliminating omitted variables bias) and generated regressors
(used for eliminating selectivity bias).
Under selection-on-unobservables with heterogeneous treatment e¤ects, a parameterized

model with two correction functions added back in is given by the following:

y = �0 +w
0�1 + �d+ d(w � �)0 + ee

+ �1�(�0 + �1z + �2z
�)

+ �2 [�(�0 + �1z + �2z
�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]

d = 1f�0 + �1z + �2z� + v > 0gee � u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + d(� � E(�))
� � E(w)

where E(eejz; z�) = 0; v � N(0; 1); �(�) is normal pdf, �(�) is normal cdf. In addition, we use
the following de�nitions and parameterization:

� � E(� + �(z�)) � ATE
g0(z

�) � �0 +w0�1
�(z�) � w0, where w is a vector including polynomials of z�

We also give the following de�nitions to simply notation: � � (�0; �
0
1; �; 

0; �1; �2)
0; � �

(�0; �1; �2)
0;ez � (1; z; z�). The regressors included in the model de�ned at the population

are:

x � (1;w0; d; d(w � �)0; �(ez0�);�(ez0�)� (ez0�)�(ez0�))0
� f(d;ez;w; �; �)

Some of the regressors included in the actual model are generated from a random sample,
i = 1; 2; � � � ; N .

bxi � (1;w0
i; di; di(wi � b�)0; �(ez0ib�);�(ez0ib�)� (ez0ib�)�(ez0ib�))0

� f(di;ezi;wi; b�; b�)
The instruments, both included and excluded, used in the population model are:

z � (1;w0;�(ez0�);�(ez0�)(w � �)0; �(ez0�);�(ez0�)� (ez0�)�(ez0�))0
� g(ez;w; �; �)

18It is available at http://are.berkeley.edu/~yang/research.html.
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Similarly, some of the instruments included in the actual model are generated from a random
sample, i = 1; 2; � � � ; N .

bzi � (1;w0
i;�(ez0ib�);�(ez0ib�)(wi � b�)0; �(ez0ib�);�(ez0ib�)� (ez0ib�)�(ez0ib�))0

� g(ezi;wi; b�; b�)
The problem of generated regressors and generated instruments is caused by b� and b�. The
actual model used for estimation, based on a random sample, is:

yi = bx0i� + errori
di = 1fez0i� + vi > 0g
v � N(0; 1); �(�) normal pdf, �(�) normal cdf

To analyze asymptotic properties, it is useful to rewrite the model in the following way:

yi = bx0i� + errori = bx0� + (xi � bxi)0� + eei;E(eeijezi) = 0
Given the distributional assumption that v � N(0; 1), zi de�ned in the population model are
the optimal instruments if conditional homoskedasticity for V ar(eeijezi) holds. Since we have
equal number of endogenous variables and instruments, the model is just-identi�ed. An IV
estimator for � with generated regressors and instruments including two correction functions
is given by the following:

b�crrf =  NX
i=1

bzibx0i
!�1 NX

i=1

bziyi!

Theorem 5 (Consistency and Asymptotic Normality) Under Assumption 1, Assump-
tion 3, De�nition 2, (A1), (A2) and the following two additional assumptions:

(A3) g0(z�) � �0 +w0�1
(A4) �(z�) � w0
where w is a vector including polynomials of z� and � � (�0; �01; �; 0; �1; �2)0

We have b�crrf p! �, and

p
N(b�crrf � �) d�! N

�
0; A�10 
A

0�1
0

�
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where

A0 � E(zx0)

 � V ar(zee�B0r(�)�B1(w � �))
B0 � E [(�2ez0� � �1) (ez0�)�(ez0�)zez0]
B1 � �E (dz) 0

r(�) � E�1
�

�2(ez0�)ezez0
�(ez0�) (1� �(ez0�))

�
�(ez0�)ez(d� �(ez0�))
�(ez0�) (1� �(ez0�))ee � y � x0�

Proof. See Appendix C.2.
The variance in the limit distribution of

p
N(b�crrf� �) can be estimated by the following:

bA0 = 1

N

NX
i=1

bzibx0i
b
 = 1

N

NX
i=1

(bzibeei � bB0ri(b�)� bB1(wi �w))(bzibeei � bB0ri(b�)� bB1(wi �w))0

bB0 = 1

N

NX
i=1

�b�2ez0ib� � b�1� (ez0ib�)�(ez0ib�)bziez0i
bB1 = � 1

N

NX
i=1

dibzib0
r(b�) =  1

N

NX
i=1

�2i (ez0ib�)eziez0i
�(ez0ib�) (1� �(ez0ib�))

!�1
�(ez0ib�)ezi(di � �(ez0ib�))
�(ez0ib�) (1� �(ez0ib�))beei = yi � bx0ib�crrf

In contrast to this semi-structural correction functions approach, a more structural ap-
proach is to obtain E(yjd; z; z�) directly, which involves adding two control functions� one
for omitted variables bias and the other one for selectivity bias. Detailed discussions on this
control functions estimator are provided in the supplemental Web Appendix.19

4 Monte Carlo Experiments

To investigate the trade-o¤ between e¢ ciency and bias in estimating the average treatment
e¤ect (and average e¤ects local to the discontinuity) when the e¤ects covary with observables
and unobservables, I conduct a series of Monte Carlo experiments with various sample sizes
of 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000 and 10000. All
simulations are based on 1000 trials.20

19It is available at http://are.berkeley.edu/~yang/research.html.
20A complete set of simulation results are available upon request.

18

http://are.berkeley.edu/~yang/research.html


4.1 Design and Estimators

Based on Assumption 1, the data generating process (DGP) used by Monte Carlo experi-
ments is speci�ed as follows (i = 1; 2; � � � ; N):

(a) Selection process:

z�i � i.i.d. U [�1; 1]) E(z�) = 0; V ar(z�) =
1

3
zi = 1fz�i 6 0g
di = 1f�0 + �1zi + �2z�i + vi > 0g
vi � i.i.d. N(0; 1);�(�) normal cdf

) E(dijz�i 6 0) = �(�0 + �1 + �2z�i jz�i 6 0)
E(dijz�i > 0) = �(�0 + �2z�i jz�i > 0)

(b) Potential and observed outcomes:

g0(z
�) � E(y0jz�) =

�
�0 + �1 cos(h) + �2h

2

�0 + �1 cos(z
�) + �2z

�2
(�h 6 z� 6 h)
(else)

g1(z
�) � E(y1jz�) =

�
�0 + �1 cos(h) + �2h

2 + E(�)
�0 + �1 cos(z

�) + 1z
� + (�2 + 2)z

�2 + E(�)
(�h 6 z� 6 h)
(else)

� � N(1; 1); � q z�

u0 = �0v + "; " � N(0; 1); "q v
u1 = (�0 + �1)v + �2v

2 + ") E(u1 � u0jv) = �1v + �2v2

y0 = g0(z
�) + u0

y1 = g1(z
�) + u1 + � � E(�)

y = dy1 + (1� d)y0

(c) Fixed parameters:

�jump�= 0:5 � �discontinuity�in the selection process

�0 = ���1
�
jump+ 1

2

�
; �1 = 2�

�1
�
jump+ 1

2

�
; �2 = �1

�0 = 1; �1 = 1; �2 = 1

1 = 1; 2 = 3
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(d) Varying parameters:

h = 0 (Model I: potential outcomes a¤ected by the selection variable)
h = 1 (Model II: potential outcomes are mean-independent from the selection variable)
�0 = 0; �1 = �2 = 0 (selection-on-observables)
�0 = 1 6= 0; �1 = �2 = 0 (omitted variables bias, OVB, only)
�0 = 1 6= 0; �1 = 1 6= 0; �2 = 1 6= 0 (OVB and nonlinear selectivity bias)
�0 = 1 6= 0; �1 = 1 6= 0; �2 = 0 (OVB and linear selectivity bias)

(e) ATE:

E(y1 � y0jz�) =
�
E(�)
1z

� + 2z
�2 + E(�)

(�h 6 z� 6 h)
(else)

Model I:
ATE = E(y1 � y0) = E(1z� + 2z�2 + 1) = 2
ATE(0) = E(y1 � y0jz� = 0) = E(y1 � y0)� 1E(z�)� 2E(z�2) = 1

Model II:
ATE(� h 6 z� 6 h) = E(y1 � y0j � h 6 z� 6 h) = 1
ATE(0) = E(y1 � y0jz� = 0) = 1

In summary, we consider the following ten cases, with the following �ve cases for both
Model I and Model II:

� selection-on-observables without using the �eligibility indicator�(z) in estimating E(djz�)

� selection-on-observables using the �eligibility indicator�(z) in estimating E(djz�)

� selection-on-unobservables with omitted variables bias only

� selection-on-unobservables with both omitted variables bias and selectivity bias

� selection-on-unobservables with omitted variables bias and selectivity bias and the joint
distribution of unobservables consistent with joint normality

For each trial, based on these four criteria� mean bias, median bias, root mean squared
error (RMSE) and median absolute error� we evaluate the performance of the following six
estimators, where � � (�0; �1; �2)0;ez � (1; z; z�), under both Model I and Model II.
(1) proposed robust RD estimator (�robust�)

Model I: regress y on (d��(�0ez)); (d��(�0ez)); (d��(�0ez))w)) by least squares, where
w = (z�; z�2).
Model II: regress y on d by least squares using d� �(�0ez) as the instrument for d.

(2) Robinson�s (1988) two-stage estimator (�robinson�)

Model I and II: in the �rst-stage, regress y on w and obtain the residual ey; in the
second-stage, regress ey on (d��(�0ez)); (d��(�0ez)); (d��(�0ez))w)) by least squares, where
w = (z�; z�2).
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(3) revised correction-function estimator (�corr func�)

Model I: regress y on (1; d;w1; d(w2 � w2); �(�
0ez);�(�0ez) � (�0ez)�(�0ez)) by lV using

(1;�(�0ez);w1;�(�
0ez)(w2�w2); �(�

0ez);�(�0ez)� (�0ez)�(�0ez)) as the instrument, where w1 =
(cos(z�); z�);w2 = (z

�; z�2).
Model II: regress y on (1; d; �(�0ez);�(�0ez)�(�0ez)�(�0ez)) by lV using (1;�(�0ez); �(�0ez);�(�0ez)�

(�0ez)�(�0ez)) as the instrument.
(4) control-function estimator (�ctrl func�)

Model I: regress y on (1; d;w1; d(w2�w2); d(�(�
0ez)=�(�0ez)); (1� d)(�(��0ez)=�(��0ez)))

by least squares, where w1 = (cos(z�); z�);w2 = (z
�; z�2).

Model II: regress y on (1; d; d(�(�0ez)=�(�0ez)); (1�d)(�(��0ez)=�(��0ez))) by least squares.
(5) OLS

Model I: regress y on (1; d; z�; d(z� � z�)).
Model II: regress y on (1; d).

(6) 2SLS (Imbens and Lemieux 2007)

We regress y on (1; d; z�; zz�) using z as the instrument for d to get the estimated ATE
at the cuto¤ point.

4.2 Results and Discussion

The series of Monte Carlo experiments reveal the e¢ ciency-bias trade-o¤ in estimating ATE
under both selection-on-observables and selection-on-unobservables. It is also evident that
such a trade-o¤ intensi�es as the sample size grows. Our following discussions are based on
both a small sample (with 100 observations) and a relatively large sample size (with 1000
observations). Detailed results are presented in Appendix D.

4.2.1 Selection-on-observables

Appendix Table D.1 reveals that with a fuzzy RD design, an OLS estimator, maybe e¢ cient
under selection-on-observables, su¤ers from severe attenuation bias. The downward bias is
about 30% in terms of mean bias and 29% in terms of median bias with a small sample
of 100 observations. Such a downward bias persists and stays about 28% in terms of both
mean bias and median bias when the sample size reaches 1000 observations. Furthermore,
this attenuation bias remains about 30% in terms of both mean bias and median bias even
with a sample of 10000 observations. This can be seen in Appendix Figure 1 (for the case
of selection-on-observables in Model I) in Appendix E. In contrast, our proposed robust
RD estimator e¤ectively reduces the attenuation bias to 3% in terms of mean bias and 4%
in terms of median bias with only 100 observations. The usefulness in removing such an
attenuation bias of this robust RD estimator becomes prominent only with a relatively large
sample of 1000 observations: it gives a slightly upward bias of 0.4% in terms of mean bias
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and 0.1% in terms of median bias. The improvement on bias reduction is due to the fact
that we use the �rst stage residual, d� E(djz; z�), as an instrument to orthogonalize g0(z�)
and the error terms in the second-stage. Those orthogonality conditions are free of both
speci�cation errors and measurement errors. In addition, the �eligibility� instrument (z)
helps to further reduce the attenuation bias. This can be veri�ed in Appendix Figure 1 in
Appendix E. Furthermore, compared with the Robinson�s two-stage estimator under correct
speci�cation, the e¢ ciency loss in using the robust RD estimator is fairly negligible even
with a moderate sample size (with 200 observations). This e¢ ciency issue is re�ected in
Appendix Figure 2 (for the case of selection-on-observables in Model I) in Appendix E. It
is worth mentioning that the bias of OLS suggests a situation of measurement errors that
occurs under a sharp RD with unknown threshold. For more discussions on this, please
see the discussion on �sharp RD with unknown threshold and measurement errors� in the
supplemental Web Appendix21. It is also noticeable that there is no much di¤erence, in
terms of the bias-e¢ ciency trade-o¤, between the robust RD estimator and Robinson�s two-
stage estimator. Appendix Figure 3 (for the case of selection-on-observables in Model II) in
Appendix E illustrates this point.
When estimating ATE at the cuto¤ point in the presence of interactions between the

treatment and observables (i.e. in the presence of explicit treatment e¤ect heterogeneity),
2SLS works poorly in terms of mean and median bias, compared with the proposed robust RD
estimator. See Table D.2 in Appendix D for details. This is probably due to misspeci�cation
of the bandwidth that contains the cuto¤ point. The robust RD estimator is less e¢ cient
than Robinson�s two-stage estimator only when the latter has no speci�cation errors in the
�rst-stage. Therefore, the proposed RD estimator seems still preferable when ATE at the
cuto¤ point is the parameter of interest. Appendix Figure 4 (for the case of selection-on-
observables and identi�cation at the cuto¤ point) in Appendix E veri�es this argument.

4.2.2 Selection-on-unobservables

In the presence of explicit treatment heterogeneity, i.e. interactions between the treatment
and observables, the correction function estimator doesn�t work well in terms of both mean
and median bias with moderate sample sizes unless the sample size gets very large. For
more discussions on �nite sample bias reduction with over-identi�cation, please refer to The
supplemental Web Appendix22. Besides, it is shown in Table D.1 in Appendix D that both
the proposed robust RD estimator and Robinson�s two-stage estimator work worse, in terms
of bias, than OLS under selection-on-unobservables. Furthermore, Table D.1 in Appendix D
shows that the control function estimator encounters greater bias once the underlying joint
distribution of (u0; u1; v) is inconsistent with joint-normality.
When potential outcomes are mean-independent from the selection variable, the correc-

tion function estimator is uniformly more robust, in terms of bias, than the control function
estimator. Appendix Figure 5 (for the case of selection-on-unobservables with omitted vari-
ables bias and nonlinear selectivity bias in Model II) in Appendix E illustrates this. Appendix
Figure 6 (for the case of selection-on-unobservables with omitted variables bias and linear

21It is available at http://are.berkeley.edu/~yang/research.html.
22It is available at http://are.berkeley.edu/~yang/research.html.
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selectivity bias) in Appendix E further shows that the e¢ ciency loss of a correction func-
tion estimator due to its gain in robustness can be well compensated only by a sample of
moderate size (with 400 observations).
Also note that under selection-on-unobservables with omitted variables bias and positive

sorting bias, the OLS estimator su¤ers from a large upward bias of 111% in terms of both
mean and median bias, and this magnitude stays constant with both a small sample of 100
observations and a relatively large sample of 1000 observations. In sharp contrast, with a
small sample of 100 observations, the correction function estimator reduces the upward bias
to -24% in terms of mean bias and further down to -0.005% in terms of median bias. This
suggests that a correction function estimator is sensitive to outliers with a small sample.
When the sample gets large, with 1000 observations, the correction function estimator man-
ages to cut the upward bias down to 4% in terms of mean bias and 3% in terms of median
bias. This suggests that the correction function estimator becomes more reliable when the
sample size increases. The above argument is supported by Table D.1 in Appendix D.

5 Empirical Applications

To investigate the trade-o¤ between e¢ ciency and bias that arises in the presence of het-
erogeneous treatment e¤ects, we o¤er two empirical applications. The �rst example uses
data from Chay, McEwan and Urquiola (2005) to show the improvement of using the RD
robust estimator proposed in Section 3.1 upon bias reduction and e¢ ciency gain relative to
2SLS that Chay, McEwan and Urquiola (2005) uses. Under selection-on-observables, the RD
robust estimator reduces bias because it is shown to be free of speci�cation errors that occur
in estimating the conditional expectations of the outcome using 2SLS. It brings e¢ ciency
gains because of the over-identifying restriction imposed by the eligibility criterion in the
selection process and the estimated propensity score (Hirano, Imbens and Ridder 2003) in
the �rst stage. It is further shown that such an improvement under selection-on-observables
can be checked by the presence of sorting or selectivity bias. The correction function es-
timator proposed in Section 3.2 suggests a speci�cation test based on the signi�cance of
the two correction terms.23 If sorting or selectivity bias is detected in a chosen range, then
the assumption of selection-on-observables should be rejected. Such a speci�cation check is
implied by the RD design�s instrumental nature, and the construction of those correction
terms is detailed in Section 3.2. In addition to being able to falsify selection-on-observables,
we may also be interested to know any existence of �cream-skimming�or adverse selection,
which are indicated by the two correction terms, that will either overstate or understate the
program e¤ects.
The e¢ ciency-bias trade-o¤ also arises in the case of continuous treatment. The second

example uses data from Chay and Greenstone (2003) to demonstrate the improvement upon
this trade-o¤. It also shows how to extend the RD design�s applicability from a binary
treatment case to a continuous treatment case such as di¤erent levels of air pollution. We

23Because these two correction terms are constructed from the data, we have the problem of generated
regressors. Wooldridge (2007) shows that inferences based on the usual t-statistic, under the null hypothesis,
is still valid. However, If the null hypothesis is suspected, a correction should be made for the generated
regressor problem. The bootstrap can be used to deal with such problems.
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reexamine the impacts from air quality on infant mortality, utilizing the over-identifying
restrictions implied by the RD design to obtain the e¢ ciency gain in a range local to the
discontinuity. We also use these over-identifying restrictions as a check for the validity
of the instruments for the chosen range. The over-identifying restrictions can be seen as
the counterparts for the correction terms with a binary treatment, both of which can be
used to detect the sorting bias that invalidates an estimate�s ATE interpretation. It is
worth emphasizing that in the second example, such speci�cation checks are not possible in
conventional cross-sectional and �xed e¤ects analyses in the absence of the RD design.

5.1 Chile�s 900-School Program Evaluation

To improve school performance, in 1990, Chile�s government initiated the �900 School Pro-
gram� (�P-900�, henceforth), a country-wide intervention to target low-performing and
publicly-funded schools (Chay, McEwan and Urquiola 2005).24 Eligibility of this program,
based on which approximately 900 schools would be selected, is determined by school-level
average test scores of fourth-graders in 1988. Speci�cally, this program�s participation was
largely determined by whether a school�s average test score fell below a cuto¤ value in its
region chosen by the Ministry of Education.25 As Chay, McEwan and Urquiola (2005) em-
phasizes, the schools�1988 test scores were collected under a di¤erent political regime before
the fall of Pinochet, at which time there was no evidence showing that such an intervention
was ever contemplated. Therefore, it is plausible that schools had no incentive to manipulate
their test performance in 1988 to qualify the P-900.

5.1.1 Program assignment

The actual assignment of P-900 program involved two stages. During the �rst stage in 1988,
the Ministry of Education administered country-wide achievement tests to the population of
the fourth graders. O¢ cials of the Ministry then calculated each school�s mean test scores in
language and mathematics and then the average of both averages. These scores were ranked
from the highest to the lowest in each of Chile�s 13 administrative regions. Separate cuto¤
scores for each region were determined by the Ministry.26 Schools whose overall average fell
below the within-region�s cuto¤ value were eligible for participating into this P-900 program.
In the second stage, regional teams of o¢ cials added two criteria to �lter out some eligible

schools. First, to lower program costs, some very small or inaccessible schools were excluded
in part because another parallel program (MECE-Rural) was designed to accommodate
them. Secondly, schools were removed from the pre-selected list if they had managerial

24There are four interventions associated with this program: (1) infrastructure improvement such as
building repairs; (2) new instructional materials including textbooks for students from grade 1 to 4, small
classroom libraries, cassette recorders and copy machines; (3) training workshops (focusing on teaching
language and mathematics) for school teachers conducted by local supervisors of the Ministry of Education;
(4) after-school tutoring workshops for the third and fourth graders who did not perform well enough
relative to their grade level. Each workshop was guided by two trained aides recruited from graduates of
local secondary schools. The �rst two interventions (1) and (2) were the focus of the �rst two years (1990
and 1991), and P-900 was expanded to include (3) and (4) in 1992.
25There are 13 administrative regions in Chile.
26For details, see Table 2 in Chay, McEwan and Urquiola (2005).
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problems, such as misreported enrollment, that were uncovered. In addition, the regional
teams also introduced unobserved criteria to select certain schools, some of which were
ineligible by the �rst-stage criteria.27 Therefore, �selection-on-unobservables� existed in
P-900�s program assignment because this �nal set of characteristics is unobserved to an
econometrician. Meanwhile, from a school�s perspective, there was no incentive for them to
forgo participation because the national government covered all of the costs. Accordingly,
the imperfect program�s assignment according to schools� eligibility is largely due to the
unobservables created by the program�s administers.28

5.1.2 Impact of the P-900 program

To gauge P-900�s impact, we focus on whether the P-900 program had signi�cant e¤ects on
test score (mathematics and language) gains of the fourth-graders over the period 1988�1992
to be consistent with Chay, McEwan and Urquiola (2005). The identi�cation strategy using
an RD design is explained by the following mechanism:

1988 average test score  � �mean reversion�noise
. # & #

eligibility for P-900 �! P-900 status �! 1988-92 gain scores

+ near the assignment cuto¤

1988 average test score  � �mean reversion�noise
. # &

eligibility for P-900 �! P-900 status �! 1988-92 gain scores

The above mechanism highlights the case where transitory testing noise, possibly due to
luck, is mean reverting. Average test scores in 1988 may provide a noisy measure of school
performances and a misleading ranking of schools (based on this noise measure) since the
transitory noise contaminated the 1988 test scores. For example, a school�s appearance at the
bottom of a ranking, and therefore being selected into P-900, may be the result of transitory
bad luck in the testing year. Unless the bad luck is persistent, test scores in this school would
rebound in the next period even in the absence of the P-900 intervention. Thus, ignoring
the mean-reversion noise will overstate the e¤ect of P-900 that uses test-based rankings to
select schools.29

Using RD�s quasi-experimental nature, as Chay, McEwan and Urquiola (2005) suggests,
we can e¤ectively remove the direct impact of �mean-reversion�noises close to the cuto¤

27For details, see Table 2 in Chay, McEwan and Urquiola (2005).
28For the outcomes of the actual two-stage program assignment and the deviations from the test-score

based eligibility, see Figure 3 in Chay, McEwan and Urquiola (2005).
29Chay, McEwan and Urquiola (2005) �nds that �transitory noise in average scores, and the resulting

mean reversion, lead conventional estimation approaches to overstate greatly the positive impact of P-900.
For example, di¤erence-in-di¤erences estimates suggest that P-900 increased 1988-1992 test score gains by
0.4 to 0.7 standard deviations; yet using P-900-type assignment rules, we can generate similar e¤ects during
earlier periods in which the program was not yet in operation (1984�1988).�
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point. Since schools near the assignment cuto¤ are likely to be randomized into the treat-
ment, as a result, on average, mean-reversion noises experienced by these schools are also
likely to be common to these schools. Thus, the direct impact of a common mean-reversion
noise can be absorbed by the constant term included in the outcome equation. We now only
have to deal with the indirect impact of the mean-reversion noise, and in this case (shown
in the above mechanism) the 1988 test score becomes the proxy for that transitory noise.
Therefore, the mean-reversion noise turns into a classical measurement error in the actual
1988 test score. The selection threshold that is set up by an RD design provides a power-
ful tool to remove the direct impacts of unobservable confounders such as mean-reversion
noises.30

However, as we focus on a neighborhood around the cuto¤, although we can be free
of omitted variables bias by removing the direct impact of mean-reversion noise close to
the cuto¤ point, we still need to watch out the sorting bias due to the interaction between
the treatment and the unobservables. Ignoring such an interaction in the form of either
�cream-skimming�or adverse selection, we will either overstate or understate the program�s
e¤ectiveness. To detect such sorting biases, we use a t-test, as suggested by Theorem 5 and
Wooldridge (2002, 2007).
The following table gives the estimates of P-900 e¤ects. To reduce overt bias, we follow

Chay, McEwan and Urquiola (2005), controlling for school-level socioeconomic status (SES)31

because P-900 may have encouraged the children of some households to exit or enter the
treated schools if parents interpreted program selection as a signal that the institution was
not adequately serving their children or if they thought their children could bene�t from
additional resources. The construction of the two correction terms follows Theorem 5.

30Figure 5 in Chay, McEwan and Urquiola (2005) provides evidence of mean-reversion noises and the
program�s impact.
31The SES index measures student socioeconomic status (SES), as reported by JUNAEB (Junta Nacional

de Auxilio Escolar y Becas). It is scaled 0-100, with higher values indicating higher SES.
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Table 2: P-900 E¤ects on 1988�1992 Gain Scores within Bands of the Selection Threshold
Full Sample �5 Points �2 Points

Math Language Math Language Math Language
Panel A:

(1) 2SLS
2:51��

(1:07)
2:35��

(0:93)
1:82
(1:31)

1:58
(1:20)

1:90
(2:20)

1:44
(1:98)

standard deviation gain 0:32 0:32 0:23 0:21 0:24 0:19

(2) RD robust
2:38���

(0:68)
2:32���

(0:61)
1:74��

(0:83)
2:05���

(0:71)
2:34��

(1:17)
2:51���

(0:93)
standard deviation gain 0:31 0:31 0:22 0:28 0:30 0:34

Panel B:
(3) correction function
(with quadratic term)

5:85��

[2:64]
6:89���

[2:31]
4:80
(3:11)

6:44��

(2:93)
5:96
(5:80)

2:96
(5:48)

standard deviation gain 0:75 0:93 0:62 0:87 0:76 0:40

correction term 1
�19:12���
[6:17]

�16:06���
[4:87]

�3:26
(6:86)

�3:60
(6:32)

6:03
(19:60)

8:05
(16:19)

correction term 2
13:54��

[6:49]
8:11
[5:35]

�0:93
(5:70)

�2:92
(5:11)

�10:04
(12:93)

�8:81
(10:13)

(4) correction function
(with only linear term)

8:74���

[2:54]
8:62���

[2:14]
4:66
(3:05)

5:99��

(2:89)
5:97
(5:76)

2:97
(5:45)

standard deviation gain 1:12 1:16 0:60 0:81 0:77 0:40

correction term
�10:12���
[3:58]

�10:67���
[3:02]

�4:05
(4:38)

�6:08
(4:16)

�4:78
(7:89)

�1:44
(7:19)

Sample size 2; 591 938 392

Notes : To be consistent with Chay, McEwan and Urquiola (2005), the sample includes urban schools with 15 or more
students in the fourth grade in 1988. The dependent variables are the 1988�1992 gain scores in math and language. Regressors,
besides the P-900 dummy, include cubic polynomials for the 1988 average test score, SES in 1990 and the changes in SES
between 1990 and 1992. The columns correspond to subsamples of schools with 1988 test scores (relative to the cuto¤ point) in
the speci�ed range. The 2SLS in Panel A is proposed by Chay, McEwan and Urquiola (2005). The RD robust estimator in Panel
A is proposed by this paper, which uses the �rst stage residual, the deviation between the treatment status and the estimated
propensity score, as the instrument for the treatment. The correction function estimator with the quadratic correction terms
in Panel B is proposed by this paper. The correction function estimator with only the linear term in Panel B is proposed
by Wooldridge (2002). Standard errors robust to heteroskedasticity are in parentheses; Bootstrapped standard errors based
on 2,000 replications are in [brackets]; �*� indicates signi�cance at 10% level; �**� indicates signi�cance at 5% level; �***�
indicates signi�cance at 1% level.

The 2SLS in Panel A is proposed by Chay, McEwan and Urquiola (2005), which uses
the eligibility indicator as the instrument for the P-900 treatment status. The RD robust
estimator in Panel A is proposed by this paper in Theorem 4, where a probit model for the
P-900 treatment status is adopted. The regressors included in the probit model, besides the
excluded instrument� the eligibility indicator, are cubic polynomials for the 1988 average test
scores, SES in 1990 and the changes in SES between 1990 and 1992. The RD robust estimator
uses the �rst stage residual, the deviation between the treatment status and the estimated
propensity score, as the instrument for the treatment. The correction function estimator
with the quadratic correction terms in Panel B is proposed by this paper in Theorem 5. The
correction function estimator with only the linear term in Panel B is proposed by Wooldridge
(2002). For all cases (1)�(4) in Panel A and B, for the outcome equation we include, besides
the P-900 treatment dummy, cubic polynomials for the 1988 average test score, SES in 1990,
the changes in SES between 1990 and 1992 to be consistent with Chay, McEwan and Urquiola
(2005, Table 5).
The results in Table 2 highlight the following:
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First, in Panel A case (1) the e¢ ciency-bias trade-o¤ shows up when 2SLS is applied.
When the full sample is used, the P-900 e¤ect, about 0.32 standard deviations in both
mathematics and language, is shown to be statistically signi�cant. However, in the presence
of heterogeneous treatment e¤ects, this estimate loses the ATE interpretation because the
sorting bias has been detected by the correction terms in the correction function estimator,
which is shown in the �Full Sample�column in Table 2. As we focus on the schools close
to the selection threshold, the selectivity bias can be e¤ectively removed because the direct
impact of the mean-reversion noise is homogenized between schools just above and just below
the threshold. Therefore, estimates of P-900 e¤ects will regain a valid ATE interpretation,
which, however, is at the cost of e¢ ciency. As columns ��5 Points�and ��2 Points�show,
the 2SLS estimates become statistically insigni�cant.
Second, in Panel A case (2) the proposed RD robust estimator has made improvement

upon this e¢ ciency-bias trade-o¤. Similar to 2SLS, the RD robust estimator shows that
P-900 has a signi�cant e¤ect of roughly 0.31 standard deviations in both mathematics and
language when the full sample is used. Such e¤ects (LATE) are only valid for an underlying
(and unidenti�able) population of �compliers�because the sorting bias has been detected by
the correction terms of the correction function estimators. When schools near the threshold
are focused on, where ATE can be regained, in contrast to 2SLS, the RD robust estimator is
able to detect P-900 e¤ects and quanti�es them between 0.22 and 0.34 standard deviations
at 1% to 5% signi�cance level. Compared with conventional estimators focusing on the e¤ect
only at the threshold, this RD estimator obtains the ATE for a prede�ned population local to
the threshold, which has greater external validity. Compared with 2SLS, this RD estimator
also has greater internal validity because it is free of speci�cation errors. This point has been
made in Section 3.1 and has been con�rmed in Section 4.2.1.
Third, the correction terms in Panel B case (3) for the sorting bias are useful for checking

the validity of the ATE interpretation for either the 2SLS or the RD robust estimator. When
the full sample is used and the sorting bias is detected, the estimated P-900 e¤ect in Panel A,
statistically signi�cant and roughly of 0.3 standard deviations, only measures the impact of
P-900�s eligibility criteria that were used by the program. To forecast P-900�s e¤ectiveness
on a randomly selected school of a well de�ned population, we need to obtain ATE, not
LATE, for a population prede�ned by its distance to the selection threshold. In Table
2, the RD robust estimator gives P-900�s estimated ATE, which is roughly 0.3 standard
deviations for a population of schools close to the selection threshold, and the validity of
this ATE interpretation is checked by two correction terms in Panel B case (3): neither of
them is statistically signi�cant, which suggests the absence of adverse selection and �cream-
skimming�.
Fourth, the correction function estimator proposed by Wooldridge (2002) in Panel B

case (4) forces the sorting bias to be either positive or negative. When the full sample is
used, Wooldridge (2002)�s estimator can only detect a countervailed sorting bias when both
adverse selection (negative sorting) and �cream-skimming� (positive sorting) are present.
This point is shown in the gain score estimates in mathematics in case (3) and case (4) when
the full sample is used. Our proposed correction function estimator detects a �U-shaped�
sorting pattern because of the positive sign of the second correction term. In contrast,
Wooldridge (2002)�s estimator can only detect the negative sorting, which also leads to
a possibly over-estimated program e¤ect when the positive sorting is neglected: the point
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estimate of Wooldridge (2002)�s estimator is about 50% greater than our proposed correction
function estimator with two correction terms, which takes into account the sorting in both
directions.
It is worth mentioning that the correction function estimator has a lot more external

validity than the RD robust estimator because the former is aimed for the treatment e¤ects
applied to the entire population while the latter is only applicable to a population close
to the threshold. However, this externality is at the cost of internal validity because the
parametric nature makes the correction function estimator susceptible to speci�cation errors.
In contrast, the RD robust estimator trades external validity for greater internal validity
because it is free of speci�cation errors. Therefore, the RD robust estimator gives compelling
estimates for the speci�ed population near the threshold. The estimated program e¤ect given
by the RD robust estimator shows that the 1988�1992 gain score of P-900 schools is 0.3
standard deviations higher than the non-P-900 schools. This indicates that the average P-
900 school is at about the 62% of the non-P900 school distribution, which suggests a moderate
improvement for a population of school close to the selection threshold. On the basis of this
estimate, the P-900 e¤ectiveness can be used to construct some cost-bene�t measure, such
as per-student expenditure necessary to raise average test score by 0.1 standard deviation.
To conduct a cost-bene�t analysis for the entire population of schools not just close to the
selection threshold, we need to use the correction function estimator. In the absence of
speci�cation errors, it gives the program�s impact on a randomly selected school from the
whole population.
The RD robust estimator gives compelling ATE estimates for a prede�ned population

near the selection threshold while the correction function estimator gives ATE estimates un-
der correct speci�cations for the entire population. The plausibility of the ATE identi�cation
using this correction function estimator will also depend upon the point in the distribution
where the discontinuity occurs. Choosing between the RD robust estimator and the cor-
rection estimator is the balancing between internal and external validity, which should be
guided by the research question or the population of policy interest before estimations take
place. In summary, our proposed RD robust estimator allows for e¢ cient estimation of an
average e¤ect in a range of observations local to the discontinuity, and within the range the
correction function estimator suggests speci�cation checks for the validity of an ATE inter-
pretation, which will be violated in the presence of sorting biases. In the P-900 example,
comparing the gains of schools just above and just below the assignment cuto¤, which is
set by the RD design, e¤ectively eliminates the direct impact of mean-reversion noises. The
RD robust estimator has been shown able to improve the e¢ ciency-bias trade-o¤ that arises
in the presence of heterogeneous treatment e¤ects. On one hand, these bene�ts depends
upon the validity of the RD design�s �borderline experiments�; on the other hand, the RD
design�s instrumental nature provides a speci�cation check for the plausibility of this quasi-
experiment and the validity of an ATE interpretation for the chosen range. The strategies
illustrated herein which integrate the RD design�s dual nature for compelling inference should
be applicable whenever tests or other �prescores�� in concert with assignment cuto¤s� are
used to allocate a program.
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5.2 Air Quality, Infant Mortality and the Clean Air Act of 1970

Chay and Greenstone (2003) examines the e¤ects of total suspended particles (TSPs) air
pollution on infant mortality rates using the air quality improvement induced by the 1970
Clean Air Act Amendments (CAAA) in the �rst year that they were in force as the source for
identifying the causal relationships between TSPs and infant mortality rates (IMRs). The
1970 CAAA imposed strict regulations on industrial polluters in �nonattainment�counties.
Speci�cally, for TSPs pollution the Environmental Protection Agency (EPA) was required
to designate a county as nonattainment if its TSPs concentrations exceed either of these
two thresholds: (1) the annual geometric mean concentration exceeded 75�g=m3, or (2) the
second highest daily concentration exceeded 260�g=m3.32 �Ideally�, a random assignment
of pollution exposure across mothers or infants can ensure that pollution is independent of
other confounding factors and the causal impacts of TSPs on IMRs can therefore be identi-
�ed straightforwardly. In the absence of such a random assignment, Chay and Greenstone
(2003) provides evidence of the impacts of TSPs on IMRs from an RD design analysis. The
credibility of the �ndings based on the RD approach depends on the following:
First, the 1970 CAAA regulation was federally mandated, and this regulatory pressure

is plausibly orthogonal to changes in IMRs except through its impacts on air pollution.33

Second, signi�cant reductions in TSPs occurred immediately after 1970 CAAA. The
greater reductions in nonattainment counties near the federal ceiling relative to the attain-
ment counties narrowly below the ceiling suggest that the CAAA regulation had a separate
impact on TSPs reduction.34

Third, near the regulatory threshold, discrete changes in TSPs and IMRs are likely
due to the regulation and not competing factors. In the neighborhood of the regulatory
ceiling, i.e. 75�g=m3, transitory shocks to TSPs levels in 1970 are orthogonal to unobserved
shocks to infant mortality rates between 1971 and 1972. This implies that the impacts of
omitted variables are homogenized between nonattainment and attainment counties within
this neighborhood.35

The �rst two points verify the RD design�s instrumental nature, and the third point
stresses its quasi-experimental nature near the threshold. Chay and Greenstone (2003)
combines these two and has made improvement upon the conventional cross-sectional and
�xed e¤ect estimates. Their paper uses nonattainment status as an instrumental variable for
1971�1972 changes in TSPs to estimate their impact on infant mortality rates changes in the
�rst year that the 1970 CAAA was in force. Robustness checks are provided by focusing on

32This standard prevailed from 1971 until 1987, when the EPA shifted its focus to the regulation of �ner
particles.
33Consistent with this, Chay and Greenstone (2003) �nds little association between nonattainment sta-

tus and other observable variables, including parents�characteristics, prenatal care utilization and transfer
payments from social programs. For additional evidence, see Figure 2 in Chay and Greenstone (2003).
34Chay and Greenstone (2003) �nd that �the entire decline in TSPs during the early 1970s occurred in

nonattainment counties and that two-thirds of the 1971�1974 decline in these counties occurred between 1971
and 1972, the �rst year that the 1970 CAAA was in force. Consequently, this study uses nonattainment
status as an instrumental variable for 1971�1972 changes in TSPs to estimate their impact on changes in
infant mortality.�
35Table 2 in Chay and Greenstone (2003) shows that the observable characteristics of nonattainment and

attainment counties near the federal TSPs ceiling are very similar.
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counties close to the regulatory threshold. They estimate that a 1% decline in TSPs results
in a 0.5% decline in the infant mortality rate at the county level.
However, in the presence of heterogeneous e¤ects of a continuous treatment, an ATE

interpretation for the IV estimate in Chay and Greenstone (2003), which bears policy im-
plications, is bounded by the existence of the sorting bias, which probably results from the
county-level residential choice. The IV estimate only has a local ATE interpretation for
�compliers�if the sorting bias exists. In Chay and Greenstone (2003), �for simplicity, it is
assumed that the �true�e¤ect of exposure to particulates pollution is homogeneous across
infants and over time.�Focusing on the counties near the threshold, the IV estimate in Chay
and Greenstone (2003) will regain the ATE interpretation because the unobservables and
their interactions with the treatment are likely to be precluded by the �borderline experi-
ment�, but this gain is at the cost of e¢ ciency. The IV estimates lose statistical signi�cance
for the chosen range near the threshold in Chay and Greenstone (2003). Following and on
the basis of Chay and Greenstone (2003), I extend the RD design�s applicability to the con-
tinuous treatment case and exploit over-identifying restrictions that are implied by its dual
nature. The proposed GMM estimates demonstrate improvement upon the e¢ ciency-bias
trade-o¤. Besides, these over-identifying restrictions are shown to be useful in detecting
non-random sorting, which occurs when the treatment e¤ect heterogeneity is correlated with
the selection variable, i.e. TSPs in 1970. The over-identifying restrictions are essentially the
counterpart for the correction terms with a binary treatment, both of which can be used to
detect the sorting bias that invalidates an estimate�s ATE interpretation.

5.2.1 Assignment rule for 1972 county-level TSPs nonattainment status

Chay and Greenstone (2003)�s determination of the 1972 TSPs attainment/nonattainment
designations is based on the dates associated with the passage and enforcement of the 1970
CAAA. On December 31, 1970, President Richard Nixon signed the 1970 CAAA, which
was followed by the EPA�s �nal publication of the National Ambient Air Quality Standards
(NAAQS) four months later on April 30, 1971, that speci�ed the national TSPs standards.
On August 14, 1971, the EPA published �Requirements for Preparation, Adoption, and
Submittal of Implementation Plans (SIPs)�in the Code of Federal Regulations (CFR). This
set forth how states were to write their SIPs to achieve compliance with the NAAQS by
1975. Finally, the SIPs were due to the EPA in January, 1972.36

The timeline conveys important information that counties and plants were not likely to
know what the EPA air quality standards would be when making decisions on emissions in
1970. This fact precludes non-random sorting, such as �avoidance�, of counties near the
regulatory threshold, which invalidates the RD analysis.37

36Appendix Table 1 in Chay and Greenstone (2003) summarizes these dates.
37More details about the assignment rule for 1972 county-level TSPs attainment/nonattainment status

are provided in the Data Appendix in Chay and Greenstone (2003).
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5.2.2 Identi�cation strategy based on an RD design

Chay and Greenstone (2003)�s identi�cation strategy based on an RD design using 1971�1972
�rst-di¤erenced data can be summarized as follows (�x71�72 = x1972 � x1971).

regulation status1972 �! �TSP71�72 �! � IMR71�72
- " - "

TSP70 �unobservables71�72
" %

unobserved shocks70

+ near regulation cuto¤ (�borderline experiment�)

regulation status1972 �! �TSP71�72 �! � IMR71�72
- " - "

TSP70 �unobservables71�72
"

unobserved shocks70

The above mechanism reveals that the inclusion of county �xed e¤ects or the use of the
�rst-di¤erenced data can still be biased if �unobservables71�72 a¤ect both �TSP71�72 and
�IMR71�72.38 Furthermore, the regulation status in 1972, which is determined by TSP70, will
not be a valid instrument for �TSP71�72 is there are unobserved shocks in 1970 that a¤ect
both TSP70 and �unobservables71�72 and eventually �TSP71�72 and � IMR71�72. The ex-
clusion restriction on the instrumentality of the regulation status in 1972 is therefore violated.
However, near the regulation cuto¤, the validity of the instrumentality of 1972�s regulation
status can be guaranteed to a large extent. Since the regulation status in 1972 is a discon-
tinuous function of 1970 pollution levels,39 near the cuto¤ point the �borderline experiment�
will preclude the impacts of the unobserved shocks in 1970 on �unobservables71�72. Chay
and Greenstone (2003) uses the regulation status in 1972 as the instrument for �TSP71�72
and conducts an IV estimation for the e¤ect of TSPs on IMRs based on the ratio of two
reduced-form e¤ects: the impact of 1972 nonattainment status on improvements in air qual-
ity, and its association with declines in infant mortality. Their estimator is illustrated as
follows:

�IMR71�72  regulation status1972
�TSP71�72  regulation status1972
= �IMR71�72  �TSP71�72

38Table 4 in Chay and Greenstone (2003) shows that the �xed e¤ects association between TSPs and infant
mortality is small and sensitive to speci�cation, which is consistent with potential biases due to omitted
variables.
39Footnote 13 in Chay and Greenstone (2003): �If T avgc70 and T

max
c70 are the annual geometric mean and the

2nd highest daily TSPs concentrations, respectively, then the actual regulatory instrument used is 1fT avgc70 >
75�g=m3 or Tmaxc70 > 260�g=m3g. Only six counties were nonattainment in 1972 for exceeding the 2nd highest
daily concentration threshold, but not the annual geometric mean ceiling.�
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As an extension to Chay and Greenstone (2003), we herein point out that in the above
mechanism TSP70 and its interaction with the regulation status in 1972 are additional valid
instruments for �TSP71�72 because both of their inclusion and exclusion restrictions are
satis�ed. Thus the impact of TSPs on IMRs can be over-identi�ed and a GMM estimator
can be employed. In Table 3 we show the e¢ ciency gain of the GMM estimates over the IV
estimates in Chay and Greenstone (2003). The test, based on the Hansen J-statistic, provides
checks for the validity of the GMM estimate�s ATE interpretation for a prede�ned range
through the checks for the validity of instruments for the chosen range. This speci�cation
check is also valid if there exist heterogeneous treatment e¤ects as long as the heterogeneity
is uncorrelated with the selection rule in the chosen range.

Table 3: GMM and IV Estimates for the Counties with Their 1970 Geometric Mean TSPs near the EPA�s
Regulation Threshold

1970 geometric mean TSPs between
45 and 105 �g=m3 60 and 90 �g=m3 65 and 85 �g=m3

(1) (2) (3) (4) (5) (6)
A: IV estimates

Mean TSPs
5:53
(8:32)

7:41
(5:83)

12:98
(8:06)

13:56�

(7:08)
18:05
(15:43)

19:68
(15:38)

B: GMM estimates

Mean TSPs
14:09�

(8:12)
10:11�

(5:78)
13:46�

(7:88)
10:14�

(5:99)
10:96�

(8:43)
12:82�

(7:54)
p-value for J-stat. (dof=2) 0:393 0:097 0:954 0:376 0:637 0:688
Change in natality vars. N Y N Y N Y
1971 level in natality vars. N Y N Y N Y
Sample Size 316 315 171 170 116 115

Notes : The dependent variables are the 1971�1972 �rst-di¤erences in the number of infant deaths due to internal causes
within one-year per 100,000 live births. The columns correspond to subsamples of counties with annual geometric mean readings
of TSPs in 1970 in the speci�ed range, where nonattainment counties account for about half of the sample. Results are from
(A) the IV estimation with 1971�1972 changes in mean TSPs instrumented by nonattainment status in 1972; (B) the two-step
e¢ cient GMM estimation, with 1971�1972 changes in mean TSPs instrumented by nonattainment status in 1972, 1970 geometric
mean TSPs and their interaction in columns (1) through (6). Both the IV and the GMM estimator allows for heteroskedasticity
and state-level clustering in calculating the standard errors. The standard errors in parentheses are robust to heteroskedasticity
and clustering on the state-level. Also presented are the p-values and degrees of freedom (dof) from the Hansen J-statistic
for testing the over-identifying restrictions based on the GMM criterion function evaluated at the optimal weighting matrix.
Analyses are weighted by the sum of total births in 1971 and 1972; �*� indicates signi�cance at 10% level; �**� indicates
signi�cance at 5% level; �***� indicates signi�cance at 1% level.

For columns (1)�(6), we use the same speci�cation to be consistent with Chay and Green-
stone (2003). In Panel A of Table 3, the IV estimator is proposed by Chay and Greenstone
(2003). Panel B of Table 3 uses the GMM estimator proposed by this paper. The GMM
estimates show e¢ ciency gain relative to the IV estimates in all cases, and the GMM point
estimates become statistically signi�cant. Furthermore, the GMM estimates stay robust for
various speci�ed ranges. It is con�rmed that a 1 �g=m3 TSPs reduction results in 10-14 fewer
infants deaths per 100,000 births for the counties intervened by the EPA�s TSP regulation.
The estimates are about 11%�17% higher than the �ndings in Chay and Greenstone (2003).
Aided by the RD design, the e¢ ciency gains of using GMM and the resulted statistical
signi�cance of these estimates bear important implications. If we multiply the estimates by
the 1.52 million births that occurred in nonattainment counties in 1972, then a 1 �g=m3

enforced TSPs reduction can result in 150�220 fewer infants deaths for a randomly selected
nonattainment county. This ATE interpretation will be checked by the p-value of the Hansen
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J-statistic under over-identi�cation. For example, column (2) suggests the invalidation of
the ATE interpretation, which is possibly due to non-random sorting biases.
As we extend the RD design�s applicability from a binary treatment (P-900 intervention)

to a continuous treatment (di¤erent levels of TSPs), in addition to exploiting the over-
identifying restrictions for e¢ ciency gains, we can also use these over-identifying restrictions
as a check for the validity of the instruments for a chosen range. As previously mentioned,
the over-identifying restrictions are essentially the counterparts for the correction terms with
a binary treatment, both of which can be used to detect the sorting bias that invalidates an
estimate�s ATE interpretation. It is worth emphasizing that in the CAAA example, such
speci�cation checks are not possible in conventional cross-sectional and �xed e¤ects analyses
in the absence of the RD design.

6 Conclusion

This paper discusses how to conduct program evaluations in virtue of the dual nature of a
regression discontinuity design� both the �borderline experiment�and the instrumentality
are implied by the selection rule. Focusing on the fuzzy RD design, this paper aims to
identify and estimate the average treatment e¤ect under both selection-on-observables and
selection-on-unobservables. Root-N consistent and asymptotically normal estimators are
derived. Both of their large and small sample properties are investigated. The proposed
estimators allow for general functional forms for the selection biases. Speci�cation tests for
the plausibility of statistical assumptions are also suggested by these estimators. Empirical
examples show that proposed estimators help to balance a study�s internal validity with its
external validity and they are easy to implement using standard software.
Previous work on the regression discontinuity (RD) design has emphasized identi�cation

and estimation of an e¤ect at the selection threshold, which pinpoints the measurement of
the size of the discontinuity. In contrast, one contribution of this paper is to investigate
the trade-o¤ between e¢ ciency and bias in estimating the average treatment e¤ect (and
average e¤ects local to the discontinuity) when the e¤ects covary with the observables and
the unobservables. The plausibility of the average treatment e¤ect identi�cation will depend
on the point in the distribution where the discontinuity occurs. At a minimum, our approach
allows for e¢ cient estimation of an average e¤ect in a range of data local to the discontinuity
as well as speci�cation tests of the assumptions necessary for the validity of the chosen range.
The choice of the range local to the discontinuity should be guided by the research question
or the population of policy interest before estimations take place.
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A Properties of the Second Moments
The following results are frequently invoked in our analysis. Consider four random variables, x, y, z and d,
where d is binary.40

1. Cov(x; y) = Covx(x;E(yjx))

Proof. RHS is
Covx(x;E(yjx)) = E[(x� E(x))(E(yjx)� E(y))]

= E[E(xyjx)� E(x)E(yjx)] = Cov(x; y)
which equals LHS.

2. Cov(d; y) = V ar(d) [E(yjd = 1)� E(yjd = 0)] for binary d

Proof. LHS is
Cov(d; y) = Pr(d = 1)E(yjd = 1)� Pr(d = 1) [Pr(d = 0)E(yjd = 0) + Pr(d = 1)E(yjd = 1)]

= Pr(d = 1) [E(yjd = 1)� Pr(d = 0)E(yjd = 0)� Pr(d = 1)E(yjd = 1)]
= V ar(d) [E(yjd = 1)� E(yjd = 0)]

which equals RHS.

3. Cov(x; y) = Covz(E(xjz);E(yjz)) + Ez(Cov(x; yjz))

Proof. RHS is
Covz(E(xjz);E(yjz)) + Ez(Cov(x; yjz))
= Ez(E(xjz)E(yjz))� Ez(E(xjz))Ez(E(yjz)) + Ez (E(xyjz)� E(xjz)E(yjz))
= Ez(E(xjz)E(yjz))� E(x)E(y) + E(xy)� Ez (E(xjz)E(yjz))
= E(xy)� E(x)E(y)

which equals LHS.

4. E [(y � E(yjx))y] = E [V ar(yjx)] = E
�
(y � E(yjx))2

�
Proof. LHS is

E [(y � E(yjx))y] = EfE [(y � E(yjx))y] jxg = E[E(y2jx)� E2(yjx)] = E [V ar(yjx)]
= EfE

�
(y � E(yjx))2jx

�
g = E

�
(y � E(yjx))2

�
which equals RHS.

5. E [(x� E(xjz))(y � E(yjz))] = E [(x� E(xjz))y] = E [x(y � E(yjz))]

Proof. LHS is
E [(x� E(xjz))(y � E(yjz))] = E[(x� E(xjz))y]� EfE [(x� E(xjz))E(yjz)] jzg

= E[(x� E(xjz))y]� Ef[E(xjz)� E(xjz)]E(yjz)g
= E[(x� E(xjz))y]

E [(x� E(xjz))(y � E(yjz))] = E[x(y � E(yjz))]� EfE [E(xjz)(y � E(yjz))] jzg
= E[x(y � E(yjz))]� EfE(xjz)[E(yjz)� E(yjz)]g
= E [x(y � E(yjz))]

which equals RHS.

40LHS and RHS refer to �left-hand side�and �right-hand side�, respectively.
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B Identi�cation of Treatment E¤ects
B.1 Proof of Theorem 1
Under Assumption 1 and Assumption 3, observed outcomes can written as

y = y0 + (y1 � y0)d
= g0(z

�) + (� + �(z�))d+ e, where e � u0 + d(u1 � u0)
ATE is de�ned as E(� + �(z�)) here. So the observed outcomes can be rewritten as

y = g0(z
�) + E(� + �(z�))d+ (�(z�)� E(�(z�)))d+ ee, where ee � e+ d(� � E(�))

Under De�nition 1 and Assumption 3, we have

E(eejz�) = E(e+ d(� � E(�))jz�) = E(ejz�) + E(djz�)E(� � E(�)jz�)
= E(u0 + d(u1 � u0)jz�) + E(djz�)E(� � E(�))
= 0 + E(d(u1 � u0)jz�) + 0 (because E(u0jz�) = 0 = E(u1jz�))
= 0 + E(djz�)E(u1jz�)� E(djz�)E(u0jz�) + 0 (because u0 ? djz� and u1 ? djz�)
= 0

Therefore, we have

E(yjz�) = g0(z�) + E(� + �(z�))E(djz�) + (�(z�)� E(�(z�))E(djz�)
We treat g0(z�) as a nuisance parameter, which is to be di¤erenced out.

y � E(yjz�) = E(� + �(z�))(d� E(djz�)) + (�(z�)� E(�(z�))(d� E(djz�)) + ee
We next verify two moment equations:

0 = E[ee(d� E(djz�))]
0 = E[ee(�(z�)� E(�(z�))(d� E(djz�))]

Under De�nition 1 and Assumption 3, we have

E[ee(d� E(djz�))jz�] = E[(u0 + d(u1 � u0) + d(� � E(�))) (d� E(djz�))jz�]
= E[u0(d� E(djz�))jz�] + E[d(u1 � u0)(d� E(djz�))jz�]
+ E[d(� � E(�))(d� E(djz�))jz�]
= 0 + E[(� � E(�))E(V ar(djz�))]
= 0

)
�
E[ee(d� E(djz�))] = EfE[ee(d� E(djz�))jz�]g = 0
E[ee(�(z�)� E(�(z�))(d� E(djz�))] = 0

Under Assumption 4, we have the following moment equations:

0 = E[(d� E(djz�))ee]
0 = E[(d� E(djz�))(w � E(w))0ee]ee = y � E(yjz�)� E(� + �(z�))(d� E(djz�))� (d� E(djz�))(w � E(w))0

This implies:

0 = Ef(d� E(djz�))[y � E(yjz�)� E(� + �(z�))(d� E(djz�))� (d� E(djz�))(w � E(w))0]g
0 = Ef(d� E(djz�))(w � E(w))0[y � E(yjz�)� E(� + �(z�))(d� E(djz�))� (d� E(djz�))(w � E(w))0]g
To simplify notations, we de�ne the following:

x1 � d� E(djz�)
x2 � (d� E(djz�))(w � E(w))ey � y � E(yjz�)

and, we have: ey = E(� + �(z�))x1 + x02 + ee, and E(eejx1;x2) = 0
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This gives: �
E(x21) E(x1x02)
E(x1x2) E(x2x02)

�
�
h
E(� + �(z�))



i
=

�
E(x1ey)
E(x2ey)

�
where

E(x21) = E[ (d� E(djz�))
2
] = E(V ar(djz�))

E(x1x2) = E[ (d� E(djz�))2 (w � E(w))] = E[V ar(djz�) (w � E(w))]
E(x2x02) = E[ (d� E(djz�))

2
(w � E(w)) (w � E(w))0] = E[V ar(djz�) (w � E(w)) (w � E(w))0]

E(x1ey) = E [(d� E(djz�)) (y � E(yjz�))] = E [(d� E(djz�)) y]
= E(x1y)

E(x2ey) = E [(d� E(djz�))(w � E(w)) (y � E(yjz�))] = E [(d� E(djz�))(w � E(w))y]
= E(x2y)

Solve for E(� + �(z�)) and :h
E(� + �(z�))



i
=

�
E(x21) E(x1x02)
E(x1x2) E(x2x02)

��1
�
�
E(x1y)
E(x2y)

�
= E�1

�� x1x2 � ( x1 x02 )
�
E
�� x1x2 � y�

De�ne � � (E(� + �(z�)); 0)0 and x � (x1;x02)
0, and we have the following �least squares�estimator:

� = E�1 (xx0)E (xy)
x = (d� E(djz�); (d� E(djz�))(w � E(w))0)0

We next solve for E(� + �(z�)) and  individually. Using results from Amemiya (1985, page 460), we have�
E(x21) E(x1x02)
E(x1x2) E(x2x02)

��1
=
h

E�1 �E�1BD�1

�D�1CE�1 F�1

i
where

A � E(x21); B � E(x1x02); C � E(x1x2); D � E(x2x02)
E = A�BD�1C = E(x21)� E(x1x02)E�1(x2x02)E(x1x2)
F = D � CA�1B = E(x2x02)� E(x1x2)E�1(x21)E(x1x02)

Thus,

E(� + �(z�))
= E�1

�
E(x1y)�BD�1E(x2y)

�
=
�
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

��1 � �E(x1y)� E(x1x02)E�1(x2x02)E(x2y)�
=
E(x1y)� E(x1x02)E�1(x2x02)E(x2y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

Similarly,

 = �D�1CE�1E(x1y) + F�1E(x2y)

=
�
E(x2x02)� E(x1x2)E�1(x21)E(x1x02)

��1 E(x2y)
� E�1(x2x02)E(x1x2)E(x1y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)
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Therefore,

ATE � E(� + �(z�)) = E(x1y)� E(x1x02)E�1(x2x02)E(x2y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

 =
�
E(x2x02)� E(x1x2)E�1(x21)E(x1x02)

��1 E(x2y)
� E�1(x2x02)E(x1x2)E(x1y)
E(x21)� E(x1x02)E�1(x2x02)E(x1x2)

E(x21) = E(V ar(djz�))
E(x1x2) = E[V ar(djz�) (w � E(w))]
E(x2x02) = E[V ar(djz�) (w � E(w)) (w � E(w))

0
]

E(x1y) = E [(d� E(djz�)) y]
E(x2y) = E [(d� E(djz�))(w � E(w))y]

B.2 Proof of Corollary 1
Proof of Part (1). According to Appendix B.1,

lim
z�!0

�
E(x1y)
E(x2y)

�
= lim

z�!0

�
E(x21) E(x1x02)
E(x1x2) E(x2x02)

�
� lim
z�!0

h
E(� + �(z�))



i
�
lim
z�!0

E(x1y)
0

�
=

�
lim
z�!0

E(x21) 0

0 0

�
�
�
lim
z�!0

E(� + �(z�))


�
lim
z�!0

E(� + �(z�)) =
lim
z�!0

E [(d� E(djz�)) y]

lim
z�!0

E(V ar(djz�))

Under Assumption 3,

lim
z�!0

E(� + �(z�)) = lim
z�!0

�(z�) =
lim
z�!0

E [(d� E(djz�)) yjz�]

lim
z�!0

E[(d� E(djz�))djz�]

=
lim
z�!0

E(ydjz�)� E(yjz�)E(djz�)

lim
z�!0

E(d2jz�)� E2(djz�) = lim
z�!0

Cov(d; yjz�)
V ar(djz�)

= lim
z�!0

E(yjd = 1; z�)� E(yjd = 0; z�) (see Appendix A)

= lim
z�!0

E(y1jd = 1; z�)� E(y0jd = 0; z�)

= lim
z�!0

E(y1jz�)� E(y0jz�) (selection-on-observables)

= ATE(0)
= lim

z�!0
E(y1 � y0jz�) = lim

z�#0
E(y1 � y0jz�) = lim

z�"0
E(y1 � y0jz�)

Recall that y = y0 + d(y1 � y0), and we have:
E(yjz�) = E(y0jz�) + E(djz�)E(y1 � y0jz�) (selection-on-observables)

lim
z�#0

E(yjz�) = lim
z�#0

E(y0jz�) + lim
z�#0

E(djz�) lim
z�#0

E(y1 � y0jz�)

lim
z�"0

E(yjz�) = lim
z�"0

E(y0jz�) + lim
z�"0

E(djz�) lim
z�"0

E(y1 � y0jz�)
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Given the continuity of E(y0jz�), discontinuity of E(djz�) at z� = 0 in Assumption 1 and lim
z�!0

E(y1�y0jz�) =
lim
z�#0

E(y1 � y0jz�) = lim
z�"0

E(y1 � y0jz�) we have

ATE(0) = lim
z�!0

E(y1 � y0jz�) =
limz�#0 E(yjz�)� limz�"0 E(yjz�)
limz�#0 E(djz�)� limz�"0 E(djz�)

= lim
z�!0

E(� + �(z�)) (given by Theorem 1)

Therefore, with a fuzzy RD design, the identi�cation result in Theorem 1 accommodates the conventional
nonparametric result at the cuto¤ point at the limit z� ! 0.
Proof of Part (2). First, recall that under a fuzzy RD design, we have:

ATE = E(� + �(z�))

=
E[y(d� E(djz�))]� E[(�(z�)� E(�(z�)))V ar(djz�)]

E[d(d� E(djz�))]
If we replace Assumption 3 and Assumption 4 with Assumption 2, then �(z�)�E(�(z�)) = 0. We therefore
have:

ATE =
E[y(d� E(djz�))]
E[d(d� E(djz�))]

Using results from Appendix A and under selection-on-observables, we have

E[y(d� E(djz�))]
E[d(d� E(djz�))] =

E (Cov(d; yjz�))
E (V ar(djz�))

=
E [V ar(djz�) (E(yjd = 1; z�)� E(yjd = 0; z�))]

E (V ar(djz�))

=
E [V ar(djz�) (E(y1jd = 1; z�)� E(y0jd = 0; z�))]

E (V ar(djz�))

=
E [V ar(djz�)E(y1 � y0jz�)]

E (V ar(djz�)) (selection-on-observables)

=
E [V ar(djz�)E(y1 � y0)]

E (V ar(djz�)) (Assumption 2)

= E(y1 � y0)
Recall that y = y0 + d(y1 � y0), and we have:

E(yjz�) = E(y0jz�) + E(djz�)E(y1 � y0jz�) (selection-on-observables)
= E(y0jz�) + E(djz�)E(y1 � y0) (Assumption 2)

lim
z�#0

E(yjz�) = lim
z�#0

E(y0jz�) + lim
z�#0

E(djz�)E(y1 � y0)

lim
z�"0

E(yjz�) = lim
z�"0

E(y0jz�) + lim
z�"0

E(djz�)E(y1 � y0)

Given the continuity of E(y0jz�) and discontinuity of E(djz�) at z� = 0 in Assumption 1, we have

E(y1 � y0) =
limz�#0 E(yjz�)� limz�"0 E(yjz�)
limz�#0 E(djz�)� limz�"0 E(djz�)

Under a sharp RD design:

lim
z�#0

E(djz�)� lim
z�"0

E(djz�) = 1) E(y1 � y0) = lim
z�#0

E(yjz�)� lim
z�"0

E(yjz�)

Therefore, we have the result for a fuzzy RD design:

ATE =
E[y(d� E(djz�))]
E[d(d� E(djz�))] =

limz�#0 E(yjz�)� limz�"0 E(yjz�)
limz�#0 E(djz�)� limz�"0 E(djz�)

Therefore, with a fuzzy RD design, the identi�cation result in Theorem 1 accommodates the conventional
nonparametric result with a constant treatment e¤ect at the cuto¤ point at the limit z� ! 0.

42



B.3 Proof of Theorem 2
Consider the observed outcome (y-equation):

y = g0(z
�) + E(� + �(z�))d+ d(�(z�)� E(�(z�)) + E(d(u1 � u0)jz; z�) + eeee � u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + d(� � E(�))

where

E(d(u1 � u0)jz; z�) = Ev[E(d(u1 � u0)jz; z�; v)jz; z�] = Ev[dE((u1 � u0)jz; z�; v)jz; z�]
= Ev[dE((u1 � u0)jv)jz; z�] = Ev[d(�1v + �2v2)jz; z�]
= �1Ev(dvjz; z�) + �2Ev(dv2jz; z�)

Compute

�1Ev(dvjz; z�) = �1
Z +1

�1
1f�0 + �1z + �2z� + s > 0gs�(s)ds

= �1

Z +1

��0��1z��2z�
s�(s)ds

= �1

Z +1

��0��1z��2z�
��0(s)ds

= �1�(�0 + �1z + �2z
�)

and

�2Ev(dv2jz; z�) = �2
Z +1

�1
1f�0 + �1z + �2z� + s > 0gs2�(s)ds

= �2

Z +1

��0��1z��2z�
s2�(s)ds

= �2

Z +1

��0��1z��2z�
(�00(s) + �(s))ds

= �2

Z +1

��0��1z��2z�
�00(s)ds+ �2

Z +1

��0��1z��2z�
�(s)ds

= ��2(�0 + �1z + �2z�)�(�0 + �1z + �2z�) + �2�(�0 + �1z + �2z�)
= �2 [�(�0 + �1z + �2z

�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]
Thus

E(d(u1 � u0)jz; z�) = �1Ev(dvjz; z�) + �2Ev(dv2jz; z�)
= �1�(�0 + �1z + �2z

�)+

�2 [�(�0 + �1z + �2z
�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]

Now we have a new y-equation with two correction functions �(�) and �(�)� (�)�(�) for selectivity bias:
y = g0(z

�) + E(� + �(z�))d+ d(�(z�)� E(�(z�)) + ee
+ �1�(�0 + �1z + �2z

�)

+ �2 [�(�0 + �1z + �2z
�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]ee � u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + d(� � E(�))

) E(eejz; z�) = E(u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + E(d(� � E(�))jz; z�) = 0
However,

E(eejd; z; z�) = E(u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + d(� � E(�))jd; z; z�)
= E(u0jd = 0; z; z�) + E(u1jd = 1; z; z�)
� �1�(�0 + �1z + �2z�)
� �2 [�(�0 + �1z + �2z�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]
6= 0
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Therefore, with two correction functions �(�) and �(�) � (�)�(�) added back in, we still need to use z as
an instrument for d, and ATE� E(� + �(z�)) is just-identi�ed by an IV estimator using E(djz; z�) and
E(djz; z�) [�(z�)� E(�(z�))] as the instruments for d and d [�(z�)� E(�(z�))] respectively.

B.4 Control Functions Approach
Theorem 6 Under Assumption 1, Assumption 3, De�nition 2, and the following additional assumption:

(A3)
� u0u1v �

q z� � N
 �

0
0
0

�
;

 
�20 �01 �0v
�01 �21 �1v
�0v �1v 1

!!
the observed outcome can be rewritten as:

y = g0(z
�) + E(� + �(z�))d+ d(�(z�)� E(�(z�))) + eee

+ �1vd
�(�0 + �1z + �2z

�)

�(�0 + �1z + �2z�)
� �0v(1� d)

�(��0 � �1z � �2z�)
�(��0 � �1z � �2z�)eee � u0 + d(u1 � u0)� E(u0 + d(u1 � u0)jd; z; z�) + d(� � E(�));E(eeejd; z; z�) = 0

With two control functions added back in,

�1v
�(�0 + �1z + �2z

�)

�(�0 + �1z + �2z�)
and � �0v

�(��0 � �1z � �2z�)
�(��0 � �1z � �2z�)

ATE� E(� + �(z�)) can be identi�ed under selection-on-observables due to E(eeejd; z; z�) = 0.
Proof. Consider the observed outcome (y-equation):

y = g0(z
�) + E(� + �(z�))d+ d(�(z�)� E(�(z�))) + E(u0 + d(u1 � u0)jd; z; z�) + eeeeee � u0 + d(u1 � u0)� E(u0 + d(u1 � u0)jd; z; z�) + d(� � E(�))

Compute E(u0 + d(u1 � u0)jd; z; z�) under (A3):
E(u1jd = 1; z; z�) = E(u1jv > ��0 � �1z � �2z�)
= �1vE(vjv > ��0 � �1z � �2z�)
= �1v

�(��0��1z��2z�)
1��(��0��1z��2z�) = �1v

�(�0+�1z+�2z
�)

�(�0+�1z+�2z�)

E(u0jd = 0; z; z�) = E(u0jv 6 ��0 � �1z � �2z�)
= �0vE(vjv 6 ��0 � �1z � �2z�)
= ��0v �(��0��1z��2z

�)
�(��0��1z��2z�) = ��0v

�(��0��1z��2z�)
�(��0��1z��2z�)

E(u0 + d(u1 � u0)jd; z; z�) = �1vd �(�0+�1z+�2z
�)

�(�0+�1z+�2z�)
� �0v(1� d) �(��0��1z��2z

�)
�(��0��1z��2z�)

Now we have a new y-equation with two control functions for both omitted variable bias and selectivity bias:

y = g0(z
�) + E(� + �(z�))d+ d(�(z�)� E(�(z�))) + eee

+ �1vd
�(�0 + �1z + �2z

�)

�(�0 + �1z + �2z�)
� �0v(1� d)

�(��0 � �1z � �2z�)
�(��0 � �1z � �2z�)eee = u0 + d(u1 � u0)� E(u0 + d(u1 � u0)jd; z; z�) + d(� � E(�));E(eeejd; z; z�) = 0

With two control functions added back in, E(� + �(z�)) can be identi�ed under the case of selection-on-
observables (E(eeejd; z; z�) = 0).
C Estimation of Treatment E¤ects
C.1 Asymptotics for the RD robust Estimator
Based on Theorem 1, a two-stage estimator dealing with both ATE and the explicit part of treatment e¤ect
heterogeneity under a partially linear model is given by

b�RD_robust =  NX
i=1

bxibx0i
!�1 NX

i=1

bxiyi!
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where

yi = g0(z
�
i ) + �di + d(wi � �)0 + eeiee � u0 + d(u1 � u0) + d(� � E(�)), E(eejz�) = E(eejd; z�) = 0bxi = h�di � p(z�i ; b�)� ;�di � p(z�i ; b�)� (wi � b�)0i0 , where wi is a vector including polynomials of z�ib� � bE(wi); p(z�i ; b�) � bE(dijz�i )

� � (�; 0)0

� � ATE � E(� + �(z�)); �(z�) � w0

In the �rst stage, we assume that a consistent estimator for E(djz�) can be obtained parametrically, that is,
E(djz�) is known up to a �nite dimension. Next, de�ne the following

x �
�
(d� p(z�;�)) ; (d� p(z�;�)) (w � �)0

�0 � f(d; z�;w;�; �)
bx � h�d� p(z�; b�)� ;�d� p(z�; b�)� (w � b�)0i0 � f(d; z�;w; b�; b�)

h(z�) � E(yjz�) = g0(z�) + �p(z�;�) + p(z�;�) (w � �)0 
The model de�ned at the population is:

y = x0� + h(z�) + ee;E(eejz�) = E(eejd; z�) = 0
The model in the second stage is:

y = bx0� + h(z�) + error
= bx0� + (x� bx)0� + h(z�) + ee

and the partially linear estimator is:

b�RD_robust =  NX
i=1

bxibx0i
!�1 NX

i=1

bxiyi!

We next show the consistency and asymptotic normality of b�RD_robust .
Proof (Consistency). Given the consistency b� p! � and b� p! �, by Slutsky theorem, p(z�; b�) p! p(z�;�)

and bx p! x. Therefore,

1

N

NX
i=1

bxibx0i p! E(xx0)

Given that E(eejz�) = E(eejd; z�) = 0, we have:
b�RD_robust =  NX

i=1

bxibx0i
!�1 NX

i=1

bxiyi!

=

 
NX
i=1

bxibx0i
!�1 NX

i=1

bxi[bx0i� + (xi � bxi)0� + h(z�i ) + eei]
!

= � +

 
1

N

NX
i=1

bxibx0i
!�1 "

1

N

NX
i=1

bxi(xi � bxi)0� + 1

N

NX
i=1

bxih(z�i ) + 1

N

NX
i=1

bxieei#
p! � + E�1(xx0) [E(xh(z�)) + E(xee)] = �

Consistency is established straightforwardly.
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Proof (Asymptotic Normality). Recall that

b�RD_robust =  NX
i=1

bxibx0i
!�1 NX

i=1

bxiyi!

=

 
1

N

NX
i=1

bxibx0i
!�1 

1

N

NX
i=1

bxi[bx0i� + (xi � bxi)0� + h(z�i ) + eei]
!

= � +

 
1

N

NX
i=1

bxibx0i
!�1 

1

N

NX
i=1

bxi[(xi � bxi)0� + yi � x0i�]
!

)
p
N
�b�RD_robust � �� =  1

N

NX
i=1

bxibx0i
!�1 

1p
N

NX
i=1

bxi[(xi � bxi)0� + yi � x0i�]
!

Given the consistency b� p! � and b� p! �, by Slutsky theorem, p(z�; b�) p! p(z�;�) and bx p! x. Therefore,

1

N

NX
i=1

bxibx0i p! E(xx0) � A0

1p
N

NX
i=1

bxi (yi � x0i�) = 1p
N

NX
i=1

xi (yi � x0i�) + op(1) (under selection-on-observables)

Next, we consider a �rst-order Taylor expansion for bx � f(d; z�;w; b�; b�) at (�0; �0)0:
1p
N

NX
i=1

bxi(xi � bxi)0� = 1p
N

NX
i=1

(� 
 bx0i)0 (xi�bxi)
where

1p
N

NX
i=1

(� 
 bx0i)0 (xi�bxi)
=

1p
N

NX
i=1

(� 
 bx0i)0�� @x
@b�0 (b�� �)� @x

@b�0 (b�� �) + op(1)
�

= � 1
N

NX
i=1

(� 
 bx0i)0 @x
@b�0pN(b�� �)� 1

N

NX
i=1

(� 
 bx0i)0 @x@b�0pN(b�� �) + op(1)
= �B0

p
N(b�� �) + op(1)

with the following de�nition

B0 � E
�
(� 
 x0i)

0 @x

@�0

�
= E

�
(� 
 bx0i)0 @f(d; z�;w;�; �)@�0

�
Now we have:

p
N
�b�RD_robust � �� =  1

N

NX
i=1

bxibx0i
!�1 

1p
N

NX
i=1

bxi[(xi � bxi)0� + h(z�i ) + eei]
!

= A�10
1p
N

NX
i=1

(xi (yi � x0i�)�B0ri(�)) + op(1)
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where we use the in�uence function representation of b:
p
N(b�� �) = 1p

N

NX
i=1

ri(�) + op(1)

E(ri(�)) = 0 and E(xi (yi � x0i�)) = 0
Apply the central limit theorem, we obtain:

p
N
�b�RD_robust � �� d�! N

�
0; A�10 
A�10

�
where

A0 � E(xx0)

 � V ar (x (y � x0�)�B0r(�))

B0 � E
�
(� 
 x0)0 @x

@�0

�
= E

�
(� 
 bx0)0 @f(d; z�;w;�; �)

@�0

�
x �

�
(d� p(z�;�)) ; (d� p(z�;�)) (w � �)0

�0 � f(d; z�;w;�; �)
together with the in�uence function for b�:

p
N(b�� �) = 1p

N

NX
i=1

ri(�) + op(1);E(ri(�)) = 0

Asymptotic normality is established.

C.2 Asymptotics for the Correction Function Estimator
Under selection-on-unobservables with heterogeneous treatment e¤ects, a parameterized model with two
correction functions added back in is:

y = �0 +w
0�1 + �d+ d(w � �)0 + ee

+ �1�(�0 + �1z + �2z
�)

+ �2 [�(�0 + �1z + �2z
�)� (�0 + �1z + �2z�)�(�0 + �1z + �2z�)]

d = 1f�0 + �1z + �2z� + v > 0gee � u0 + d(u1 � u0)� E(d(u1 � u0)jz; z�) + d(� � E(�))
� � E(w)

where E(eejz; z�) = 0; v � N(0; 1); �(�) is normal pdf, �(�) is normal cdf. We use the following de�nitions and
parameterization:

ATE � � � E(� +w0)

g0(z
�) � �0 +w0�1

�(z�) � w0, where w is a vector including polynomials of z�

We also give the following de�nitions to simplify notation: � � (�0; �01; �; 0; �1; �2)0; � � (�0; �1; �2)0;ez �
(1; z; z�)0. The regressors included in the model de�ned at the population are:

x � (1;w0; d; d(w � �)0; �(ez0�);�(ez0�)� (ez0�)�(ez0�))0
� f(d;ez;w;�; �)

Some of the regressors included in the actual model are generated from a random sample, i = 1; 2; � � � ; N .bxi � (1;w0
i; di; di(wi � b�)0; �(ez0ib�);�(ez0ib�)� (ez0ib�)�(ez0ib�))0

� f(di;ezi;wi; b�; b�)
The instruments (both included and excluded) used in the population model are:

z � (1;w0;�(ez0�);�(ez0�)(w � �)0; �(ez0�);�(ez0�)� (ez0�)�(ez0�))0
� g(ez;w;�; �)
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Similarly, some of the instruments included in the actual model are generated from a random sample,
i = 1; 2; � � � ; N . bzi � (1;w0

i;�(ez0ib�);�(ez0ib�)(wi � b�)0; �(ez0ib�);�(ez0ib�)� (ez0ib�)�(ez0ib�))0
� g(ezi;wi; b�; b�)

The problem of generated regressors and generated instruments is caused by b� and b�. The actual model
used for estimation, based on a random sample, is:

yi = bx0i� + errori
di = 1fez0i� + vi > 0g
v � N(0; 1); �(�) normal pdf, �(�) normal cdf

To analyze asymptotic properties, it is useful to rewrite the model in the following way:

yi = bx0i� + errori = bx0� + (xi � bxi)0� + eei;E(eeijezi) = 0
Given the distributional assumption that v � N(0; 1), zi de�ned in the population model are the optimal
instruments if conditional homoskedasticity for V ar(eeijezi) holds. Since we have equal number of endogenous
variables and instruments, the model is just-identi�ed. An instrumental variable (IV) estimator for � with
generated regressors and instruments including two correction functions is:

b�crrf =  NX
i=1

bzibx0i
!�1 NX

i=1

bziyi!

We next show the consistency and asymptotic normality of b�crrf .
Proof (Consistency). Because b� = w and � � E(w), the consistency b� p! � holds because of the law
of large numbers. If b� p! � also holds, then by Slutsky theorem, we have �(ez0b�) p! �(ez0�) and �(ez0b�) p!
�(ez0b�). Therefore, we have

bzi � g(ezi;wi; b�; b�) p! g(ezi;wi;�; �) � zibxi � f(di;ezi;wi; b�; b�) p! f(di;ezi;wi;�; �) � xi
�
)
�
1

N

PN
i=1bzibx0i��1 p! E�1(zx0)

Given that E(eejz) = 0, we have:
b�crrf =  1

N

NX
i=1

bzibx0i
!�1�

1

N

PN
i=1bziyi� p! E�1(zx0)E(zx0)� + E(zee) = �

) b�crrf p! �

Consistency is established straightforwardly.
(Asymptotic Normality). Given the distributional assumption that v � N(0; 1), b� is obtained from a
probit model, and we have b� p�! �. For the correction on the asymptotic variance of b�crrf , recall the in�uence
function representation of a probit model:

p
N(b� � �) = ���E� �2(ez0i�)eziez0i

�(ez0i�) (1� �(ez0i�))
���1 

1p
N

NX
i=1

�(ez0i�)ezi(di � �(ez0i�))
�(ez0i�) (1� �(ez0i�))

!
+ op(1)

=
1p
N

NX
i=1

ri(�) + op(1)

ri(�) � E�1
�

�2(ez0i�)eziez0i
�(ez0i�) (1� �(ez0i�))

�
�(ez0i�)ezi(di � �(ez0i�))
�(ez0i�) (1� �(ez0i�)) and we have E (ri(�)) = 0

Similarly, for b� = w, b� has the following asymptotic properties:
b� p! � and

p
N(b�� �) d! N(0;�w) where �w � V ar(w)
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Consider the IV estimator under just-identi�cation with generated regressors and instruments:

b�crrf =  NX
i=1

bzibx0i
!�1 NX

i=1

bziyi =  NX
i=1

bzibx0i
!�1 NX

i=1

bzi[bx0i� + (xi � bxi)0� + eei]
= � +

 
NX
i=1

bzibx0i
!�1 NX

i=1

bzi[(xi � bxi)0� + eei]
)
p
N(b�crrf � �) =  1

N

NX
i=1

bzibx0i
!�1

1p
N

NX
i=1

bzi[(xi � bxi)0� + eei]
Given that b� p! � and b� p! �, we have �(ez0b�) p! �(ez0�) and �(ez0b�) p! �(ez0�) by Slutsky theorem. And the
consistency also holds for:

bzi � g(ezi;wi; b�; b�) p! g(ezi;wi;�; �) � zibxi � f(di;ezi;wi; b�; b�) p! f(di;ezi;wi;�; �) � xi
) 1

N

PN
i=1bzibx0i p! E(zx0) � A0

To apply the central limit theorem, consider a �rst-order Taylor expansion for bzi � g(ezi;wi; b�; b�) at (�0; �0)0:
1p
N

NX
i=1

bzieei = 1p
N

NX
i=1

�
g(ezi;wi;�; �) + @g(ezi;wi;�; �)

@b�0 (b� � �) + @g(ezi;wi;�; �)
@b�0 (b�� �) + op(1)�eei

=
1p
N

NX
i=1

zieei + 1

N

NX
i=1

�
@g(ezi;wi;�; �)

@b�0 eeipN (b� � �) + @g(ezi;wi;�; �)
@b�0 eeipN (b�� �)�+ op(1)

Because E(eeijezi) = 0, we have the following results:
1

N

NX
i=1

@g(ezi;wi;�; �)
@b�0 eei p! E

�
@g(ezi;wi;�; �)

@b�0 eei� = 0) 1

N

NX
i=1

@g(ezi;wi;�; �)
@b�0 eei = op(1)

1

N

NX
i=1

@g(ezi;wi;�; �)
@b�0 eei p! E

�
@g(ezi;wi;�; �)

@b�0 eei� = 0) 1

N

NX
i=1

@g(ezi;wi;�; �)
@b�0 eei = op(1)

Because
p
N (b� � �) = Op(1), pN (b�� �) = Op(1), and op(1)Op(1) = op(1), we have

1p
N

NX
i=1

bzieei = 1p
N

NX
i=1

zieei + op(1)
Similarly, we consider a �rst-order Taylor expansion for bxi � f(di;ezi;wi; b�; b�) at (�0; �0)0:

1p
N

NX
i=1

bzi(xi � bxi)0� = 1p
N

NX
i=1

(� 
 bz0i)0(xi � bxi)
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where

1p
N

NX
i=1

(� 
 bz0i)0(xi � bxi)
=

1p
N

NX
i=1

(� 
 bz0i)0��@f(di;ezi;wi;�; �)@b�0 (b� � �)� @f(di;ezi;wi;�; �)
@b�0 (b�� �) + op(1)�

= � 1
N

NX
i=1

(� 
 bz0i)0 @f(di;ezi;wi;�; �)@b�0 p
N (b� � �)� 1

N

NX
i=1

(� 
 bz0i)0 @f(di;ezi;wi;�; �)@b�0 p
N (b�� �) + op(1)

= �B0
p
N (b� � �)�B1pN (b�� �) + op(1)

with the following de�nitions:

B0 � E
�
(� 
 z0i)0

@f(di;ezi;wi;�; �)
@�0

�
= E [(�2ez0i� � �1) (ez0i�)�(ez0i�)ziez0i]

B1 � E
�
(� 
 z0i)0

@f(di;ezi;wi;�; �)
@�0

�
= �E (dizi) 0

Combining the expansion results for both bzi � g(ezi;wi; b�; b�) and bxi � f(di;ezi;wi; b�; b�), we have:
p
N(b�crrf � �) =  1

N

NX
i=1

bzibx0i
!�1

1p
N

NX
i=1

bzi[(xi � bxi)0� + eei]
=

 
1

N

NX
i=1

bzibx0i
!�1 

1p
N

NX
i=1

bzi(xi � bxi)0� + 1p
N

NX
i=1

bzieei!

= A�10

 
�B0
p
N (b� � �)�B1pN (b�� �) + 1p

N

NX
i=1

zieei!+ op(1)
We next get the in�uence function representation for b�crrf , substituting the results from the probit model:

p
N(b�crrf � �) = A�10

 
�B0
p
N (b� � �)�B1pN (b�� �) + 1p

N

NX
i=1

zieei!+ op(1)
= A�10

 
�B0

1p
N

NX
i=1

ri(�)�B1
1p
N

NX
i=1

(wi � �) +
1p
N

NX
i=1

zieei!+ op(1)
= A�10

1p
N

NX
i=1

[zieei �B0ri(�)�B1(wi � �)] + op(1)
Under the condition E(eejz) = 0, E (ri(�)) = 0, we have

E(zieei �B0ri(�)�B1(wi � �)) = E(zieei)� E(B0ri(�))� E[B1(wi � �)] = 0
Apply the central limit theorem to:

p
N(b�crrf � �) = A�10 1p

N

NX
i=1

(zieei �B0ri(�)�B1(wi � �)) + op(1)
and we obtain: p

N(b�crrf � �) d�! N
�
0; A�10 
A0�10

�
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where

A0 � E(zx0)

 � V ar(zee�B0r(�)�B1(w � �))
B0 � E [(�2ez0� � �1) (ez0�)�(ez0�)zez0]
B1 � �E (dz) 0

r(�) � E�1
�

�2(ez0�)ezez0
�(ez0�) (1� �(ez0�))

�
�(ez0�)ez(d� �(ez0�))
�(ez0�) (1� �(ez0�))ee � y � x0�

Asymptotic normality is established.
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D Additional Tables
D.1 Average Treatment E¤ect

Mean Bias (1000 replications, N = 100)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 0.0289 0.0355 0.4948 0.1695 0.5875
selectiononobservables: with IV 0.0600 0.0177 0.4948 0.1695 0.5875
omitted variables bias (OVB) only 1.9880 1.8957 0.9826 0.3382 0.9911
OVB + selectivity bias 4.9471 4.7455 2.1060 0.2735 3.2545
OVB + selectivity bias + joint normality 2.9462 2.8456 0.8983 0.5721 1.7829
model II:
selectiononobservables: no IV 0.0386 0.0462 1.0394 0.0491 0.0120
selectiononobservables: with IV 0.0458 0.0351 1.0394 0.0491 0.0120
omitted variables bias (OVB) only 1.9047 1.8784 2.0628 0.0743 0.8115
OVB + selectivity bias 4.5638 4.5124 0.4807 0.3376 2.2141
OVB + selectivity bias + joint normality 2.8240 2.7889 1.4917 0.0955 1.2019

RMSE (1000 replications, N = 100)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 4.7466 0.6957 80.6383 3.3987 0.7497
selectiononobservables: with IV 4.9457 1.2013 80.6383 3.3987 0.7497
omitted variables bias (OVB) only 5.4217 2.2156 143.4809 3.3286 1.1281
OVB + selectivity bias 7.4264 5.0734 145.8808 6.4366 3.3715
OVB + selectivity bias + joint normality 5.9474 3.1365 157.4204 4.8014 1.8877
model II:
selectiononobservables: no IV 0.3862 0.3745 37.0338 1.0361 0.2600
selectiononobservables: with IV 0.4094 0.3970 37.0338 1.0361 0.2600
omitted variables bias (OVB) only 1.9543 1.9279 64.3438 1.4231 0.8721
OVB + selectivity bias 4.6374 4.5885 21.4470 1.5451 2.2740
OVB + selectivity bias + joint normality 2.8681 2.8344 41.1054 1.4485 1.2645

Median Bias (1000 replications, N = 100)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 0.0923 0.0346 0.4342 0.0565 0.5742
selectiononobservables: with IV 0.0316 0.0003 0.4342 0.0565 0.5742
omitted variables bias (OVB) only 1.9636 1.8905 0.7736 0.0810 0.9975
OVB + selectivity bias 4.8245 4.6439 2.7350 0.5569 3.2298
OVB + selectivity bias + joint normality 2.9318 2.8206 1.3526 0.0897 1.7892
model II:
selectiononobservables: no IV 0.0310 0.0301 0.0736 0.0239 0.0107
selectiononobservables: with IV 0.0428 0.0245 0.0736 0.0239 0.0107
omitted variables bias (OVB) only 1.9127 1.8954 0.0138 0.0326 0.8117
OVB + selectivity bias 4.4952 4.4672 0.0001 0.3868 2.2186
OVB + selectivity bias + joint normality 2.8308 2.7867 0.0928 0.0502 1.1882
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Median Absolute Error (1000 replications, N = 100)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 0.6117 0.3426 3.2847 0.9785 0.5786
selectiononobservables: with IV 0.5983 0.3498 3.2847 0.9785 0.5786
omitted variables bias (OVB) only 2.0164 1.8968 4.9119 1.1340 0.9990
OVB + selectivity bias 4.8596 4.6470 8.0034 2.3219 3.2298
OVB + selectivity bias + joint normality 2.9806 2.8218 6.0211 1.3537 1.7892
model II:
selectiononobservables: no IV 0.2560 0.2525 0.9038 0.2504 0.1726
selectiononobservables: with IV 0.2725 0.2681 0.9038 0.2504 0.1726
omitted variables bias (OVB) only 1.9127 1.8954 1.1769 0.2949 0.8117
OVB + selectivity bias 4.4952 4.4672 1.9441 0.5508 2.2186
OVB + selectivity bias + joint normality 2.8308 2.7867 1.4154 0.3757 1.1882

Mean Bias (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 0.1268 0.0562 2.3446 0.0077 0.5608
selectiononobservables: with IV 0.0078 0.0041 2.3446 0.0077 0.5608
omitted variables bias (OVB) only 1.9199 1.9142 2.5725 0.0024 1.0280
OVB + selectivity bias 4.7720 4.7614 4.5130 0.6272 3.3182
OVB + selectivity bias + joint normality 2.8768 2.8700 2.3658 0.0142 1.8234
model II:
selectiononobservables: no IV 0.0056 0.0272 0.0192 0.0016 0.0013
selectiononobservables: with IV 0.0046 0.0033 0.0192 0.0016 0.0013
omitted variables bias (OVB) only 1.8614 1.8590 0.0668 0.0002 0.8119
OVB + selectivity bias 4.5318 4.5270 0.0875 0.4177 2.2190
OVB + selectivity bias + joint normality 2.7913 2.7880 0.0953 0.0002 1.2170

RMSE (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 0.2383 0.1347 66.7925 0.3876 0.5770
selectiononobservables: with IV 0.2093 0.1241 66.7925 0.3876 0.5770
omitted variables bias (OVB) only 1.9318 1.9189 56.2045 0.4598 1.0397
OVB + selectivity bias 4.7801 4.7672 104.0578 1.1280 3.3278
OVB + selectivity bias + joint normality 2.8845 2.8739 69.7028 0.5888 1.8322
model II:
selectiononobservables: no IV 0.1110 0.1122 0.3521 0.1052 0.0775
selectiononobservables: with IV 0.1174 0.1151 0.3521 0.1052 0.0775
omitted variables bias (OVB) only 1.8657 1.8632 0.4750 0.1367 0.8173
OVB + selectivity bias 4.5385 4.5338 0.7774 0.4732 2.2245
OVB + selectivity bias + joint normality 2.7952 2.7919 0.5994 0.1699 1.2227
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Median Bias (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 0.1282 0.0603 0.1677 0.0212 0.5558
selectiononobservables: with IV 0.0022 0.0024 0.1677 0.0212 0.5558
omitted variables bias (OVB) only 1.9193 1.9134 0.4549 0.0326 1.0199
OVB + selectivity bias 4.7813 4.7564 0.7100 0.7258 3.3195
OVB + selectivity bias + joint normality 2.8782 2.8709 0.4865 0.0419 1.8162
model II:
selectiononobservables: no IV 0.0020 0.0254 0.0177 0.0054 0.0001
selectiononobservables: with IV 0.0040 0.0037 0.0177 0.0054 0.0001
omitted variables bias (OVB) only 1.8570 1.8521 0.0377 0.0037 0.8113
OVB + selectivity bias 4.5366 4.5321 0.0594 0.4230 2.2213
OVB + selectivity bias + joint normality 2.7887 2.7851 0.0630 0.0047 1.2171

Median Absolute Error (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS

model I:
selectiononobservables: no IV 0.1570 0.0957 2.1130 0.2546 0.5558
selectiononobservables: with IV 0.1295 0.0875 2.1130 0.2546 0.5558
omitted variables bias (OVB) only 1.9193 1.9134 2.9991 0.2974 1.0199
OVB + selectivity bias 4.7813 4.7564 5.0853 0.8800 3.3195
OVB + selectivity bias + joint normality 2.8782 2.8709 3.7616 0.3940 1.8162
model II:
selectiononobservables: no IV 0.0754 0.0759 0.2210 0.0664 0.0488
selectiononobservables: with IV 0.0842 0.0822 0.2210 0.0664 0.0488
omitted variables bias (OVB) only 1.8570 1.8521 0.3085 0.0956 0.8113
OVB + selectivity bias 4.5366 4.5321 0.4884 0.4230 2.2213
OVB + selectivity bias + joint normality 2.7887 2.7851 0.3733 0.1182 1.2171

D.2 Average Treatment E¤ect at the Cuto¤Point
Mean Bias (1000 replications, N = 100)

Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS
model I:
selectiononobservables: no IV 0.1408 0.0914 0.9599 0.1154 0.4125 1.0020
selectiononobservables: with IV 0.0897 0.0184 0.9599 0.1154 0.4125 1.0020
omitted variables bias (OVB) only 1.6631 1.7695 2.7790 0.1835 1.9911 1.2100
OVB + selectivity bias 3.9383 4.0706 0.9400 0.2617 4.2545 1.4393
OVB + selectivity bias + joint normality 2.5425 2.6481 2.8939 0.3200 2.7829 1.2917

RMSE (1000 replications, N = 100)
Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS

model I:
selectiononobservables: no IV 1.1711 0.4765 87.5649 2.9278 0.6221 2.1466
selectiononobservables: with IV 2.1830 0.7404 87.5649 2.9278 0.6221 2.1466
omitted variables bias (OVB) only 2.7367 1.9444 164.4096 2.4751 2.0627 5.0884
OVB + selectivity bias 4.7186 4.2660 114.5888 4.7444 4.3447 9.0264
OVB + selectivity bias + joint normality 3.4220 2.8091 173.3461 3.7545 2.8512 6.7821
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Median Bias (1000 replications, N = 100)
Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS

model I:
selectiononobservables: no IV 0.1904 0.0982 0.1799 0.0260 0.4258 0.8646
selectiononobservables: with IV 0.0039 0.0098 0.1799 0.0260 0.4258 0.8646
omitted variables bias (OVB) only 1.7695 1.7523 0.7246 0.0159 1.9975 0.8255
OVB + selectivity bias 4.0605 3.9780 2.3025 0.4216 4.2298 0.6515
OVB + selectivity bias + joint normality 2.6747 2.6118 1.2668 0.0151 2.7892 0.7470

Median Absolute Error (1000 replications, N = 100)
Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS

model I:
selectiononobservables: no IV 0.7786 0.3174 2.5319 0.7523 0.4732 0.9483
selectiononobservables: with IV 0.7733 0.3419 2.5319 0.7523 0.4732 0.9483
omitted variables bias (OVB) only 1.8150 1.7523 3.6196 0.8803 1.9975 1.0174
OVB + selectivity bias 4.0700 3.9780 6.2017 1.7324 4.2298 1.4128
OVB + selectivity bias + joint normality 2.6823 2.6118 4.4077 1.1284 2.7892 1.1235

Mean Bias (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS

model I:
selectiononobservables: no IV 0.1327 0.0625 1.7126 0.0088 0.4392 0.8949
selectiononobservables: with IV 0.0003 0.0036 1.7126 0.0088 0.4392 0.8949
omitted variables bias (OVB) only 1.7429 1.7392 1.8772 0.0063 2.0280 0.8910
OVB + selectivity bias 4.0409 4.0366 3.3763 0.3381 4.3182 0.8351
OVB + selectivity bias + joint normality 2.6171 2.6128 1.7395 0.0019 2.8234 0.8894

RMSE (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS

model I:
selectiononobservables: no IV 0.3245 0.1568 53.4452 0.3043 0.4596 0.9498
selectiononobservables: with IV 0.3170 0.1576 53.4452 0.3043 0.4596 0.9498
omitted variables bias (OVB) only 1.7739 1.7479 50.8568 0.3771 2.0340 0.9976
OVB + selectivity bias 4.0684 4.0473 76.4218 0.8119 4.3256 1.1277
OVB + selectivity bias + joint normality 2.6425 2.6202 54.6139 0.4891 2.8291 1.0474

Median Bias (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS

model I:
selectiononobservables: no IV 0.1353 0.0631 0.0578 0.0057 0.4442 0.8761
selectiononobservables: with IV 0.0179 0.0070 0.0578 0.0057 0.4442 0.8761
omitted variables bias (OVB) only 1.7574 1.7321 0.2352 0.0303 2.0199 0.8552
OVB + selectivity bias 4.0515 4.0260 0.3011 0.4279 4.3195 0.7922
OVB + selectivity bias + joint normality 2.6304 2.6128 0.2730 0.0418 2.8162 0.8498

Median Absolute Error (1000 replications, N = 1000)
Cases Robust Robinson Corr Func Ctrl Func OLS 2SLS

model I:
selectiononobservables: no IV 0.2258 0.1066 1.4563 0.1968 0.4442 0.8761
selectiononobservables: with IV 0.2107 0.1127 1.4563 0.1968 0.4442 0.8761
omitted variables bias (OVB) only 1.7574 1.7321 2.0610 0.2509 2.0199 0.8552
OVB + selectivity bias 4.0515 4.0260 3.5682 0.5913 4.3195 0.8004
OVB + selectivity bias + joint normality 2.6304 2.6128 2.6607 0.3241 2.8162 0.8498
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E Additional Figures
Appendix Figure 1
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Appendix Figure 2
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Appendix Figure 3
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Appendix Figure 4
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Appendix Figure 5
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Appendix Figure 6
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