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ABSTRACT 1 

Using a transfer policy analysis, we evaluate the effectiveness of real-time detection of fecal 2 

indicator bacteria (FIB) at reducing gastrointestinal illness and improving the net benefit of 3 

marine beach advisories over the status quo. We compare hypothetical advisory scenarios that 4 

assume a different water quality monitoring technology (none, culture-based assay, or rapid 5 

detection). Illness estimates are made using two epidemiological models that relate enterococci 6 

densities to gastrointestinal illness (GI). The health costs associated with GI are compared to the 7 

recreational value of swimming to determine net economic benefit. We find that rapid detection 8 

results in significantly fewer swimming-related GI with only one of the two epidemiological 9 

models.  Beachgoer compliance with advisories is important in determining net benefit, but 10 

monitoring costs are not. Notably, non-compliance with advisories has the highest expected net 11 

benefit regardless of the speed of reporting. This finding is somewhat sensitive to the values 12 

chosen for Vhealth and Vrec under one epidemiologic model but not the other.  In general, beaches 13 

are more likely to benefit from implementation of rapid detection technologies for monitoring 14 

when over 4% or 15% of the water quality measurements result in a change in advisory status, 15 

depending on the epidemiology model used. 16 
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INTRODUCTION 1 

Federal and state laws establish criteria based on fecal indicator bacteria (hereafter referred to as 2 

FIB) including total coliform (TC), fecal coliform (FC), and enterococci (ENT) to determine 3 

when water quality conditions at recreational marine beaches are unfit for human contact (1,2). 4 

The practice of using FIB to distinguish periods of unacceptably high risk is based on 5 

epidemiology studies (3-5) that show correlations between human health symptoms (including 6 

stomach pain, diarrhea, and respiratory ailments) and FIB concentrations in marine water known 7 

to receive human fecal waste.  8 

 9 

According to state and federal FIB criteria, bacterial pollution is widespread at United States 10 

(US) coastal, river and lake beaches. In 2005, there were over 20,000 beach closures and 11 

advisories, compared to just 6,200 in 1999 (6), a consequence of more stringent water quality 12 

criteria and an increase in the number of beaches monitored. Several studies have questioned the 13 

efficacy of current methods of issuing closures and advisories because testing methods for the 14 

quantification of FIB are culture-based, requiring more than 1-day (herein referred to as 1-d) of 15 

incubation. The 1-d time lag between sample collection and data availability for coastal 16 

managers can result in mis-notification of the beach-going public (7,8). Beaches failing the 17 

health criteria may be placed under advisory 1-d late while beaches returning to acceptable 18 

standards can remain posted erroneously. 19 

 20 

To overcome this problem, the US Environmental Protection Agency (US EPA) and others 21 

(9,10) are developing rapid detection methods for FIB. Exploration of expedited FIB detection 22 

technologies is mandated by the US Beaches Environmental Assessment and Coastal Health Act 23 
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of 2000 (11). Quantitative polymerase chain reaction (QPCR), transcription mediated 1 

amplification, and dual-wavelength fluorimetry are promising rapid detection technologies that 2 

take as little as three hours to produce bacterial counts (9,10,12). QPCR measurements of ENT 3 

correlate with swimmer gastrointestinal illness (GI) in the Great Lakes (13), indicating the tool 4 

has potential for use in protecting human health. If beach managers were to switch from culture-5 

based techniques to a rapid detection technology, then unintended management errors resulting 6 

from the 1-d lag would be eliminated. Rapid detection would also help in determining when to 7 

lift a closure or advisory triggered by a storm or sewage spill. One issue that would not be 8 

addressed by rapid detection, however, is the variability of FIB densities observed at time scales 9 

less than a day (14).  10 

 11 

In the present study, we determine the extent to which using a rapid-detection technology in day-12 

to-day beach management would reduce incidence of recreational waterborne illness and 13 

increase net benefits among swimmers compared to the status quo. This is accomplished using a 14 

transfer policy analysis (15) that retrospectively examines hypothetical monitoring scenarios at a 15 

popular beach in southern California (CA). We extend the approaches taken in Rabinovici et al. 16 

(8) and Hou et al. (16) by introducing a mechanism for testing how sensitive the policy analysis 17 

outcome is to the level of compliance potential swimmers exhibit toward advisories. We 18 

compare three scenarios: (1) the beach is placed under a swimming advisory 1-d after CA water 19 

quality criteria are exceeded (as currently occurs owing to the 1-d required for culturing FIB), (2) 20 

the beach is placed under advisory on the same day CA water quality criteria are exceeded (as 21 

would occur if a rapid detection method were used to determine FIB densities), and (3) the beach 22 

is never placed under advisory. Illness estimates under each scenario are obtained using two 23 
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available epidemiological models for the relationship between ENT and excess gastrointestinal 1 

illness (GI). The health costs associated with excess GI (17) are compared to the recreational 2 

value of a southern CA beach visit involving swimming (18-20) to determine the net benefit of 3 

rapid detection to potential swimmers.  4 

 5 

The results are used to address the following five questions: (1) Which monitoring technology 6 

scenario results in the lowest predicted incidence of GI? (2) Does rapid detection reduce illness 7 

rates significantly more than 1-d lagged advisories, compared to never placing the beach under 8 

advisory? (3) Which policy scenario results in the highest net benefit in aggregate for swimmers? 9 

(4) Does rapid detection result in significantly higher net benefit for swimmers than 1-d lagged 10 

advisories? (5) What are the key sensitivities and uncertainties involved in answering the above 11 

questions? 12 

 13 

MATERIALS AND METHODS 14 

Water Quality Data. Our analysis focuses on Huntington State Beach (HSB) in Orange County, 15 

CA (Figure 1). HSB was selected for analysis because of its rich water quality and attendance 16 

records and importance as one of the most visited beaches in the nation (approximately 1.9 17 

million visits were made to HSB in 2000 (21)). We use publicly available TC, FC, and ENT data 18 

sampled at four monitoring stations within HSB during the summer of 2000 (defined as the 99 19 

days between Memorial Day – 29 May and Labor Day – 4 September) (22). When an FIB 20 

density is reported as under or over the method’s detection limit, we assumed the FIB density 21 

was equal to the detection limit (14). Further details regarding the FIB data are found in 22 

Supporting Information (SI). 23 
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 1 

In CA, violation of any one of seven water quality criteria (given in SI) requires a beach be 2 

placed under a swimming advisory (also referred to as “posted”). An advisory is distinct from a 3 

closure in that it is not enforced—swimmers are allowed to decide whether or not to enter the 4 

water. Advisories are intended to provide a binary signal to potential swimmers about whether 5 

FIB levels are above or below state standards at a particular site. Note that if all visitors decide 6 

not to swim once they see an advisory is in place, an advisory could be behaviorally equivalent 7 

to a closure.  8 

 9 

We use FIB data at each of the four monitoring stations to determine the management decision 10 

(posted or not posted) for each policy scenario for the region of beach closest in proximity to that 11 

monitoring station (Figure 1). In light of studies showing that temporal variation between ENT 12 

on consecutive days exhibits complex behavior (23), we choose to examine policy outcomes 13 

only for the 71 out of 99 days in the summer 2000 season when water quality was actually 14 

measured at HSB rather than attempt to estimate ENT on days when water quality is not 15 

available.   16 

 17 

Visitor Data and Behavioral Assumptions. Daily attendance data for HSB in the summer of 18 

2000 are derived from lifeguard records as reported by Morton and Pendleton (24). In a recent 19 

study by Wade et al. (13), 18.4% and 42.1% of beach-goers reported immersing their heads 20 

during visits to Lake Erie and Lake Michigan beaches, respectively, in 2003. Similarly, 21 

Hanemann et al. found that in the summer of 2000, 43.6% of beach goers in Los Angeles and 22 
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Orange Counties had substantial contact with the ocean water (18). Based on these estimates, we 1 

assume 43% of beach visitors intend to go swimming on any given day.  2 

 3 

We define the number of visitors to the beach multiplied by the percentage of visitors who intend 4 

to swim as the maximum number of “potential swimmers” that are impacted by an advisory. 5 

Potential swimmers are the individuals who would swim at the beach if there were no advisory. 6 

We assume that potential swimmers at HSB distribute themselves evenly along the beach and are 7 

exposed to the ENT density and management decision associated with the closest monitoring 8 

station. Sk represents the number of potential swimmers within the region closest to station k on a 9 

given day (Figure 1). We use the term “swimmers” to specify the number of potential swimmers 10 

who actually swim, conditional on advisory status. For days when no advisory is in effect, all 11 

potential swimmers are swimmers. When an advisory is issued, the two populations can diverge 12 

depending on how many potential swimmers choose to comply with the advisory. 13 

 14 

To our knowledge, the behavioral response of potential swimmers to beach advisories has not 15 

been investigated. Anecdotal evidence suggests that some potential swimmers ignore advisories 16 

and swim despite being informed by a sign on-site about heightened health risks. We introduce a 17 

hypothetical compliance variable c to explore how changes in compliance would affect illness 18 

incidence and net benefits in the management scenarios. Hereafter, c ( 10 ≤≤ c ) denotes the 19 

fraction of potential swimmers that comply with a beach advisory. If 1=c  there is complete 20 

compliance with the advisory (all potential swimmers refrain from entering the water). If 0=c , 21 

all potential swimmers disregard the advisory. 22 

 23 
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Advisory Scenarios. We consider the following three hypothetical policy scenarios: 1 

1. Standard Practice Scenario (SP): Advisories are instituted following receipt of a water 2 

sample result that exceeds any one of seven CA standards, with results available 1-d after 3 

sampling. 4 

2. Rapid Detection Scenario (RD): Advisories are instituted following receipt of a water 5 

sample result that exceeds any one of seven CA standards, except sampling results are 6 

available for use by mid-morning of the same day. 7 

3. No Intervention Scenario (NI): No advisories are issued. 8 

 9 

The advisory status of each region of beach k, Pk, is set to 1 if an advisory is posted and 0 if not. 10 

Advisories at a monitoring station are assumed to affect only the region of beach closest to that 11 

monitoring station (Figure 1). In SP and RD, advisories remain in effect until a subsequent 12 

sample result returns the beach to compliance with all standards.  13 

 14 

Incidence of Gastrointestinal Illness. Recreational exposure to waters with elevated FIB can 15 

cause many types and severities of illness. In the present study, we limit our assessment to GI 16 

because it is the most frequent health endpoint associated with exposure to impaired recreational 17 

waters (4,5), though the definition of GI varies between epidemiology studies.  18 

 19 

Currently, two distinct epidemiology models inform FIB standards internationally and in the 20 

United States (US). Kay et al. (25), cited in World Health Organization (WHO) guidelines (26), 21 

studied multiple health outcomes in a randomized, case-controlled group of 548 volunteer 22 

subjects exposed to marine waters in four separate United Kingdom sites in the 1990s. In the US, 23 
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federal and state criteria are informed by cohort studies done at four US sites in the 1970s by 1 

Cabelli et al. (27). The Cabelli et al. model is similar to a model obtained in a meta-analysis of 2 

27 epidemiology studies that includes a mix of cohort (including the sites examined by Cabelli et 3 

al.), event, and randomized trial designs that related water exposure to GI (5). 4 

 5 

In the present study, we compare predicted excess GI using the epidemiology equations for the 6 

relationship between ENT density and GI reported by Kay et al. (25) and Cabelli et al. (27). We 7 

use both because there is ongoing debate in the literature about the appropriate derivation and 8 

use of these models (5, 28-31).  9 

 10 

We adopt the following equation from Cabelli et al. (27) to describe excess risk for a GI episode 11 

involving vomiting, diarrhea, stomach ache or nausea as: 12 

[ ] 1000/1.5)ENTlog(2.24 −= kkR         (1) 13 

where Rk is the excess risk of GI for individuals exposed to ENT at region k, and ENTk is the 14 

ENT concentration in colony forming units (CFU) per 100 mL to which individuals are exposed 15 

when they immerse in the water at region k. Excess risk is measured relative to non-swimmers. 16 

We use Cabelli et al.’s (27) GI health endpoint, rather than highly credible GI, because it is a 17 

suitable match to the health outcomes described by Kay et al. (25). Hereafter, the relationship 18 

between excess risk and ENT described in equation 1 is referred to as model C.  19 

 20 

We use the following equation based on Kay et al. (25): 21 

b
e

eR z

z

k −
+

=
1

          (2a) 22 

where 23 
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3561.23220102.0 −−= kENTz         (2b)  1 

b is the background incidence of GI, and ENTk as previously defined. The dependent variable in 2 

the original form of model K is fecal streptococci (FS), not ENT. According to the WHO, FS and 3 

ENT represent the same bacterial groups, so our substitution of ENT for FS in equation (2b) is 4 

justified (26). The health end-points for this epidemiology model are vomiting, diarrhea, nausea 5 

with fever, or indigestion with fever. We set b= 0.0975, the background risk observed in the Kay 6 

et al. study for non-swimmers. Non-zero estimates of Rk are obtained only for ENTk greater than 7 

32 CFU/100 mL. Because Kay et al. did not observe ENT levels above 158 CFU/100mL, we 8 

assume Rk =  0.378 for all ENT densities above 158 CFU/100mL. Equations 2a and 2b are 9 

hereafter referred to as model K.  10 

 11 

The excess risk predicted as a function of ENT density varies substantially between these two 12 

models (Figure 2). The discrepancy can be attributed to contrasting study designs and the fact 13 

that the studies were conducted at different locations. Together with results from a recent study 14 

that found no statistical association between FIB exposures and 14 different human health 15 

outcomes in marine water predominantly affected by non-point sources (32), these discrepancies 16 

suggest that the relationship between health outcomes and water quality is a major source of 17 

uncertainty for any beach water quality policy analysis. In any case, the analysis presented here 18 

includes the best estimates for GI based on currently available information. Limitations and 19 

justifications for using these two models to estimate excess GI risk at HSB are described by 20 

Given et al. (21). 21 

 22 

Daily GI predicted to occur at HSB is: 23 
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G = Sk Rk (c | Pk )
k

∑           (3) 1 

where all variables have been defined previously. When there is no advisory in place ( 0=kP ), c 2 

= 1 (one). When there is an advisory ( 1=kP ), we allow c to vary between 0 (zero) and 1 (one) to 3 

reflect the level of compliance. For ease of display, we report an average per day estimate of 4 

illnesses for each scenario by dividing the total number of predicted illnesses for that policy 5 

scenario by 71, the number of days included in our analysis. 6 

 7 

Transfer Policy Analysis and Net Economic Impacts. We use transfer policy analysis as the 8 

general framework for integrating the existing epidemiologic models and health and recreation 9 

welfare estimates and applying them to the water quality and visitor population at the case study 10 

site (15,33). Two key factors in the reliability of transfer policy analysis are the quality of the 11 

methods and data used in the original studies and the degree of similarity between the original 12 

and transfer contexts (34). In the present study, we transfer mean point estimate economic values 13 

from contemporary local studies and adjust those values using the Consumer Price Index to year 14 

2000 dollars. We focus on the population of potential swimmers and do not address economic 15 

benefits or costs to local businesses or agencies from concessions, parking fees, and so on. The 16 

economic values that we consider are the benefits of outdoor swimming recreation (which 17 

accrues whenever a beachgoer who intended to swim actually does so) and the health costs 18 

incurred (when an illness results from that swim exposure). This is reasonable because advisories 19 

do nothing to change water quality and can only address exposure risk.  20 

 21 

The expected per day net economic impact to potential swimmers at HSB is calculated as: 22 



12 

[ ] MVRVPcSNB
k

healthkreckk −−= ∑ )|(        (4) 1 

where recV  is the average value of outdoor swim recreation per visitor per day, Vhealth is the 2 

average economic cost of illness (COI) per GI, and M is the scenario-specific cost of monitoring. 3 

We estimate a typical per day cost for collecting monitoring data at $120 for culture-based 4 

assays for the SP scenario and $370 for the RD scenario’s tests (based on professional judgment, 5 

discussed in more detail in SI). The NI scenario is cost-free.  6 

 7 

Expected net benefit is an accepted method for assessing trade-offs in aggregate by weighting 8 

outcomes by their probabilities of occurrence and the number of people affected. For any given 9 

day, the average individual’s net benefit for swimming is given by: healthkrec VRV − . Equation 4 10 

thus expresses the trade-off (unique to each day at each station) between the value of recreation 11 

and the excess risk posed by the ENT densities weighted by the value per health event and 12 

multiplied by the number of swimmers exposed on that day. This formulation implies that 13 

potential swimmers who choose not to swim based on an advisory experience no benefits or 14 

costs. In other words, we consider only changes to the individual’s baseline utility that are 15 

attributable to their beach-going activity. Compliance with advisories is equivalent to “staying 16 

home”. We assume that society prefers the policy that delivers the highest possible positive net 17 

benefit. Results are presented as per day averages for each scenario to simplify comparison and 18 

presentation.  19 

 20 

For this study, we set recV = $16.15, a value specific to southern California beaches (19, 20). We 21 

set healthV  = $35.57 based on a study by Dwight et al. (17) that estimated lost income (wage) and 22 
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direct medical costs of a GI episode of the type described in the Kay et al. paper (25) to an 1 

average adult in Orange County, CA. Additional discussion of the merits and limitations 2 

involved in benefit (economic value) transfer is presented in SI. 3 

 4 
Statistical Confidence. We use a Wilcoxon signed rank test to compare daily excess GI 5 

predicted under each policy scenario. This test is applied to all possible pairings of the three 6 

scenarios at values of c from 0 (zero) to 1 (one) at 0.05 increments. The different outcomes are 7 

compared for each day, and the magnitude and direction of these differences are tested to 8 

determine if there are consistent relationships between the scenarios. The illness distributions 9 

predicted by the epidemiological models meet the assumption of symmetry required by the 10 

Wilcoxon signed rank test. The distributions of net benefit do not, so we test the significance of 11 

the net benefit differences between scenarios with the less restrictive sign test. The above tests 12 

are computed using non-parametric routines in SPSS 11. 13 

 14 

RESULTS 15 

Water Quality and Attendance. During the study period, HSB experienced a total of 30 ENT, 16 

18 FC, and 13 TC single-sample standard (SSS) exceedances as well as 55 ENT geometric mean 17 

standard (GMS) exceedances. Consecutive SSS exceedances occurred 11 times for ENT, 5 times 18 

for FC, and 4 times for TC. In addition, 48 consecutive-day exceedances of the ENT GMS were 19 

observed (Table 1). The number of consecutive exceedances relative to single day exceedances is 20 

important because for advisories lasting two or more days, RD will only yield different results 21 

from SP on the first day of the exceedance sequence and the day following the sequence.  22 

 23 
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Attendance data from the summer of 2000 shows a median daily visitor count of 9,800 and an 1 

inter-quartile range of 11,800 visitors. These numbers are typical for HSB (data not shown).  2 

 3 

Estimated Illness Incidence. Using model C, RD with full compliance results in an average of 4 

77 GI d-1, 48 fewer than under NI (Figure 3). Therefore, in the best case of full compliance, real 5 

time water quality information eliminates 38% of the illnesses that would have occurred if there 6 

were no advisories issued. The SP scenario with full compliance leads to 79 GI d-1, a reduction 7 

of 37% compared to the NI scenario. RD provides no significant improvement in illness 8 

reduction over SP (p>0.05). This is attributable to the low level of excess risk predicted by model 9 

C across the inter-quartile range of observed ENT concentrations (6 – 44 CFU/100mL). If model 10 

C is the most appropriate epidemiologic model for this site, management based on RD does not 11 

produce any appreciable improvement in illness incidence compared to SP. 12 

 13 

In contrast, when model K is used in the policy analysis, the differences between RD and SP are 14 

statistically distinguishable at all values of c above 0 (zero) (p<0.05) (Figure 3). RD with full 15 

compliance results in an average of 65 GI d-1, a 83% reduction in the number of GI that would 16 

have occurred if there were no advisories at all (NI). The SP scenario with full compliance leads 17 

to 144 GI d-1, a reduction of 63% compared to the NI scenario. RD results in significantly fewer 18 

(p<0.05) illnesses relative to both the SP and NI scenarios. 19 

 20 

Under both the C and K models, the differences between NI and each of the two intervention 21 

scenarios are statistically significant (p<0.05) whenever c > 0 (zero). Therefore, either 22 

monitoring strategy significantly reduces illness relative to never issuing advisories. The 23 
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magnitude of the reduction depends critically on the proportion of potential swimmers that 1 

comply with posted advisories. Compliance with posted warnings affects illness outcomes for 2 

more under model K than model C (Figure 3). Note that even full compliance with advisories 3 

cannot eliminate all GI because concentrations of ENT under the CA water quality standards are 4 

still associated with excess illness (Figure 2). As many as 4% (model C) or 24% (model K) of 5 

swimmers may experience GI as a result of water conditions in compliance with the CA ENT 6 

SSS.  7 

 8 

Expected Net Benefits. The NI scenario creates a higher expected net benefit than either of the 9 

two monitoring scenarios (net benefits for NI are $74,870d-1 and $65,397d-1 using models C and 10 

K, respectively). Net benefits are highest for both RD and SP when compliance is lowest—in 11 

other words, when visitors “choose” to make these two scenarios as similar as possible to NI by 12 

ignoring the advisories (Figure 4). Thus, non-compliance with advisories has the highest 13 

expected net benefit regardless of the speed of reporting.  14 

 15 

At c = 0, the net benefits of SP and RD differ from NI only because of the costs associated with 16 

monitoring. For RD at c = 0, net benefits are $74,378 d-1 using model C and $64,905 d-1 using 17 

model K. For SP at c = 0, net benefits are $74,710 d-1 using model C and $65,237 d-1 using 18 

model K. Net benefits are consistently lower when model K is used because it predicts 19 

significantly (p<0.05) more GI than does model C for the same ENT density (Figure 2). 20 

 21 

When model C is used, the net benefit provided by RD exceeds that of SP whenever compliance 22 

is above 0.17. However, the null hypothesis that the RD and SP scenarios provide the same net 23 
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benefits cannot be rejected at any level of c (p>0.05). This is largely because there is little 1 

difference in GI between the two scenarios under model C (Figure 3).  2 

 3 

The policy analysis using model K gives contrasting results. There is a significant difference 4 

(p<0.05) between the net benefits provided by all three scenarios. Above c of 0.07, the net 5 

benefit provided by RD exceeds that of SP. In other words, 93% of swimmers would have to be 6 

ignoring advisories for SP scenario net benefits to be less than those predicted in the RD 7 

scenario. At that extreme, the SP scenario provides higher net benefit only because of its lower 8 

testing costs. With full compliance (c = 1), RD provides $4,309 more net benefit per day than 9 

SP.  10 

 11 

DISCUSSION 12 

RD does not necessarily reduce illness rates significantly relative to SP. Using water quality 13 

and visitor data from HSB in the summer of 2000 and the best available epidemiologic models, 14 

we find that both RD and SP reduce the number of GI predicted to occur compared to having no 15 

advisories. However, RD provides a statistically significant benefit over SP only if excess risk 16 

for GI at HSB is best-described with model K. While model K is used in standard-setting 17 

internationally, it is an “outlier” that predicts more illnesses for the same range of ENT than the 18 

majority of other studies (4,5). Thus, it might be viewed by some experts as providing an over-19 

estimate of GI at HSB. Indeed, both models C and K may over-estimate illness rates if the 20 

finding that traditional FIB in waters near San Diego, CA predominantly affected by non-point 21 

pollution were not associated with health risks to swimmers (34) is replicated elsewhere. That 22 

would call into question the assumption that models of GI-FIB relationships are transferable 23 
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between locations and their suitability for standard-setting. If FIB do not indicate an increased 1 

health risk at a particular site, testing for FIB more rapidly there will do little improve to public 2 

health. 3 

 4 

Issuing no advisories—a practice not permitted under current law—results in the highest 5 

net benefit for potential swimmers. Our analysis assumes that a major purpose of beach 6 

advisories is to reduce the incidence of GI in swimmers while providing a reasonable level of 7 

recreational access. Expected net benefit is the best available mechanism for expressing the 8 

trade-offs between these two disparate objectives. We find that RD does not necessarily result in 9 

significantly higher net benefit than SP for the average swimmer. Also, regardless of the 10 

epidemiologic model used or whether beachgoers comply with advisories, both RD and SP 11 

reduce net benefits compared to NI. Thus, according to our analysis, advisories based on CA 12 

water quality criteria decrease the net benefit compared to issuing no advisories. 13 

 14 

This somewhat surprising result is consistent with previous findings (8,16) that when the best 15 

available epidemiologic and economic assumptions are used, the benefits to the large number of 16 

swimmers outweighs the economic impacts associated with the few who suffer the excess GI.  17 

Our finding does not imply that there would be no value to reducing bacterial contamination, 18 

because total net benefit could still be improved by reducing ENT densities to reduce excess risk. 19 

Under the NI scenario, the estimated number and total cost of GI, respectively, for the 71 day 20 

period at HSB were 8,860 and $315,153 under model C and 27,769 and $987,737 under model 21 

K.  22 

 23 
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Our formula for expected net benefit does not address the degree to which advisories increase 1 

safety awareness, precaution, or indirectly educate beach goers about issues of coastal water 2 

quality. Nor do we address the benefits that arise from either regular FIB monitoring to establish 3 

a baseline understanding of local water quality or intensive sampling efforts designed to track 4 

pollutant sources so they can be remediated. However, these benefits are unlikely to be different 5 

whether FIB detection is rapid or 1-d delayed. 6 

 7 

We reach different conclusions with regard to the potential benefits of using RD depending 8 

on the epidemiologic model used. Under model K, both illness counts and net benefit outcomes 9 

between RD and SP were significantly different, but neither was under model C. This suggests 10 

that in beach policy analyses, careful attention is required in choosing a epidemiologic model 11 

that accords with the specific conditions of the beach(es) under consideration. New 12 

epidemiology studies that focus on understanding health outcomes resulting from exposure to 13 

coastal waters receiving different types and sources of contamination or visited by different 14 

bather populations (e.g., surfers versus swimmers or tourists versus regular local beach users) 15 

will improve future benefit transfer policy analyses.  It is possible that including the economic 16 

costs associated with other types of recreational water-borne illnesses, such as significant 17 

respiratory disease, or including health effects experienced by more susceptible swimmers (for 18 

example, children, elderly, and immuno-compromised) would alter our findings.  19 

 20 

The policy preference ranking is only sensitive to the values chosen for Vhealth and Vrec when 21 

model K is used.  We assign $35.57 to Vhealth, which is in the middle range of reported values for 22 

mild to moderate multi-day health impairments in a recent meta-analysis of seven morbidity 23 
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valuation studies (35). Pain and suffering and the value of lost leisure time are not addressed, 1 

which could make the Dwight et al. value we use an under-estimate. We conduct a “break-even 2 

analysis” to show how high the Vhealth parameter would need to be (holding all else constant) for 3 

SP and RD to exhibit higher net benefits than NI. Using model C with full compliance, COI 4 

would have to be 1270% higher ($489) to make the SP scenario more net beneficial than the NI 5 

scenario and about 1110% higher ($430) for the RD scenario. Thus, the delivery of higher 6 

expected net benefit under NI compared to RD and SP appears unchanged over a range of 7 

reasonable values for the COI parameter under model C. Using model K with full compliance, 8 

COI would have to be about 150% higher ($90) than the Dwight et al. estimate for SP to be more 9 

net beneficial than NI, and about 80% higher ($63) for RD to rank more beneficial than NI. Thus 10 

if model K is the most appropriate epidemiology model for HSB and COI is twice the value 11 

estimated by Dwight et al., then the two monitoring scenarios could have higher net benefits than 12 

NI.  13 

 14 

Conceptually, Vrec varies across individuals and user populations, thus it is useful to consider a 15 

reasonable range of values (36). Holding all else constant and using model C with full 16 

compliance, Vrec would have to be less than $1 for the SP and RD scenario to have higher net 17 

benefits than the NI scenario, a value which is implausibly low (see SI for a discussion). Using 18 

model K with full compliance, Vrec would have to be less than half the $16.15 value we used 19 

($6.30 and $8.90, respectively) for SP and RD to rank more beneficial than NI. If model K is 20 

appropriate for this beach and Vrec is less than about 50% of the estimate we use, which is 21 

unlikely given our understanding of recreational valuations, then the RD and SP scenarios could 22 

produce higher net benefit than NI.   23 
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 1 

Swimmer behavior is a critical factor that deserves more study. We find that compliance 2 

behavior of potential swimmers has an important impact on both number of predicted illnesses 3 

and the potential net economic benefit of rapid detection technologies. Compliance does not, 4 

however, impact the policy preference ranking. Across nearly all possible values of c using 5 

models K and C to estimate GI, RD provides greater illness reduction and greater net benefits 6 

than SP. The only exception is at very low levels of compliance (c < 0.07 or c < 0.17, depending 7 

on epidemiology model) where the greater cost of RD monitoring causes the cheaper standard 8 

monitoring practice to win out. A survey of beachgoer behavior collected during summer 2005 at 9 

HSB indicates a reported 51% compliance rate both local and at other southern CA beaches (data 10 

not shown), suggesting that such low compliance is unlikely.  11 

 12 

Our analysis does not address the potential for endogeneity between advisory status and 13 

beachgoer attendance and compliance with advisories. Chapman and Hanemann (20) provide 14 

evidence that availability of regional substitutes is important to both attendance level and 15 

recreational value lost. Further research is needed to identify how the number of potential bathers 16 

per day changes in response to advisory on prior day(s) or at nearby locations. 17 

  18 

Analysis of a hypothetical beach water quality data set indicates that advisory “volatility” 19 

is key to determining of the benefit RD can provide relative to SP. We conducted the same 20 

benefits transfer analysis using 500,000 simulated ENT data series constructed by randomly 21 

sampling cumulative density functions of 10,000 different beta distributions. The goal was to 22 

determine the characteristics of beach water quality distribution that are important in determining 23 
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if RD can improve net benefits to society relative to status quo (SP) (see SI for details). Our 1 

analysis indicates that “advisory volatility” is a key attribute of a beach water quality data that 2 

determines the outcome of the analysis. We define advisory volatility as the percent of 3 

monitoring days that result in a change in advisory status and can range from 0 to 100%. When 4 

volatility is low (advisory status changes relatively infrequently), RD does not provide improved 5 

benefits to society over SP under the assumptions used in this paper. As volatility increases 6 

above 4% and 15% for models K and C, respectively, then RD provides improved benefits over 7 

SP. The difference in the volatility threshold for analyses performed with the two epidemiology 8 

models arises because model C suggests a weaker relationship between ENT and excess risk than 9 

model K.  10 

 11 

Our analysis suggests that beach managers should be cautious in moving to rapid detection 12 

of FIB for routine water quality monitoring. Beach-specific circumstances, including visitor 13 

levels, swimmer populations and their behavioral responses to advisories (especially substitution 14 

behavior from one beach to another which we did not consider), and day to day FIB density 15 

patterns can all limit how much reduction in exposure beach advisories based on rapid detection 16 

would be able to achieve.  17 
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TABLES & FIGURES 1 

 2 

FIB 

group 

# samples 

over SSS  

# samples 

over GMS  

# consecutive 

samples over SSS 

# consecutive 

samples over GMS 

ENT 30 55 11 48 

FC 18 0 5 0 

TC 13 0 4 0 

 3 

Table 1. Summary of water quality exceedances at HSB for the 71 when water samples were 4 

taken between 29 May 2000 and 4 September 2000. Four stations were sampled on each day, 5 

leading to a total of 284 observations. SSS is single sample standard, GMS is 30-day geometric 6 

mean standard. For explanations of these CA beach water quality standards, see SI. Note that the 7 

TC SSS exceedances include those that occur when the FC/TC ratio is greater than 8 

0.1.Consecutive samples are counted if there was an exceedance the previous time a sample was 9 

collected.  10 

 11 



29 

Figure Captions 1 

 2 

1. The excess risk of GI as a function of ENT density using models C and K over the ENT 3 

ranges available at HSB.  4 

 5 

2. Schematic map of field site. The assumed distributions of water quality (FIBk) and 6 

potential swimmer (Sk) are shown for the region surrounding each monitoring station. 7 

 8 

3. GI d-1 projected under each management scenario by epidemiology equation. 9 

 10 

4. Estimated net economic benefit to potential swimmers per day under each management 11 

scenario by epidemiology equation. 12 
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Supporting Information 1 

 2 

FIB Data 3 

Samples for total coliform (TC), fecal coliform (FC), and enterococci (ENT) observations were 4 

collected in the morning five days per week (excluding Friday and Sunday) from four sampling 5 

stations at Huntington State Beach (0N, 3N, 6N, and 9N) (1). Water quality monitoring stations 6 

are located at 3,000 foot intervals along the shore and are named according to their distance from 7 

the Santa Ana River (e.g. station 6N is 6,000 feet north of the river).  8 

 9 

The water samples were analyzed using standard methods for TC and FC published by the 10 

American Public Health Association and EPA method 1600 for ENT. TC and FC are reported 11 

within the range of 20 to 16,000 colony forming units (CFU) per 100 mL while ENT 12 

concentrations are reported between 2 and 400 CFU/100 mL. When the lower (upper) limit of 13 

detection was exceeded (as reported by the monitoring agency), it was replaced with the lower 14 

(upper) detection limit. High ENT pollution incidents were more frequent in 2000 than in 2001–15 

2004, when HSB experienced lower median ENT levels and narrower inter-quartile ranges, but 16 

less frequent than in 1999 (data not shown). 17 

 18 

California’s Beach Water Quality Laws 19 

Single sample (SS) standards require advisory the beach if a sample of beach water contains TC, 20 

FC, or ENT in excess of 10,000, 400, and 104 colony forming units (CFU)/100 mL, respectively 21 

(2). A more stringent SS standard for TC of 1000 CFU/100 mL is applicable if the FC to TC 22 

ratio is greater than 0.1. Geometric mean (GM) standards require the beach to be posted if the 23 
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geometric mean of TC, FC, or ENT over five equally spaced samples taken within the previous 1 

30 days, including the most recent sample, is in excess of 1000, 200, or 35 CFU/100 mL, 2 

respectively. California’s guidelines are consistent with but slightly more stringent than current 3 

federal rules for recreational water quality (3). Even though there are multiple fecal indicators 4 

and rules used to trigger a advisory in the first two of our scenarios, each station day is assigned 5 

only one of the two possible values (0 or 1) using the indicator variable Pk. 6 

 7 

Beach Visitor Swimming Behavior 8 

In doing our comparative analysis of beach policies, we make a series of assumptions regarding 9 

the number and type of visitors exposed to ocean water at HSB. The lifeguard counting 10 

techniques in the Morton and Pendelton study we cite included estimating attendance from the 11 

lifeguard towers, parking, bike rack usage, and bus line capacity. We found the recent swimming 12 

percent value of Wade et al. to be reasonable, since Pendleton et al. found that in the summer 13 

season of 1999, 38.5% of beach goers in Orange County had significant contact with the water 14 

(includes bathing, swimming, surfing and body boarding) during their beach visit (4). In 1997, 15 

Pendleton counted a 35.9% average rate of head-immersion swimming at 15 beaches in Santa 16 

Monica Bay (5). In summer 2000, the number of visitors to HSB does not appear atypical in any 17 

way when compared to attendance from 1998 and 1999 (data not shown).  18 

 19 

We assume that potential swimmers do not move to another region to swim or choose a different 20 

form of recreation if their region is under and advisory. Substitution behavior is not considered, 21 

despite some evidence that southern California beachgoers substitute at the regional scale (6). 22 

We also assume that the recreational benefit experienced by potential swimmers is not affected 23 
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by advisories at regions other than their intended recreational site. These simplifying 1 

assumptions are made necessary by the fact that how potential swimmers respond to or change 2 

their behavior based on advisories at ocean beaches has not yet been modeled at the beach scale. 3 

 4 

We acknowledge that the station-exposure assumptions produce an imprecise estimate, but deem 5 

it the best approach given the available data. The assumption that all swimmers for a particular 6 

day are exposed to the ENT concentration measured in the morning at the closest monitoring 7 

station reflects the approximation made in actual management practice. The effect of this 8 

assumption is ambiguous but probably conservative, since some studies have found FIB levels to 9 

be higher in the morning than mid-day (7). 10 

 11 

Monitoring Costs 12 

Monitoring costs are rough estimates based on the personal experience of the authors. We 13 

include labor costs for the collection and processing of three different FIB samples from four 14 

monitoring stations at HSB (for a total of twelve analyses), and the cost of supplies for each 15 

sample. These estimates do not take into account capital investment, equipment maintenance, 16 

and administrative costs of monitoring programs. We argue that these rough estimates are 17 

reasonable, especially since we later show that monitoring costs play a minor role in the policy 18 

preference ranking compared to the health and recreational trade-offs involved. 19 

 20 

Non-Market Valuation and Transfer Policy Analysis 21 

There is limited but consistent evidence that water quality affects the benefits that individuals 22 

derive from outdoor swim recreation (8-12). Relevant insights from this literature include the 23 
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following: studies in the US and Europe show that people on average value each swim 1 

experience at about $4 to $50 (12); individual valuations vary based on income, gender, race, 2 

worldview, and other factors; valuations are sensitive to survey and modeling methods and 3 

specification; perception of water quality may matter as much as actual water quality; and 4 

willingness to pay for improvements in beach water quality are modest on a per person basis, 5 

adding about 30% of the total consumer surplus (8), but can become highly relevant to society if 6 

the beach is visited by many people.  7 

 8 

In general, non-market valuation (NMV) has been a major area of research in environmental and 9 

health economics over the past thirty years (for a review of the development of NVM and its 10 

influence on environmental policy (see, e.g., (13)). The act of taking findings from NMV studies 11 

and using them to make a value estimate for some distinct place, time, and policy context is 12 

referred to as benefit transfer (BT) (14).  13 

 14 

There is considerable debate in the small but growing BT literature about the conditions under 15 

which transfer methods are valid and justifiable. Repeated negative findings about the 16 

generalizability of environmental activity benefit estimates have led some to conclude that the 17 

transfer of unadjusted mean values (point transfer) or even value estimation models (function 18 

transfer) are not supported (15). Hypothesis tests of difference in means or difference in 19 

coefficients are often rejected. However, there is disagreement about whether the null hypothesis 20 

should really be equality of values across sites and circumstances, as is often assumed (16).  21 

 22 
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Benefit transfer experts urge analysts to consider the validity and accuracy of transfer results 1 

explicitly with regard to the policy objective at hand (14), a principle sometimes called the 2 

“importance test”.  Point transfer of mean values is the  simplest possible transfer procedure, but 3 

provides useful guidance regarding the general magnitude of the relevant welfare effects. To give 4 

a general idea of the level of accuracy documented in past tests of BT methodologies, a meta-5 

analysis of seven BT point estimate studies found a maximum error of 56%, and errors were 6 

concentrated on the up- side (17). In other words, BT estimates tend to be under (not over) 7 

estimates. In one of the few examples specific to beach recreation and measurement of 8 

willingness to pay to avoid swimming-related health effects, Barton and Mourato (2003) found 9 

benefit function transfer errors to be on the order of 6 to 130 percent between beaches in a lesser 10 

developed (Costa Rica) versus a developed nation (Portugal) (18). 11 

 12 

For this analysis, we assume a constant per person benefit of swim recreation to each and every 13 

adult that swims and treat the difference in utility of swimming in dirtier waters solely through 14 

the change in health state as a function of the indicator level. This is reasonable since the 15 

microbial pollution at issue here does nothing to change the immediate appearance or sensorial 16 

qualities of the water. We deem point transfers sufficient for this transfer policy analysis because 17 

we had values from contemporary local studies available for transfer. Importantly, the original 18 

recreation demand and cost of illness studies we cite can reasonably be assumed to cover an 19 

analogous population to the case study site.   20 

 21 

Because this policy analysis is designed to produce a preference ranking of policies, 22 

accompanied by a sensitivity analyses that helps stakeholders judge whether even a worst case 23 
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error in benefit estimation would reverse the conclusion, use of mean estimates is justified (18). 1 

We acknowledge the uncertainties created by using BT, and there are other uncertainties inherent 2 

to transfer policy analysis. However, by assembling a comparative analysis with the best 3 

available estimates for microbial, epidemiologic, behavioral, and economic parameters, our 4 

intent is to uncover the relative importance of the different sources of uncertainties in influencing 5 

the cost-effectiveness of an emerging technology and on outcomes of a beach management 6 

decision-making process.  7 

 8 

Monte Carlo Simulations and Hypothetical Analysis  9 

We used a Monte Carlo simulation to test the sensitivity of net benefit welfare outcomes to the 10 

distribution of water quality data. We did this to assess the generalizability of our findings to 11 

beaches with different water quality profiles and to determine whether particular water quality 12 

distributions favor RD over SP.  13 

 14 

We simulated ENT densities using several different distributions (including beta, normal, 15 

gamma, and Weibull). A beta distribution was the best fit to the water quality data collected at 16 

Huntington State Beach (HSB), and thus was adopted to further explore how water quality 17 

distributions impacted the performance of RD over SP (data not shown). The beta distribution 18 

has two control parameters (α>0 and β>0) that together govern the skew and spread of the 19 

distribution. The absolute magnitude of the parameters determines the spread and the relative 20 

magnitude determines the skew (larger α skews to the left, larger β to the right). The probability 21 

distribution function (PDF) is governed by the following expression 22 

PDF(x) =
xα−1(1− x)β−1

B(α,β)
         (S1) 23 
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where B is the beta function (or the Euler integral of the first kind) and x varies from 0 to 1. The 1 

cumulative distribution function (CDF) is given by  2 

CDF(x) = I x (α,β)           (S2) 3 

where Ix is the regularized incomplete beta function. Figure S1 shows a number of example 4 

CDFs for the beta distribution. The mean (µ) and variance (σ2) of a beta distribution are defined 5 

as follows: 6 

μ =
α

α + β
           (S3a) 7 

σ 2 =
αβ

(α + β)2(α + β +1)
         (S3b) 8 

 9 

Beta distributions with specific means (ranging from 1 to 100 CFU/100 mL in increments of 1) 10 

and variances (ranging from 100 to 10,000 (CFU/100 mL)2 in increments of 100) were sampled 11 

randomly to create fifty 71 day long data series of ENT densities. In total, 500,000 data series 12 

were generated. The volatility (V) of each hypothetical data series was determined as follows: 13 

V =
1

N −1
(Pt − Pt−1)2

t=2

N

∑          (S4) 14 

where N is the number of data points (in our case N=71) and Pt is 1 or 0 if the ENT density of the 15 

randomly generated data series is greater than the single sample standard for ENT (104 CFU/100 16 

mL). Volatility describes the percent of ENT measurements that give rise to a change in posting 17 

status. The average volatility of the fifty data series generated from a single beta distribution 18 

were averaged to obtain the expected volatility.  19 

 20 
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A benefits transfer analysis was used to determine if RD was net beneficial to society than SP for 1 

each of the 500,000 data series using the methods described in the main paper text with the 2 

following simplifying assumptions: (1) 2500 visitors per day were present at the beach with the 3 

generated water quality distribution – a similar number that is present at a single station within 4 

HSB, (2) only the ENT single-sample standard was used to determine the posting status at the 5 

beach, and (3) compliance was equal to 50%. In addition, a central assumption for this analysis is 6 

that water quality data is indeed random. No autocorrelation between measurements existed in 7 

the generated hypothetical distributions, whereas in actual data collected from southern 8 

California beaches, there is a significant autocorrelation that has a direct effect on the relative 9 

advantage of rapid detection versus 24-hour lagged testing methods. The percent of the fifty 10 

simulations for each beta distribution that indicated RD was more net beneficial than SP was 11 

recorded.  12 

 13 

Figure S2 shows the relative likelihood of RD dominating SP as a color scale value for beta 14 

distributions with a designated mean and variance using models C (top) and K (bottom). Purple 15 

represents the highest probability of RD being more beneficial than SP and red represents the 16 

highest probability of SP being more beneficial than RD. The transition from green to light blue 17 

indicates where RD has a 50% chance of providing greater net benefits relative to SP. Figure S3 18 

shows the average volatility (shown as a color scale) for the data series generated from beta 19 

distributions as a function of mean and variance.  20 

 21 

A comparison of Figures S2 and S3 indicates that when ENT series have low volatility that SP is 22 

more likely to win over RD. For model C (top panel of Figure S2), when the volatility is more 23 
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than about 0.20, RD wins over SP. For model K (bottom panel of Figure S2), RD wins over SP 1 

for volatility over 0.04. The differences in the threshold volatilities between the models arises 2 

because risk is a much weaker function of ENT density for model C than for model K. It should 3 

be noted that in our hypothetical simulation, we held attendance constant. If day-to-day 4 

attendance were variable, then this may change relative performance of RD and SP.  5 
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Figure S1. Example beta cumulative distribution functions (CDFs). Here, α + β =1.3, and α is 2 
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Figure S2. The probability of RD providing greater net benefit than SP for hypothetical beta 6 

ENT distributions. Top and bottom plot are results for models C and K, respectively. The grey 7 

background delineates combinations between means and variances for which beta distributions 8 

do not exist. Mathematically, this region is where α and β are less than or equal to 0. 9 

0% 20% 40% 60% 80% 100%
Probability that RD is more net beneficial than SP
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Figure S3. The volatility (V) for each of the beta distributions.  2 
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