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Abstract: 

Many important economic problems concern a dynamic choice between alternate phases. 

Examples are determining the optimal time to switch between alternative energy sources or 

multiple crops. This significance has motivated a substantial theoretical literature generalising 

the necessary conditions of Optimal Control Theory to multiple-phase problems. However, 

gaining detailed insight into the practical management of these systems is difficult because 

suitable numerical methods are not available. In particular, traditional gradient techniques are 

ineffective because of the piecewise definition of the performance index. This paper resolves 

this deficiency through the presentation of a flexible and efficient optimisation algorithm based 

on a set of necessary conditions derived for finite-time multiple-phase problems. Its 

effectiveness is demonstrated in an application to a multiple crop system in Western Australia. 
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I. Introduction 

The Maximum Principle of Optimal Control Theory (Pontryagin et al. 1962) has been utilised 

extensively in economics (Arrow and Kurz 1970; Seierstad and Sydsaeter 1987; Kamien and 

Schwartz 1991) because of its intuitive economic interpretation (Dorfman 1969) and the 

significant methodological extensions to this theory developed in other fields of study, such as 

engineering. However, despite this broad application, there has been limited treatment of 

multiple-phase systems. These consist of multiple alternate regimes, each characterised by its 

own dynamical system, of which only one may be active at each point in time. Selecting 

between individual crops to plant on a given area of land is one example (Mueller, Schilizzi, and 

Tran 1999). Other examples are determining the optimal time to switch between alternative 

energy sources (Tomiyama 1985; Tomiyama and Rossana 1989) and identifying the optimal 

time for a government to abolish a policy, such as a capital control (Makris 2001). In actual fact, 

many economic decisions may be studied more precisely if cast as multiple-phase problems. For 

example, in production theory, these are a natural means of representing choices between the 

alternative technologies available to a firm, such as natural and artificial recovery of petroleum 

(Amit 1986).  

Piecewise-constant control variables can be used to switch between multiple stages if the 

ordering of phases is freely determined. However, this approach is only suitable for small 

problems given its inherent combinatorial complexity (Papadimitriou and Steiglitz 1982). In 

addition, the computation of switching times can be difficult if transition costs exist. These 

limitations have motivated the analysis of multiple-phase systems in which the sequence of 

stages is pre-assigned. This approach is relevant to many important economic problems, such as 

the alternative technology or government policy examples discussed above. This form of 

multiple-phase problem requires optimisation over two levels. The first level concerns the 

determination of the optimal duration of each regime through calculation of the optimal 

transition times and also, perhaps, the terminal time. The second level entails optimisation of a 

phase between its endpoints. If there is no control exercised during the duration of a stage, the 

second level is not required and the multiple-phase system may, instead, be studied in a financial 

options framework (Dixit and Pindyck 1994).  

In contrast, generalisation of the necessary conditions of standard optimal control (Pontryagin et 

al. 1962; Kamien and Schwartz 1991) is required if control variables are specified within 
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independent phases. Such conditions have been derived for two-stage systems with costless 

transition (Tomiyama 1985; Tomiyama and Rossana 1989) and switching costs (Amit 1986), 

even though the former may be treated utilising standard control, as indicated above. The 

framework of Amit (1986) has also been extended to include three stages (Mueller, Schilizzi, 

and Tran 1999) and an infinite horizon (Makris 2001). Makris (2001) also discussed the solution 

of a system with n regimes and an infinite horizon. This included switching conditions but did 

not consider the finite-time case.  

Although this significant body of theory exists, it is difficult to study the practical management 

of multiple-phase problems because there appears to be no suitable optimisation algorithms 

available to economists. Gradient-based methods have been widely employed to solve control 

problems in discrete-time. However, these are difficult to implement within a multiple-phase 

system because the objective functional has, by definition, discontinuous derivative(s) with 

respect to the control variable(s) (see Section II). Simultaneous optimisation of phase duration is 

also problematic because the corresponding gradients are not readily available. Dynamic 

programming, at least conceptually, is suited to solving the latter problem. However, it will be 

prohibitively large in most circumstances because of the need to represent uncertain phase 

transitions.  

This paper contributes to theory through the derivation of a set of necessary conditions for a 

finite-time multiple-phase system with n regimes, positive switching costs, and different 

endpoint constraints. These conditions are used to construct a flexible optimisation algorithm for 

the solution of multiple-stage problems. Its effectiveness is demonstrated in a multiple crop 

problem of significant complexity. This algorithm appears to be the first in Economics to solve 

general multiple-phase problems1 and provides practitioners with the opportunity to study these 

systems in considerable detail, a luxury not afforded in the analytical constructs to which they 

have previously been restricted.  

The model and necessary conditions are presented in Section 2. Section 3 describes the 

numerical algorithm and discusses strategies to help implementation. An application of this 

algorithm to a multiple crop problem is presented in Section 4. Section 5 presents conclusions 

                                                 
1 Mueller, Schilizzi, and Tran (1999) solved a three-stage problem utilising numerical methods. However, their 
approach is limited to control systems where the constituent differential equations can be solved explicitly. The 
algorithm presented here does not face such restrictions (see Section III). 
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and recommendations for further research. The derivation of the necessary conditions is 

described in an Appendix.  

II. Model and Necesssary Conditions 

This section formally defines a model for a multiple-phase system and presents a set of 

necessary conditions required for its solution.  

DEFINITION 2.1. A general multiple-phase system can be assumed to incorporate an m-

dimensional state vector )}(),...,(),({)( 21 txtxtxtx m=  of continuous functions, piecewise 

continuous differentiable over the time interval ],...,[ 0 nttt =  and belonging to mRX ∈ , and a v-

dimensional vector of control functions )}(),...,(),({)( 21 tutututu v= , piecewise continuous in 

],...,[ 0 nttt =  and belonging to vRU ∈ . The state variables fixed at the initial time are ix0  for 

i=[1,2,…,c]. In addition, the state variables fixed at the terminal time are i
nx  for i=[1,2,…,d].

 � 

This model concerns multiple-phase systems with a given switching sequence, as discussed in 

the introduction. In addition, the total number of stages is fixed. Relaxing this assumption adds 

significant complexity but would be a valuable extension of this work. The following definition 

is loosely based on the hybrid system defined in Branicky, Bortar, and Mitter (1998). 

DEFINITION 2.2. A multiple-phase switching system is defined as { }ϑ,, KT=Ξ  where, 

1. Τ is a set of discrete controls known as switching times that dictate the termination of one 

phase and the start of the next, 

2. { }nkkkK ,...,, 21=  is a finite, fixed, and exogenously determined sequence of discrete 

(integer) states that index individual continuous dynamical systems, { } Kkk ∈= ϑϑ , where 

[ ]UfX kk ,,=ϑ . The ordinal ranking of sequences is defined over the closed interval 

[ ]nj ,...,2,1= ,  

3. X  is a continuous state space where mRX ∈ ,  

4. kf  is a vector field defining the dynamical law for each stage k, and 

5.  U  is an open set of admissible controls lying in vR . � 



 5 

It is assumed that the number of state and control variables and their relevant spaces are identical 

between stages for ease of exposition. However, these assumptions are not critical to the 

following derivation and consequently may be relaxed, if required.  

The terminal time is defined as a control variable in the model for generality. However, the 

necessary conditions required for fixed endpoint problems are discussed specifically given their 

importance.  

DEFINITION 2.3. A control input for an embedded switching system Ξ  consists of a set of vectors 

{ }ut,=Ξχ  where, 

1. },...,,{ 121 −= ntttt  is a sequence of real numbers denoting switching times, the moment jt  

at which stage jk  is terminated and the stage 1+jk  becomes active. It follows that regime 

jk  is active over the semi-open interval ),[ 1 jj tt − , 

2. ntt =  is a freely determined terminal time, and 

3. },...,,{ 21 nuuuu =  is a collection of control functions defined for each stage in sequence K.

 � 

It is possible for switching times to accummulate in this model. Consequently, not all regimes in 

the predefined sequence must be activated. For example, it may be optimal for two consecutive 

switching times, such as jt  and 1+jt , to coalesce (that is, 1+= jj tt ), in which case, movement 

from jk  to 2+jk  will occur without the activation of 1+jk . This allows for the case where the 

operation of a stage or number of stages in sequence K is not contained within the optimal 

solution. 

The state variable is continuous at the switching times in this model. However, jumps within the 

state variable (Vind 1967) are easily accommodated (see Bryson and Ho 1975, p. 106-108).  

DEFINITION 2.4. A trajectory ( Γ ) for a multiple-phase switching system Ξ  and control sequence 

Ξχ  is admissable over the interval ],,...,,[ 110 nn ttttt −=  if it satisfies Definition 2.1 and the 

continuous dynamics ))(),(( tutxfx jj=� , for ),[ 1 jj tt −  and Jj ∈ , for a predefined switching 

sequence { }nkkkK ,...,, 21= .  � 
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These definitions permit the classification of a general multiple-phase optimal control problem. 

PROBLEM 2.1. For a multiple-phase system Ξ  identify an admissible trajectory that maximises 

the objective functional, 
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subject to: 

))(),(( tutxfx jj=� , for ),[ 1 jj tt −  and [ ]nj ,...,2,1=  given { }nkkkK ,...,, 21= , (2) 

{ }ixt 00 ,=Λ  fixed for ],...,2,1[ ci = , i
nx  fixed for ],...,2,1[ di = , and (3) 

)}(,{ jjj txt=Θ  free for [ ]nj ,...,2,1= . (4) 

where r is a discount rate, )),(( nn ttxG  is a terminal reward function, ))(( jj txC  is a switching 

cost function for the jth phase, and ))(),(( tutxF jj  is a reward function on vm UX ×  for the jth 

phase. Functions G, C and F are all real-valued functions that are once continuously 

differentiable. The terminal value function is defined for )( n
i
n tx  where i=[1,2,…,q]. Terminal 

state variables )( n
i
n tx  are free in (4) for ],...,1[ mdi += . � 

The terminal reward function )),(( nn ttxG  is often defined as a salvage value function in 

economic applications of optimal control (Seierstad and Sydsaeter 1987). The switching cost 

function defines a sunken cost accruing to the termination of one stage and the initialisation of 

another. (These can be understood as terminal value functions for individual regimes.) They are 

a pertinent feature of many multiple-phase systems. For example, it can be costly to remove one 

crop and establish another (Mueller, Schilizzi, and Tran 1999) or invest in the productive 

capacity required for the artificial recovery of petroleum (Amit 1986). Both the terminal value 

function )(⋅G  and the switching cost function )(⋅C  are dependent on the state variable ( )( jtx ). 

The former is a standard assumption in optimal control. The latter is included because such a 

relationship is likely to exist in a number of important multiple-phase problems. For example, 

the herbicide dose required for the establishment or removal of a crop may be dependent on 
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weed density. Or, investing in a new production technology may require an initial outlay that is 

dependent on the current size of the existing firm.  

THEOREM 2.1. Consider a multiple-phase system Ξ  described by Definitions 2.1-2.4. For 

],...,2,1[ nj =  and switching sequence { }nkkkK ,...,, 21= , let ( ** ),(),(* jj ttutx ) denote the 

admissible trajectory that maximises the value of J in Problem 2.1. This is the optimal trajectory 

*Γ .  

Define a Hamiltonian function for each regime jk  as, 

)),(),(()())(),(()),(),(),(( ttutxfttutxFetttutxH jjjjj
rt

jjj λλ += − , (5) 

across the interval ),[ 1 jj tt − .  

An optimal trajectory *Γ  requires, 

i) initial condition )( 00 txx i =  for fixed initial state variable(s) ix0  for i=[1,2…c], (6a) 

ii) initial condition 01 =Tλ  for free initial state variable(s) ix0  for i=[c+1,…,m], (6b) 

iii) n m-dimensional vectors of real-valued, piecewise continuous adjoint functions 

)}(),...,(),({)( 21 tttt m
jjjj λλλλ = , defined across ],...,2,1[ nj =  and piecewise continuously 

differentiable over the interval ),[ 1 jj tt − , that satisfy,  

)(

)),(),(),((
)(

tx
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t jjjT

j ∂
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−=
λ

λ� , (7) 

where )(tT
jλ  denotes the transpose of the n adjoint vectors, 

iv) control function(s) for each regime jk  that satisfy, for ],...,2,1[ nj = , 

0
)(

)),(),(),((
=

∂
∂

tu

tttutxH

j

jjj λ
, (8) 

v) for state variables free at the terminal time, an optimal trajectory requires an adjoint 

vector )( nn tλ  that satisfies, for )( n
i
n tx  where i=[1,2,…,q], 
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a terminal adjoint vector )( nn tλ  that satisfies, for )( n
i
n tx  where i=[q+1,…,m], 

0)( =n
T
n tλ , (9b) 

NOTE: )( n
i
n txx =  replaces (9a) or (9b) for ix  where i=[1,2,…d],  
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NOTE: if no terminal value function is defined, then the equivalent of (10a) is, 

0)),(),(),(( =
ntnnn tttutxH λ , (10b) 

if, instead, the terminal time is fixed, then no additional necessary condition is required as 

ftt = , 

vii) adjoint vectors that satisfy the boundary conditions, 
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at switching times },...,,{ 121 −= ntttt  and ]1,...,2,1[ −= nj , 
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j

j
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for those switching times in },...,,{ 121 −= ntttt  for which 11 +− << jjj ttt  holds, 
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for those switching times in },...,,{ 121 −= ntttt  for which 11 +− <= jjj ttt  holds , and 
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x) 
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for those switching times in },...,,{ 121 −= ntttt  for which 11 +− =< jjj ttt  holds. � 

PROOF. See Appendix. 

Necessary conditions (6)-(10) are identical to those utilised in single phase problems 

incorporating a salvage value when the Hamiltonian function is differentiable with respect to 

(w.r.t) the control variable, )(* tu j , and this variable does not take a boundary value. This follows 

the definition of a multiple-phase problem as a set of n dynamical systems.  

In contrast, switching conditions (11)-(14) are not found in standard optimal control problems. 

These describe how individual systems are linked over time under optimal management. These 

conditions appear in similar form in the models of Amit (1986), Mueller, Schilizzi, and Tran 

(1999), and Makris (2001). It is therefore established here that they generalise to a finite-time 

multiple-phase model with n regimes, positive switching costs, and different endpoint 

constraints. Equations (11) and (12) are also equivalent to the smooth pasting and value-

matching conditions found in applications of stochastic control in finance (Brekke and Oksendal 

1994; Dixit and Pindyck 1994). 

Equation (11) determines the optimal level of the state variable(s) at each switching time. This 

condition states that it is optimal to switch when the marginal value of a change in the state 

variable is equivalent between stages. The shadow price variables, )( j
T
j tλ  and )(1 j

T
j t+λ , 

represent the marginal adjustment in optimal value accruing to a change in the state variable, 

within the corresponding stage, at switching time jt . The definition of state-dependent transition 

costs introduces an additional marginal effect for the active regime j in (11), a marginal cost 

term )())](([
j

j

txjj
rt txCe −  (where x][⋅  denotes the derivative of the term enclosed in square 

brackets with respect to x ).  

Switching conditions (12)-(14) describe the management of optimal switching times given the 

relative values of alternate stages. The value of the Hamiltonian function for a given regime at 

jt  represents the shadow price of altering the length of this phase by one instant. The term 



 10 

j

j

tjjs
rt txCe ))](([ )(

−  in (12) is the rate at which transition costs within regime j change over time. 

Equation (12) therefore states that it is optimal to switch to the subsequent regime at time jt  if 

the rate at which the capital value of each stage changes over time is equal at that point. Regime 

j should not be activated if its total value, reflected through its Hamiltonian and switching cost 

functions, is dominated at each potential switching time by that of the successive regime. This is 

described in (13). Moreover, the successive regime should not be adopted if there is no time jt  

at which its capital value matches that earned within the active phase. This is stated in equation 

(14). Only one of conditions (12)-(14) will hold for a given stage j. 

Necessary conditions (11)-(14) are not needed if Τ  is empty. In this instance, Theorem 2.1 

collapses to represent the necessary conditions required for the optimisation of a standard single-

regime optimal control problem. The state variable(s) could be fixed for a given switching time 

jt . In this instance, equation (11) is no longer required for determination of )( jtx . 

Alternatively, the control input may consist of fixed switching times. Necessary conditions (12)-

(14) are not required in this case. 

The boundary conditions are obviously affected if switching cost functions ))(( jj
rt txCe j−  and 

their relevant derivatives are not defined. If switching costs do not exist or are independent of 

the state vector, condition (11) requires equality between the adjoint variables of stages j and 

j+1. That is, )()( 1 j
T
jj

T
j tt += λλ . Likewise, equation (12) simplifies to a requirement of equality 

between the total capital value of each regime at the switching time; that is, 

jj tjtj HH )()( 1 ⋅=⋅ + ; if switching costs are not defined or are independent of time. (Switching 

costs will not be independent of time in many economic problems because of discounting.) 

These conditions state rather unequivocally that it is optimal to switch when there is no benefit 

to remaining in the current phase. These results are analogous to the Weierstrass-Erdmann 

corner conditions (Seierstad and Sydsaeter 1987) from variational calculus, which are also 

required when state and/or control variables are subject to inequality constraints (Pontryagin et 

al. 1962). This equivalency highlights the close symmetry between multiple-phase problems 

with fixed versus free mode sequencing, if the latter is incorporated utilising piecewise constant 

controls. This symmetry outlines, rather intuitively, that it will also be optimal to switch modes 

in a free sequencing framework when there is no benefit to remaining in the current stage.  
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III. Algorithm 

Theorem 2.1 may be used to study pedagogical multiple-phase systems using analytical 

methods. However, closed form solutions are notoriously difficult to obtain in all but the 

simplest control problems. The study of meaningful real-world systems consequently requires 

the construction of suitable numerical algorithms.  

Shooting methods are iterative solution techniques for two-point boundary value problems 

(Keller 1968), which commonly arise in the context of solving the necessary conditions of an 

optimal control model. Shooting methods involve a series of steps; (a) guessing an unknown 

boundary value(s) of the state or adjoint variable(s), (b) integrating the state and adjoint 

equations either forward or backward (depending on whether the boundary value is an initial or 

terminal point) using an appropriate Initial Value Problem (IVP) method, (c) simultaneously 

calculating the optimal control utilising the optimality condition (see equation (8)),  (d) updating 

the initial guess utilising a nonlinear equation method and (e) repeating the process until the 

boundary conditions are satisfied to sufficient accuracy (Ascher, Mattheij, and Russell 1995). 

This approach and Theorem 2.1 suggest an intuitive algorithm for the solution of multiple-phase 

problems.  

ALGORITHM 3.1 REGIME-SHOOTING ALGORITHM 

PURPOSE: Identify an optimal control sequence Ξχ  for the multiple-phase system Ξ . 

INITIALISATION: Determine a fixed stage sequence S. Define the maximum number of 

permissible iterations (maxit). Define the stopping tolerance ε . (Alternatively, different 

stopping tolerances may be defined for each component in Step 4.) Set the number of iterations 

iter to 1. Define a set of initial conditions },{ 00
ixt=Λ  for ],...,2,1[ ci = . Provide initial guesses 

for the optimal switching times ( jt  for ]1,...,2,1[ −= nj ) and the state vector at these times 

( )( jtx  for ]1,...,2,1[ −= nj ).  

STEP 1. Increase iteration count by 1. Optimise the first n-1 stages independently of each other. 

Each phase is a fixed endpoint control problem, with the boundary conditions for these phases 

entirely determined by Λ  and estimates of jt  and )( jtx  from the previous iteration. (Note here 

that a switching time is a fixed terminal time for one phase but the initial time for another.) 
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Identify the value of the adjoint variable(s) and Hamiltonian at each boundary following the 

solution of each stage. 

STEP 2. Optimise the terminal stage as a free-time control problem with 1−nt  and )( 1−ntx as the 

initial time and state respectively. Following solution, identify the value of the adjoint 

variable(s) and Hamiltonian at 1−nt . 

STEP 3. STOP and print output if ε<− −1iter
j

iter
j tt  and ε<− − )()( 1iter

j
iter
j txtx  or 

ελλ <−
∂

∂
+ +
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)(
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]1,...,2,1[ −= nj . Otherwise, go to Step 4. 

STEP 4. For ]1,...,2,1[ −= nj , use a non-linear equation method to identify improved estimates 

for )( jtx  and jt  through the solution of 0)(
)(

))((
)( 1 =−

∂
∂

+ +

−
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j

j

jj
rt

j
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j t

tx
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t
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−

j

j
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jj
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tj H
t

txCe
H  respectively. Adjoint and Hamiltonian values are those 

calculated in Steps 1 and 2. 

STEP 5. If iter=maxit then STOP and report progress; else go to Step 1. 

The boundary conditions for each individual control problem in Step 1 are well-defined 

following the prior definition of the switching times and the state variables at these points. It is 

natural to question whether the designation of these fixed points will affect the optimality 

condition (8), as the variation uδ  in equation (A.11) (see Appendix) is no longer entirely 

arbitrary but must now satisfy these endpoint constraints. However, it may be shown that (8) 

holds despite this induced restriction (see Kamien and Schwartz 1991, Section II.6). 

Solution of independent phases in the first and second steps may be achieved utilising Theorem 

2.1 and gradient or shooting methods. Although more robust than shooting methods, the 

convergence of gradient algorithms is heavily dependent on the quality of the initial control 

history (i.e., the initial guess) (Bryson 1999). Standard shooting methods may be used but 

simultaneous integration of the state and adjoint equations may lead to significant instability in 

the optimal trajectories given sensitivity to initial conditions (Stoer and Bulirsch 1980). 
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Application of both methods is also complicated through the need to derive necessary 

conditions, which limits flexibility and may be problematic in models of even moderate 

complexity. (Although this last limitation is difficult to circumvent, a hybrid algorithm 

incorporating both methods may be the most efficient for the solution of simple problems.) 

Multiple shooting aims to increase the robustness of standard shooting methods through division 

of the problem into multiple intervals that reduce the length of each integration (Keller 1968; 

Osborne 1969; Lipton et al. 1982). This method may be adapted to analyse multiple-phase 

problems (see Bulirsch and Chudej 1995 for a two-phase example). However, together with the 

need to correctly derive and code necessary conditions for each application, the computational 

burden is increased above that required for Algorithm 3.1, ceteris paribus, because the non-

linear equation solver must also enforce the continuity of each state variable at the switching 

time (Pesch 1994).  

An alternative method for Step 1 and 2 optimisation involves the discretisation of a control 

problem and solution through non-linear programming (NLP) (Goh and Teo 1988; Teo, Goh, 

and Wong 1991; Hull 1997). This direct transcription exploits the efficiency of modern NLP 

codes and has better covergence characteristics than other standard approaches (Betts 1999). It is 

also very flexible and suited to complex applications because it does not require the analytical 

derivation of necessary conditions. (However, their coding is recommended to increase the 

speed of many such algorithms, as this will avoid the computational expense associated with the 

evaluation of derivatives through the calculation of finite differences.) The efficiency of this 

method motivates its use for Step 1 and 2 optimisation in the following application. It is 

implemented using a variant of the MISER3.2 optimal control software (Teo, Goh, and Wong 

1991), which is engineered to operate more efficiently in an iterative scheme. 

A number of root-finding methods may be used in Step 4 to update the estimates of )( jtx  and 

jt  (Stoer and Bulirsch 1980). Newton methods are difficult to implement in this instance 

because the first derivatives of the switching conditions are not readily available. Important 

alternatives are the secant and bisection methods that do not require these evaluations. The 

bisection method will converge at a linear rate, which is slower than both of the others. 

However, it is adopted in the following application because, unlike the secant or Newton 

methods, the search for a root is limited to an initial bracket. This will help to limit the search 

among plausible alternatives, provided that the interval is thoughtfully constructed and is wide 
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enough for a meaningful search to be implemented.  

Phases may be bypassed in this algorithm if equation (12) is satisfied for consecutive switching 

times at a single moment. (This corresponds to either equation (13) or (14) holding with 

equality.) However, this algorithm does not cater for the situation where (13) and (14) hold as 

inequalities because of the complexity that this introduces. This simplification is unlikely to 

introduce significant bias in meaningful multiple-phase systems. Nonetheless, these constraints 

may be incorporated utilising mathematical programming if the differential equations within 

each phase are explicitly solvable. 

There are a number of ways to improve the efficiency of Algorithm 3.1. Firstly, solution time 

may be decreased through using optimal trajectories from the previous iteration as initial guesses 

for the next. For example, this method decreases solution time by over half in the first scenario 

of the application presented in Section IV. However, this process must be carefully implemented 

to ensure that a poor result from one iteration does not detrimentally affect the convergence of 

further runs. Secondly, parallel processing may be used to solve the independent subproblems in 

Steps 1 and 2. Optimal trajectories may be stored for each iteration if convergence or the 

sensitivity of these time paths to different endpoints is of interest. However, lastly, the 

implementation of the algorithm may be improved if this matrix is, instead, updated 

asynchronously. This is of particular relevance to large problems; for example those 

incorporating many control variables and a fine level of control discretisation, if direct 

transcription is used.  

The following application is programmed in MATLAB version 7.0.4 (Miranda and Fackler 

2002). The MISER3.2 software is implemented using the FMINCON function in the MATLAB 

Optimisation Toolbox version 3.0.2. A loose stopping criterion ( 0001.=ε ) is utilised for the 

bisection method in the outer iteration so that numerical errors generated in the optimisation 

phase do not detrimentally affect convergence (Judd 1998). 

IV. Application 

Herbicides have been used extensively in Australian dryland agriculture since the advent of 

reduced tillage systems in the late 1970s (Pratley 2000). However, major crop weeds, such as 

annual ryegrass (Lolium rigidum) (Llewelyn and Powles 2001) and wild radish (Raphanus 

raphanistrum) (Walsh et al. 2001), have developed resistance to a number of herbicides since 
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this time. Annual ryegrass, in fact, is now established as the world’s most herbicide resistant 

cropping weed (Pannell et al. 2004) given resistance to multiple modes of herbicide action (Hall 

et al. 1994). For example, Llewellyn and Powles (2001) identified that nearly half of the 

ryegrass populations that they sampled in the Western Australian wheat belt exhibited resistance 

to diclofop-methyl herbicides, 64 percent were resistant to chlorsulfuron, and 28 percent were 

susceptible to both. Such levels of resistance incur significant costs on producers, both through 

the reduction of crop yield and higher control costs associated with a need to utilise alternative 

treatments (Powles and Bowran 2000).  

Continuous cropping is commonplace in the Western Australian wheat belt given the higher 

profitability of cereals relative to livestock activities, the continued enhancement of reduced 

tillage technology, and the widespread adoption of crop legumes that permit crop phases of 

significant length (Pannell 1995; Poole et al. 2002). However, the inclusion of regular pasture 

phases has the potential to delay or help to minimise the effects of herbicide resistance through 

permitting the use of a wide range of weed control strategies (Powles et al. 1997). Examples of 

such strategies are grazing, competition from pasture plants, non-selective herbicides, winter-

cleaning, spray-grazing, green and brown manuring, hay or silage making, and pasture topping 

through mechanical means. The economics of herbicide resistance and the utilisation of non-

chemical treatments has been investigated previously (Gorddard et al. 1995, 1996; Pannell et al. 

2004). Yet, the optimal management of multiple stages, phase length, and pasture treatments 

have not been studied given that significant methodological difficulties are predicted (see, for 

example, Gorddard et al. 1995, p. 73). These may be overcome, however, through the adoption 

of the framework presented in this paper. 

It is assumed that a producer is interested in determining the optimal management of a single 

field in the eastern wheat belt of Western Australia. The aim of the producer is to maximise the 

value of the field between 0t  and the variable terminal time nt . The initial seed population is 

fixed at },{ 000
hs xxx = . It is assumed that crop yield is detrimentally affected by the population 

of a single weed, annual ryegrass. Multiple weeds may be incorporated but only one weed is 

studied here because this permits the identification of important components while maintaining 

tractability. The densities of the crop and weed populations, together with the intensity of weed 

treatments, are assumed to be distributed uniformly. We may therefore focus on one hectare of 

the field in order to simplify the calculation of model quantities. Spatial variability is not treated, 

however, this issue is examined in Dorr and Pannell (1992).  
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The farmer is assumed to manage the field in a wheat crop - lucerne pasture rotation for five 

phases ( }5,4,3,2,1{=j ). Both the initial and terminal stages are cropping phases. The stage 

sequence is therefore crop – pasture – crop – pasture – crop. There are four switching times 

( },,,{ 4321 ttttt = ) and the planning horizon ends at 5t . The field is to be sold at the end of the 

last phase, with the value of the land asset dependent on the weed burden.  

Establishment costs for wheat crops are incurred annually within a phase and are therefore not 

characterised here as switching costs. In contrast, lucerne requires establishment and removal at 

the beginning and end of each pasture phase respectively. Lucerne is expensive to establish 

because of high seeding and weed control costs. Its effective removal also requires careful 

grazing management and non-selective herbicides (Bee and Laslett 2002). Significant switching 

costs for lucerne establishment and renewal are therefore incorporated in the model. The 

switching cost representing lucerne establishment is ))(( jle
rt txCe j−  for }3,1{=j  and that for 

lucerne removal is ))(( jlr
rt txCe j−  for }4,2{=j . The switching cost may be a function of the 

state variable(s). For example, in some systems, the herbicide dose required for weed control at 

pasture establishment may be positively related to weed density (i.e., more herbicide is required 

when a high weed population is present). However, the switching cost is independent of weed 

density in this specification given that a high rate of non-selective herbicide is used, in 

accordance with standard practice. This independence of the state variable will remove the 

switching cost component from the equivalent of (11) for each switching time (i.e., the 

switching condition (11) becomes )()( 1 j
T
jj

T
j tt += λλ  for }4,3,2,1{=j ). 

Two state variables are required to represent the weed seed population because of herbicide 

resistance (Gorddard et al. 1995, 1996). First, sx  is the population of annual ryegrass seeds that 

following germination are susceptible to the selective Group A (diclofop-methyl) herbicide 

(Preston 2000). Second, hx  is the population of seeds that following germination are resistant to 

this herbicide. In the following, these two state variables are referred to as susceptible seeds and 

resistant seeds respectively for ease of exposition. Resistance to only one herbicide is studied to 

focus attention on the intertemporal management of herbicide resistance.  

Cereal phase dynamics 

The objective functional for the cereal phases }5,3,1{=j  are, 
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where r is a discount rate, p  is a constant price, 0y  is weed-free yield, η  is the proportion of 

yield lost to phytotoxic damage for a given dosage (kg/ha) of diclofop-methyl herbicide hu , z is 

the maximum proportion of grain yield lost at high weed density, b is a crop-dependent density 

parameter, k  is a constant representing the competitiveness between the weed population and 

the wheat crop, W(t) represents the total weed population, hc  is the cost of herbicide, and γ  is 

the cost of achieving 50 percent weed kill utilising alternative treatments nu  (Gorddard et al. 

1995). The latter is a composite control variable representing a number of diverse treatments, 

such as cultivation, high seeding rates, burning, green manuring, and haymaking. The cost 

function for alternative treatments reflects an increasing marginal cost associated with their use. 

High levels of weed kill may only be achieved with cultural methods through green-manuring 

and the making of hay or silage, all of which require a significant cost as all crop revenues are 

sacrificed. In contrast, moderate mortality of seeds or weeds may be achieved through utilisation 

of comparatively inexpensive treatments. Examples are the burning of crop stubble and the use 

of seed catchers at harvesting time to decrease the return of weed seed to the field. The yield 

function in (15) is a constant crop density (100 plants m-2) analogue of that found in Pannell et 

al. (2004).  

The weed population is defined )()()( tWtWtW hs += , where sW  is the susceptible weed 

population and hW  is the herbicide resistant weed population. These weed populations are 

related to the susceptible and resistant seed populations through )1()1( nyu
w

ss ueMgxW
h

−−= −  

and )1)(1( n
w

hh uMgxW −−=  respectively, where g represents the rate of germination, wM  

represents the natural mortality of germinated weed seeds, and y is a parameter designating the 

strength of the relationship between ryegrass mortality and herbicide dose. Note that the 

alternative treatments kill both susceptible and resistant weeds, while herbicide obviously affects 

only the susceptible population. The last cereal phase ( 5=j ) also has a terminal value of 

χβα )()( 55
5 hsrt xxee − , where },,{ χβα  are parameters.  
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The seed population declines with germination (g) and the natural mortality of ungerminated 

seeds ( SM ). It increases with total seed production, which is simply the number of weeds setting 

seed multiplied by the mean seed production (R) of each individual plant. 

The motion equation for the susceptible seed population is consequently, 

( )Ruevvxx nyUss h

)1(21 −+−= −
� , (16) 

where SMggv )1(1 −+=  and )1(2 WMgv −= .  

The motion equation for the herbicide resistant seed population is, 

( )Ruvvxx nhh )1(21 −+=� . (17) 

Pasture phase dynamics 

Revenue from the pasture enterprise will consist solely of animal production, given the poor 

economics of hay and silage making in this dryland environment. Even though the stocking 

density has important implications for ryegrass control, it is likely to be determined by farm-

level factors that are not incorporated here. The pasture enterprise is therefore defined as a cost 

minimisation problem with exogenous definition of the interaction between grazing and weed 

density.  

The selective herbicide may also be used during the pasture phase. Annual ryegrass may also be 

controlled through control of seed-set through spray-topping with a non-selective herbicide 

(Jones et al. 1984). This treatment is included here and is illustrative of the effective and 

affordable weed control treatments available during a pasture phase.  

The producer’s problem in the lucerne phases }4,2{=j  is, 

)(min mmhhrt ucuceJ += − , (18) 

subject to, 

( )Rgraeevvxx
mh quyuss )1(21 −+−= −−

� , (19) 
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( )Rgraevvxx
mquhh )1(21 −+−= −

� , (20) 

where mc  is the cost of a non-selective herbicide, mu  is the dosage (kg/ha) of this non-selective 

herbicide, q  is a parameter designating the strength of the relationship between ryegrass 

mortality and this dose rate, and gra  is the level of ryegrass control achieved through grazing.  

Parameter values 

This section describes the parameter values used for the numerical solution of the optimal 

control model. All monetary values are expressed in 2004 Australian dollars.  

Weed-free yield ( 0y ) is 1.3 tonnes (Pannell et al. 2004). The relationship between herbicide 

dose and the proportion of yield lost to phytotoxic damage is taken from Gorddard et al. (1995, 

1996). This relationship is huD η=  where 1448.0=η  (s.e.=0.026, 96=n , and R2=0.36). 

Herbicide efficacy is described through 451.7=y  for the selective herbicide (Gorddard et al. 

1995) and 025.0=q  for glyphosate (estimated from data in Wakelin, Lorraine-Colwill, and 

Preston 2004). The values of the other parameters within the yield function are 6.0=z , k=0.33, 

and b=105 (Pannell et al. 2004). The annual germination of each seed population (g) is 0.8 (or 

80 percent) (Gill 1996a). Natural seed mortality is significant, particularly over summer and 

early autumn when seeds may perish from disease or die from dehydration if autumn rains are 

not consistent. The parameter representing total seed mortality ( sM ) is 0.55. In contrast, the 

natural mortality of plants is low. The estimated rate ( wM ) is 0.05. The average rate of seed 

production by an individual plant (R) is assumed to be 20,000 seeds (Gramshaw 1972). 

Parameters describing the population dynamics for each seed population are the same. This 

introduces little bias given that there is little evidence of differences in relative fitness between 

resistant and susceptible populations. Grazing effectiveness (gra) is set at 0.5, a conservative 

estimate that considers spray-topping effects and the rotational grazing of lucerne (C. Revell, 

personal communication).  

The price received for a tonne of wheat is $165 (DAWA 2004). The real discount rate is 5 

percent (Pannell et al. 2004). The cost per kilogram of active ingredient (diclofop methyl) of 

herbicide is $40. This follows from the cost of the Hoegrass� 375 herbicide, which is $15 per 

litre, and its load of .375 kg of active ingredient per litre (DAWA 2004). Formulating an 
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estimate of the cost of non-chemical control is problematic because this represents a number of 

weed control methods. Realistic estimates of the relationship between weed control and control 

costs are achieved when 10=γ . The cost of the glyphosate herbicide used for spray-topping is 

$12.50 for a kilogram of active ingredient (DAWA 2004). Switching cost estimates are taken 

from DAWA (2004). That for lucerne establishment is le
rt Ce j− , where }3,1{=j  and 

50.58$=leC . That for lucerne removal is lr
rt Ce j− , where }4,2{=j  and 25.21$=lrC . 

No information is available that would permit the accurate estimation of a suitable terminal 

value function, although survey evidence confirms a relationship beteen land value and 

herbicide resistance (R. Llewellyn, personal communication). Inclusion of a terminal value 

function is equivalent to optimisation across an infinite time horizon because this function 

represents the expected long-term value of agricultural land under perfect information 

(McConnell 1983). It is consequently estimated through multiple runs of the cereal phase over a 

100 year period2 utilising different combinations of initial seed densities and a terminal point of 

500 seeds per square metre to permit comparison. Regression of the resultant data using a 

Cochrane-Orcutt technique (Cochrane and Orcutt 1949) with AR(1) errors identified that 

4295.9=α  (s.e.=0.159), 0514.0=β  (s.e.=0.019), and 232.0=χ  (s.e.=0.011) ( 50=n , 

958.02 =R ). 

Model output 

The first scenario involves an initial susceptible seed population of 400 seeds m-2 and an initial 

herbicide resistant seed population of 100 seeds m-2. The model solves after ten iterations and 32 

minutes of solution time on a desktop computer incorporating a Pentium 4 2GHz processor and 

1GB RAM. The optimal trajectories for both seed populations are shown in Figure 1. Here, the 

switching times are denoted with arrows and labels tj. For example, the first switching time is 

denoted t1.  

                                                 
2 This is considered a sufficient proxy for an infinite horizon because technical progress over such a length of time 
seems likely to produce changes in farming systems that will overcome profit losses associated with resistance to 
Group A selective herbicides.  
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Figure 1. Optimal trajectories of susceptible and resistant annual ryegrass seeds over five phases 

of a wheat crop - lucerne rotation. 

The susceptible seed population declines at the beginning of the first and third cropping phases 

(i.e., following Year 0 and t2 in Figure 1). The selective herbicide is applied at light rates at this 

time to decrease the susceptible population. However, most in-crop control arises from 

alternative treatments, which are used at 90 percent intensity over these phases. This heavy use 

is necessary because these treatments are effective against both populations, while the selective 

herbicide only controls the susceptible weeds. Heavy reliance on alternative treatments and their 

effectiveness against either population explains the similarity between the two trajectories in 

Figure 1. 

The value of a pasture phase in the optimal rotation is clear because the seed population is lower 

after their use. For example, the seed populations are both lower at t2 than at t1. The weed 

populations increase sharply at the beginning of each pasture phase. (This occurs at the moment 

immediately following t1 and t3 in Figure 2.) This leads to the increase in seed burdens observed 

at the corresponding times in Figure 1. The high effectiveness of spray-topping permits these 

increases to occur early in the pasture phase but not continue into the subsequent cereal crop. 

These high weed burdens do not detrimentally affect pasture profitability in this model. In 

reality, they may decrease animal production through promoting disease (e.g., ryegrass toxicity) 

(Pearce and Holmes 1976) or suppressing legume growth. However, annual ryegrass is also an 

important component of grazed pastures in many farming systems in Western Australia, 

particularly in early winter when the growth of legumes is reduced (Gill 1996b). Relating 
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ryegrass density with animal production would therefore be an interesting extension of this work 

if information of sufficient quality were available. 

 

Figure 2. Optimal trajectories of susceptible and resistant annual ryegrass plants over five 

phases of a wheat crop - lucerne rotation. 

The terminal cropping phase involves the use of alternative treatments at 97 percent intensity 

and continuous applications of selective herbicide at between 0.2 and 0.3 kilograms of active 

ingredient per hectare. This is the only time that the intensity of the selective herbicide is 

sustained across an entire phase in the first scenario. These practices result in a sharp decline in 

both the susceptible and resistant populations (see Figures 1 and 2). In addition, the heavy level 

of selective herbicide use causes the susceptible population to fall below that of the resistant 

population for the first time across the planning horizon. These changes in management reflect 

the impending sale of the farm and an associated additional benefit to weed control, a significant 

inverse relationship between land value and the terminal weed population.  

The second scenario involves an initial susceptible seed population of 400 seeds m-2 and no 

herbicide resistance. This causes cropping income to increase by 67.5 percent over the planning 

horizon, reflecting the significant cost of resistance. This is higher than an estimate of 35 percent 

identified by Pannell and Zilberman (2001); however, their estimate includes pasture income, a 

planning horizon that is half of the length of that used here, and no terminal land value.  

The optimal trajectories for the susceptible seed population for the “with resistance” and 

“without resistance” scenarios are shown in Figure 3. The switching times and terminal point for 
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these scenarios are denoted tj and hj (for }5,4,3,2,1{=j ) respectively. The optimal susceptible 

seed population is lower across most of the time horizon when no herbicide resistance is present 

(Figure 3). This is intuitive because the marginal value of selective herbicide application is 

higher, as resistant weeds do not need to be controlled simultaneously.  

Figure 3. Optimal trajectories for the susceptible seed population with and without herbicide 

resistance over five phases of a wheat crop - lucerne rotation. 

The utilisation of the selective herbicide permits the susceptible weed population to be 

effectively controlled during crop phases when there is no herbicide resistance. This is 

demonstrated in the decline of the seed population in Figure 3 between the initial time and h1 

and between h2 and h3. This reflects the increased value of the selective herbicide, which is used 

intensively across each crop (see Figure 4(a)). (Figure 4 also clearly demonstrates the piecewise 

definition of control variables given the definition of multiple phases.) In comparison, the value 

of alternative treatments declines significantly with no herbicide resistance. This is reflected in 

their optimal intensity in the second scenario (see Figure 4(b)), relative to the 90 percent 

intensity utilised in the first. The value of pasture phases for weed control also declines 

significantly when there is no herbicide resistance. Both pasture phases begin later (h1>t1 and 

h3>t3) and are also shorter given no herbicide resistance. This reflects that prolonged cropping 

phases are more profitable when selective herbicides are available to decrease in-crop 

competition. 
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Figure 4. (a) Kilograms of active ingredient applied per hectare and the (b) intensity of 

alternative treatments under optimal management without herbicide resistance. (The alternative 

treatment in the second and fourth stages in (b) is the glyphosate spray-topping treatment, with 

its intensity measured in kilograms of active ingredient per hectare.) 

The susceptible seed population follows a similar trajectory for both scenarios in the terminal 

phase (Figure 3), reinforcing the significant relationship between the future productivity of land 

and the terminal weed burden. However, the terminal phase is more profitable without herbicide 

resistance, as all weeds are susceptible to the efficient selective herbicide, which is applied 

heavily across the terminal phase (Figure 4(a)). 

V. Conclusions 

There appears to be no general framework for the numerical optimisation of multiple-phase 

systems in Economics. This is a significant limitation because these arise in many important 

situations, such as determining the optimal time to switch between production technologies, 

energy sources, or land uses. The optimisation algorithm presented in this paper offers a flexible 

and efficient platform for the solution of multiple-phase problems in which the number and 

sequence of phases is pre-assigned. Removing these latter restrictions is a key area for further 

work. To this end, we believe that direct transcription and the theory of piecewise constant 

controls has much to offer. 
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Appendix 

This Appendix describes the derivation of Theorem 1. These conditions are derived utilising the 

approach used by Bryson et al. (1963) for the optimisation of a system incorporating inequality 

constraints and its extension by Bryson and Ho (1975) to deal with state variable discontinuities 

(pp. 106-108). The derivation of switching conditions for the Hamiltonian functions follows 

Amit (1986).  

The problem is to identify those vectors that solve the following problem, 

[ ]� ��
=

−
−

=

−−

�
�

�

�

�
�

�

	
++=

−

n

j

t

t
jj

rt
n

j
jj

rt
nn

rt

tu

j

j

jn

jj

dttutxFetxCettxGeJ
1

1

1
,

1

))(),(())(()),((max , (A.1) 

subject to: 

))(),(( tutxfx jj=� , for ),[ 1 jj tt −  and [ ]nj ,...,2,1=  given { }nkkkK ,...,, 21= , (A.2) 

{ }ixt 00 ,=Λ  fixed for ],...,2,1[ ci = , ix  fixed for ],...,2,1[ di = , and (A.3) 

)}(,{ j
i

jj txt=Θ  free for ],...,1[ mdi +=  and [ ]nj ,...,2,1= . (A.4) 

First, adjoin the n constraint(s) (A.2) to the objective functional (A.1) using n m-dimensional 

vectors of adjoint multipliers, )(tjλ , to form the augmented functional, φ. This yields (A.5), 
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where )(tT
jλ  denotes the transpose of the adjoint vector. Define a Hamiltonian function for each 

stage j, 
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T
jjj

rt
jjj λλ += − . (A.6) 

Substitute equation (A.6) into equation (A.5), 
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Integrate the final term in the square brackets in equation (A.7) by parts, 
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Substitute equation (A.8) into equation (A.7) to obtain, 
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Consider differential changes in the discrete controls (the switching times and the endpoint of 

the terminal stage) and infinitesimal variations in the continuous controls ( )(tu j ). These will 

produce equation (A.10), the first variation of equation (A.9),  
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where φd , dt , and )( ntdx  are differential changes in the performance index, time, and the state 

variable at the final moment, respectively, and xδ  and uδ represent variations in the state and 

control trajectories respectively.  
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ranges of the summation signs for the shadow price variables and the Hamiltonian functions.) 

Substitution of these relationships into (A.10) and the collection of terms yields (A.11), 
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where )),(),(),(()( tttutxHH jjjj λ=⋅  for j={1,2,...,n}.  

The standard approach of deriving necessary conditions for a given optimal control problem 

using the variational approach requires the determination of variations in the state variable )(txδ  

arising from perturbations in the control variable denoted by )(tuδ . A more concise and intuitive 

method is utilised here. It is standard knowledge that the functional φ  is extremal if it is 

stationary with respect to arbitrary perturbations. Therefore, 

i) State variables ix  for ],...,2,1[ ci =  are fixed. Admissible variations must satisfy 

0)( 0 =tdx i  in order for stationarity of φ  to be guaranteed, so no conditions are required to 

identify the optimum initial state(s). State variables ix  for ],...,1[ mci +=  are free. Here, 

0)( 0 ≠tdx i  so 0)( 01 =tTλ  is needed for φ  to remain stationary following perturbations in the 
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initial state variable(s). 

ii) If the terminal time is fixed, then 0=ndt  so no condition is required to identify the 

optimum terminal time. If, instead, the terminal time is free, then stationarity of φ  is only 

guaranteed if 0
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n
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rt
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n
λ  given 0≠ndt . This is modified 

accordingly for those state variables ix  for i=[1,2,…,q] for which a terminal value function is 

not defined. 

iii) If the level of the state variable(s) are fixed at the switching times ],...,,[ 121 −= ntttt  then 

0)( =jtdx  for ]1,...,2,1[ −= nj  and no condition is required to identify them. Otherwise, 

stationarity of φ  is only guaranteed if 0)(
)(

))((
)( 1 =−

∂
∂

+ +

−

j
T
j

j

jj
rt

j
T
j t

tx

txCe
t

j

λλ  given 0)( ≠jtdx . 

iv) If the level of the state variable(s) are fixed at the terminal time then 0)( =ntdx  and no 

condition is required to identify them. Otherwise, stationarity of φ  is only guaranteed if 
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v) The adjoint functions are selected so 0)(
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],...,2,1[ nj = . This guarantees stationarity of φ  in relation to arbitrary variations xδ . 

vi) Similarly, the control functions are selected so 0
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jjj λ
 for 

],...,2,1[ nj = . This guarantees stationarity of φ  in relation to arbitrary variations uδ . 

vii) If all of these necessary conditions are satisfied, then (A.11) becomes, 

j

n

j j

jj
rt

tjtj dt
t

txCe
HHd

j

jj�
−

=

−

+ 




�

�






�

�

∂
∂

−⋅−⋅=
1

0
1

))((
)()(φ . (A.12) 

If the optimal solution includes 11 +− << jjj ttt , then feasible modification jdt  is freely variable. 

Stationarity of (A.18) is only then guaranteed if, 
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, or, alternatively, (A.13) 
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If the optimal solution includes 11 +− <= jjj ttt , then feasible modification jdt  is instead non-

negative. Stationarity of (A.18) is only then guaranteed if, 
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If the optimal solution includes 11 +− =< jjj ttt , then feasible modification jdt  is instead non-

positive. Stationarity of (A.18) is only then guaranteed if, 
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If, instead, the switching times are fixed, it follows that 0=jdt  for ],...,,[ 121 −= ntttt  and no 

condition is required to identify them. � 
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