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The Economics of Competiton Between Individuals in Biological
Populations

1 Introduction

The economic literature about the optimal management of renewable natural resources has rec-

ognized that the assumption of non-structured populations does not allow to address correctly

the two key issues of the management of renewable natural resources - the determination of the

optimal replacement periods, and the optimal long-run allocation of the total population among

the different values of the structuring variable. Economic analysis based on non structured pop-

ulations provides the optimal forest rotation of the entire stand in the case of forest management

or the optimal catch of total fishes in the case of fishery. However, the optimal replacement pe-

riod is not calculated correctly since the underlying growth process does not take account of the

fact that the entire forest or the entire biomass of the fishes varies respectively with individual

characteristics of each tree or each fish. For example, consider the case where the structuring

variable is age. Given the same amount of biomass, the rate of growth of a population formed by

young individuals is higher than the rate of growth of a population formed by old individuals.

Thus, non-structured population models are not able to model the biological growth process

correctly and therefore the optimal replacement period cannot be determined correctly either.

Obviously, the second key issue of the management of renewable natural resources - the optimal

long-run allocation of the total population with respect structuring variable - cannot be resolved

by non-structured population models.

Several empirical studies introduced the structuring variable diameter of the tree in order to

resolve the problem of optimal management of the forest. Initially, Adams and Ek (1974)

determined only the optimal long-run allocation of all trees among the different tree vintages, but

not the optimal replacement periods. Haight, Brodie and Adams (1985) solved simultaneously

for the optimal long-run allocation of all trees among the different tree vintages and the optimal

replacement periods. These two empirical studies were formulated in a discrete framework.

i. e. time and diameter can only take on certain values. Later studies for example by Sedjo

and Lyon (1990), and Adams, Alig, McCarl, Callaway and Winnet (1996) utilize discrete time

and a continuous structuring variable to analyze the problem of forest management. The same
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modelling framework was used by several theoretical studies that analyzed the properties of

the transient path and of the steady state (Mitra and Wan (1985),Mitra and Wan (1986), Wan

(1994) and Salo and Tahvonnen (2002)). The authors of the latter study show that the steady

state distribution is cyclical. However, as the period length of discrete time goes to zero the

cycle vanishes and the steady state distribution is given by a forest where all tree vintages are

evenly presented. Such a forest is called a normal forest.

While these theoretical and empirical studies were very helpful to address both key issues of

forest management economists have not yet presented and analyzed a theoretical model which

is continuous in time and the structuring variable. Looking at reality it seems difficult to justify

that the trees can be cut only in certain moments of time and the structuring variable takes

on only particular values. Most importantly, however is the fact none of the previous studies

take account of the competition between the individuals belonging to the same population. In

the case of forest the trees compete for space, light and nutrients. In order to capture this

situation biologist simply use the term environment in order to express in general biotic or

abiotic factors that influence the life cycle of the individual. For example in predatory prey

models the environment for the population of the prey is usually modelled as the population of

the predatory. In the absence of a population of a predatory the life cycle of a single individual is

mostly influenced by the other individuals of the population. Thus, in order to model biological

growth correctly one does not only have to take account of the individual characteristics but

also the distribution of the individual characteristics over the entire population. As an example

we can refer again to the structuring variable age. Given the same initial amount of biomass,

the rate of growth of a population will be the higher the more young individuals form part of

this population. In other words the more young individuals form part of a population the less

competition the single individual faces, and therefore the growth rate of the entire population

increases with the share of young individuals of the entire population.

The distribution of the individual characteristics over the entire population is not only important

in order to model correctly biological growth but most importantly in order to take account of

the multiple services biological resources offer. For example, forests produce besides timber a

large variety of services such that: amenity and recreational values, natural habitat of wildlife,

mushrooms, protection of watersheds, carbon sequestration etc. (Rojas, 1996). The production

of most of these services does depend to a large extent on the distribution of the individual
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characteristics over the entire forest and not on the aggregate measure of the trees or the

particular value of the individual characteristics. A simple example is the production of wildlife

habitat for deers. They need young trees to feed on and old trees to take refuge. Thus, a

particular distribution of the individual characteristics over the entire forest is necessary to

favor the habitat of deers.

The methodological approach we propose in this paper, however is not only applicable to the

case of biological resources but also to other fields of economics where the state variable of a

dynamic system is structured. For instance in the case of optimal economic growth or replace-

ment of capital at the firm level this approach allows to incorporate network effects. Usually,

recently introduced capital is more productive than capital that has been introduced some time

ago. However, the productivity of capital does not only depend on its vintage but also on the

distribution of the vintages of the entire capital. Recently introduced capital may be based on

a different technical standard than the capital introduced before. Thus, it may well be that the

full potential of the new capital cannot be achieved until a sufficient quantity of new capital is

acquired which is compatible with itself but not with the preexisting capital. Thereby leading

to a positive network effect. Another possibility to increase the potential of new capital is to

incur in adjustment costs for instance in form of additional training of the human resources or

the acquisition of specific capital to bridge the gap between different technical standards. The

migration from relatively new capital to the very late capital generates most likely lower adjust-

ment costs than the migration from fairly obsolete capital to the very late capital, Consequently,

adjustment costs depend on the distribution of the vintage of the capital. Most likely, they in-

crease with the share of obsolete capital of the entire stock of capital. This relationship can be

considered as a negative network effect. Negative and positive network effects may be presented

simultaneously. While the economic literature recognized the importance of taking account of

the vintage of capital (Boucekkine, Germain and Licandro (1997), Boucckkine, Germain, Lican-

dro and Magnus (2001), Feichtinger, Hartl, Kort and Veliov (forthcoming 2005), and Feichtinger,

Hartl, Kort and Veliov (forthcoming 2004)), it has yet not considered the accompanying network

effects.

Although the approach presented in this paper can be applied within very distinct contexts, we

restrict ourself to the case of forest management in order to enhance the clarity of the exposition.

In particular we present a theoretical model to determine the optimal selective-logging regime
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of a size-distributed forest. The law of motion of the economic model is governed by a partial

integrodifferential equation that describes the evolution of the forest stock over time. Given

the complexity of the problem it is not possible to obtain an analytical solution. In contrast to

the existing literature where distributed control problems are solved numerically by a gradient

projection method (Feichtinger, Prskawetz and Veliow, 2004) we employ a different technique

known as the “Escalator Boxcar Train”. This technique has the advantage that it does not

require to program numerical algorithm but can be implemented with standard optimization

packages such as GAMS. The empirical part of the paper determines the optimal selective-

logging regime of a forest that consists of pinus sylvestris from a private perspective. The

analysis allows to compare the optimal selective-logging regime with the optimal clear-cutting

regime of the Faustmann model. The results show that the clear-cutting regime leads to lower

benefits than the selective-logging regime. This is due to the rigidity of the Faustmann model

with respect to logging and planting.

The paper is organized as follows. The following section describes the features of the economic

model. As such it is divided into a subsection that describes the underlying biological processes

and a subsection that outlines the economic decision problem in form of a distributed optimal

control problem. Section 3 derives and presents the employed numerical technique to solve the

distributed optimal control problem and section 4 determines and compares the optimal selective

and the clear cutting regime of a forest. Finally, section 5 presents the conclusions.

2 The economic model

Before presenting the complete economic model that allows to determine the optimal selective

logging regime we characterize the underlying biological model that describes the growth process

of the trees.

2.1 The growth process of the trees

In the previous economic literature the age of the tree is regarded as the structuring variable

of the biological population (Wan (1994) and Salo and Tahvonnen (2002). However, from an

economic point of view it is not the age but size of the tree that is important. The price of

lumber changes with the size of the tree but not with age. As established by forest scientists
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the age of a tree can be only be considered as a poor proxy for its size (Björklund, 1999). A

large genetic variety between the trees, and of the different local conditions of each tree makes it

difficult to establish a functional relationship between size and age. Consequently, the coefficient

of determination (R2) resulting from an econometric estimation of this relationship is not greater

than 0.3.

In forestry, the size of a tree, and consequently the size of a forest, is usually measured by the

diameter at breast height, that is, the diameter of the trunk at a height of 1.30 m above the

ground. We denote the diameter of a tree by l ∈ Ω, Ω ≡ [lb, lm), where lb and lm indicate

the biological minimum and maximum size of a tree. The exogenous variable l together with

calender time t form the domain of the control and state variables. We assume that a diameter-

distributed forest can be fully characterized by its number of trees and by the distribution of

the diameter of the trees. In other words, space and the local environmental conditions of the

trees are not accounted for. Given that the value of diameter of a tree lies in the interval [lb, lm),

and that the number of trees is large by assumption, the distribution of the trees of the forest

can be represented by a density function. It is denoted by x(t, l), and indicates the population

density with respect to the structuring variable, l, at time t. Therefore, the number of trees in

the forest at time t is given by

X(t) =
∫ lm

lb

x(t, l) dl. (1)

The dynamics of the forest is driven by the following four processes: growth, reproduction,

mortality and environmental characteristics. Let define g(E(l), l) the rate of change in the

diameter of a tree as a function of its current diameter l where E(l) presents a collection of

environmental characteristics, that affect the rate of growth of the individual tree. In the absence

of a predator these environmental characteristics are given by the local conditions where the

tree is growing, and by the neighboring trees. The local conditions and the competition between

individuals for space, light and nutrients affect the life cycle of each individual. Since our

model does not consider space, the variable E(l) reflects exclusively the competition between

individuals. Environmental characteristics E(l) for a tree with diameter l̂, can be captured for

example by the total number of trees, or the basal area1 of all trees with l ≥ l̂. A large basal

1The basal area is the area of the cross section of a tree at a height of 1.30 m above the ground. The basal
area is often used to measure and describe the density of trees in the forest, where the sum of the basal area of
all trees is expressed per unit area of land (e.g., square meters per hectare).
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area of these trees signify a high pressure of competition on the life cycle of an individual tree

with diameter l̂. Thus, the change in the diameter over time of a single tree is given by

dl

dt
= g(E(l), l), (2)

where the functional relationship between diameter and basal area is employed to determine

E(l) which is given by

E(l) =
∫ lm

l
π
(s

2

)2
x(t, s) d s. (3)

The instantaneous death rate is denoted by δ(E(l), l). It describes the rate at which the proba-

bility of survival of a tree with diameter l, given the environmental characteristics E(l), decreases

with time.

The reproduction of the forest can either be modelled as a biological or as a man made reproduc-

tion. In the former case we would obtain a boundary condition for the partial integrodifferential

equation that reflects the reproduction process. In the case of man made reproduction we have

a completely managed forest in mind, where the young trees with diameter lb are planted and

no biological reproduction takes place. Hence, the control variables for the management of the

forest are given by u1(t, l) and u2(t, lb), and denote cutting density at time t with diameter l,

and planting density at time t with diameter lb respectively. Thus, the optimal management

forest problem is a distributed optimal control problem where the time dependent control vari-

able u1(t, l) is distributed over l, and the time dependent boundary control variable u2(t, lb)

for the initial diameter lb of the tree (Feichtinger and Hartl, 1986). Based on the well known

McKendrick equation for age structured populations (McKendrick, 1926) the dynamics of the

diameter distributed forest can be described by the following partial integrodifferential equation

discussed by de Roos (1997), or by Metz and Diekmann (1986)

∂x(t, l)
∂t

+
∂g(E(l), l) x(t, l)

∂l
= −δ(E(l), l)x(t, l)− u1(t, l) (4)

subject to the boundary condition g(E(lb), lb)x(t, lb) = u2(t, lb).
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2.2 The Distributed Optimal Control Problem

We assume that the forest is privately owned and managed over a planning horizon of t1. Using

the definitions given in the preceding section, the formal decision problem of the forest owner

can be stated as:

max
u1(t,l),u2(t,lb)

∫ t1

0

∫ lm

lb

V1(x(t, l), u1(t, l), l)e−rt dl dt

−
∫ t1

0
V2(x(t, l), u2(t, lb))e−rt dt

+
∫ lm

lb

V3(x(t1, l))e−rt1 dl

+
∫ t1

0
V4(x(t, lm))e−rt dt,

(P)

subject to the constraints

∂x(t, l)
∂t

≡ f(E(l), t, l) ≡ −∂(g(E(l), l) x(t, l))
∂l

− δ(E(l), l)x(t, l)− u1(t, l),

x(t0, l) = x0(l), g(E(lb), lb)x(t, lb) = u2(t, lb), u1, u2 ≥ 0 u1(t, l) ≤ x(t, l),

where E(l) is given by equation (3) and r denotes the discount rate. The function V1(·)e−rt

presents the discounted net margin of the timber, i.e. the revenue of the timber sale minus

cutting and maintenance costs. The function V2(·)e−rt captures the discounted cost of planting

trees with diameter lb, the function V3(·)e−rt1 the value of the standing trees at the final point

in time of the planning horizon, and V4(·)e−rt the value of the standing trees that have not

been cut and have reached the maximum diameter lm. The term x0(l) denotes the initial

diameter distribution of the trees, and the restriction g(E(lb), lb)x(t, lb) = u2(t, lb) requires that

the planted density coincides with the density of the stock variable with diameter lb. Finally, it

is required that the control variables are nonnegative, and cutting density does not exceed the

tree density of the forest.

Using Pontryagins Maximum Principle the current value Hamiltonian is given by
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H ≡
∫ lm

lb

[
V1(·) + λ(t, l)f(·) ]

dl − V2(·) + λb(t)
[
u2(t, lb)− g(E(lb), lb)x(t, lb)

]

≡
∫ lm

lb

H1 dl +H2,

whereH1 stands for V1(·)+λ(t, l)f(E(l), t, l), andH2 for−V2(·)+λb(t)
[
u2(t, lb)−g(E(lb), lb)x(t, lb)

]
.

The variables λ(t, l) and λb(t) denote the costate variable and the Lagrange multiplier respec-

tively. The term H1 is associated with the distributed part of the optimal control problem, and

the term H2 with the boundary part of the control problem (Feichtinger and Hartl, 1986), and

(Muzicant, 1980). That is why H1 is integrated over the range of l but not H2. In other words

H2 is similar to a standard optimal control problem (lumped optimal control) since it is valid

for all moments of time but only for a single value of l, i.e. lb (lumped). However, it is not a

proper optimal control problem as the constraint u2(t, lb) − g(E(lb), lb)x(t, lb) = 0 is constant

over time. As a result, the first order conditions associated with this part of the problem do

not involve a system of canonical differential equations. Taking the constraints of the control

variables into account, leads to the Langrangian L given by

L ≡
∫ lm

lb

H1 dl +H2 + µ1u1 + µ2u2 + µ3(x− u1),

where µi, i = 1, 2, 3 are the corresponding Langrange multipliers.

The following necessary conditions (Sage, 1968) and (Feichtinger, Tragler and Veliov, 2003) are

obtained.

∂H1

∂u1
≡ V1u1

− λ(t, l) + µ1 − µ3 = 0, ∀t, ∀l (5)

∂H2

∂u2
≡ −V2u2

+ λb(t) + µ2 = 0, ∀t (6)

∂H2

∂λb
≡ g(E(l), l)u2(t, lb)− x(t, lb) = 0, ∀t (7)

∂λ(t, l)
∂t

= (r + δ(E(l), l))λ(t, l)− ∂
(
g(E(l), l)λ(t, l)

)

∂l
(8)

∂x(t, l)
∂t

= −∂
(
g(E(l), l) x(t, l)

)

∂l
− δ(E(l), l)x(t, l)− u1(t, l) (9)

where E(l) is defined by equation (3). For an interior solution the first necessary condition,

equation (5), states that along the optimal path the marginal net margin of the timber sale

should equal the shadow price of the forest stock for every t and l. In contrast to lumped
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optimal control, distributed optimal control requires that this equation holds along the optimal

path not only with respect to time, but also with respect to diameter. Thus, the private owner

maximizes his/her benefits not only over time but also over diameter at every instant of time. In

other words, the private owner practices selective logging. Equation (6) states that the marginal

cost of planting trees with diameter lb should equal at every moment of time the marginal benefits

of planting this tree, e.g. the marginal net benefits that accrue from time t to t1. Hence, in

correspondence with the first necessary condition the private owner also practices to some extent

selective planting by choosing the time and the number of trees to be planted, however not their

diameter. Equation (7) reproduces the constraint associated with λb(t) and reflects the fact that

the diameter of planted trees has to coincide with the stock variable at diameter lb. Necessary

condition (8) shows that the marginal change in the overall net benefits of selective logging due

to a decrease in the stock, captured by −∂H1

∂x
, has to equal the marginal change in the shadow

price with respect to time plus the marginal change of the product of the growth rate and the

shadow price with respect to diameter. The last necessary condition is just a restatement of the

law of motion, and therefore, it will not be discussed here. Finally, since there are no exogenous

restrictions on x(t, lb), x(t, lm) and x(t1, l) the following transversality conditions have to be

taken into account.

∂H2

∂x
− ∂H2

∂(∂x(t,l)
∂l )

∣∣∣∣
l=lb

= 0, x(t, lb) free (10)

∂H1

∂(∂x(t,l)
∂l )

∣∣∣∣
l=lm

= 0, x(t, lm) free (11)

∂H1

∂(∂x(t,l)
∂t )

∣∣∣∣
t=t1

= 0, x(t1, l) free. (12)

Since the term ∂x(t, l)/∂l enters linearly in the function f(·), the first transversality condition,

eqn. (10), requires that λb(t) = λ(t, lb). In words, in every moment of time the shadow cost for

planting trees has to equal the shadow price of the stock at the diameter size of planting. This

transversality condition is a result of the link between the distributed and the boundary control

by their common stock variable. Transversality condition eqn. (11) states that λ(t, lm) = 0.

Hence, the shadow price of a tree with the maximum diameter size lm has to be equal to zero.

Finally, transversality condition eqn. (12) yields λ(t1, l) = 0, requiring that the shadow price of

the trees at the terminal point of time has to be equal to zero.
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3 The numerical approach

In practice the necessary conditions, two equations and a system of partial integrodifferential

equations, can only be solved analytically under severe restrictions with respect to the speci-

fication of the mathematical problem (Muzicant, 1980). Thus, one has to resort to numerical

techniques in order to solve the distributed control problem. Available techniques such as the

method of finite differences, the method of Galerkin or of finite elements may be appropriate

choices (Calvo and Goetz, 2001). However, all of them require the programming of algorithms

mostly unknown to economists. Therefore we propose a different method named the Escala-

tor Boxcar Train (de Roos, 1988). In contrast to the other available methods, the Escalator

Boxcar Train, EBT, can be implemented with standard computer software utilized for solving

mathematical programming problems.

The partial integrodifferential equation 4 describes the time evolution of the population density-

function over the domain Ω of the individual structural variable l. Assume for now that E is

constant such that the partial integrodifferential equation is now a partial differential equation.

Moreover, let Ω be subdivided into n arbitrary and non overlapping domains Ωi(t = 0), i =

1, 2, · · · , n at the initial point of time of the planning horizon and define Ωi(t) as

Ωi(t) = {l(t, t = 0, lb)|lb ∈ Ωi(0)},

i.e. Ωi(t) describes the trajectory of the diameter over time. The definition of Ωi(t), is such that

the domain is transported along the characteristics of the partial differential equation in time.2

Exploiting the biological interpretation of this equation, the density-function is represented by

a set of moments over a collection of n subdomains in Ω, for instance the total number of trees,

X(t), and the mean diameter of the trees, L(t) in a particular subdomain Ωi, i = 1, ..., n. In

contrast to other numerical techniques the Escalator Boxcar Train approximates these moments

over subdomains of the structuring variable that move along the characteristics and does not

approximate the density function at nodal points (de Roos, 1988).3

2A partial differential equation can be solved analytically by deriving a system of ordinary differential equations.
This system consists of the equations of characteristics. Its solution is called the characteristics and coincides
with the solution of the partial differential equation. Along the characteristics the changes in the diameter are
described by an ordinary differential equation. Thus the characteristics define the biological trajectories of the
trees in the time diameter plane.

3The presentation of the EBT method follows to a great extent de Roos (1988) and de Roos (1997). In
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To describe the evolution of x(t, l), the total number of trees, Xi(t), and the average diameter

of the trees, Li(t) within the subdomain Ωi are defined as

Xi(t) =
∫

Ωi

x(t, s)ds, and Li(t) =
1

Xi(t)

∫

Ωi

sx(t, s)ds. (13)

To take account of the control variable, let U1i denote the amount of cut trees in the subdomain

Ωi given by

U1i =
∫

Ωi

u1(t, l). (14)

Within the subdomain or cohort i the population is fully characterized by the total number of

trees and their average diameter. The total population is thus a collection of cohorts. Mathe-

matically, the density function x(t, l) is approximated by a set of delta functions of size Xi(t) at

diameter Li(t). For the dynamics of the quantities Xi(t) and Li(t) the Escalator Boxcar Train

method assumes that, except in the case of death, cohorts of individuals stay together indefi-

nitely and do not switch from one cohort to another. The change in time of these quantities is

approximately given by4

dXi(t)
dt

= −δ(E,Li)Xi(t)− U1i(t) and
dLi(t)

dt
= g(E, Li). (15)

Equation 15 describes the dynamics of the cohorts that are already present in the population

but it does not account for the plantation of new trees. Since the value of the lower interval

bound of subdomain Ω1, denoted by l1 changes over time, all newly planted trees have a length

widening interval [lb, l1]. This cohort is the boundary cohort characterized by

X0(t) =
∫ l1

lb

x(t, l) dl.

Since the number of individuals within the boundary cohort, is initially zero, the average di-

ameter of the boundary cohort is according to equation 13 not defined. Therefore, a slightly

contrast to these references the partial differential equation presented in this paper contains additionally two
control variables. Thus, we derive the appropriate set of ordinary differential equations for this case.

4The ordinary differential equations for Xi(t) and Li(t) do not form a solvable system because they involve
weighted integrals over the density function x(t, l). To obtain a closed solvable system as presented in equation
15 the functions δ(E, l) and g(E, l) are approximated by their first order Taylor expansion around l = Li(t).
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different quantity is employed to measure the average diameter of the boundary cohort given by

L̂0(t) =
∫ l1

lb

(l − lb)x(t, l) dl.

Differentiation of X0(t) and L̂0(t) with respect to time, and employing first order Taylor ap-

proximations of the functions g(E, l) and δ(E, l) leads to a set of ordinary differential equations.

These equations describe the dynamics of the boundary cohort and are given by

dX0

dt
= −δ(E, lb)X0(t)− d

dl
δ(E, lb)X0(t) + U2(t)

dL̂0

dt
= g(E, lb)X0(t) +

d

dl
g(E, lb)L̂0(t)− δ(E, lb)L̂0(t),

(16)

where u2(t, lb) is now written as U2(t) in order to unify notation. Moreover, the resulting term

g(E, lb)x(t, lb) in the derivation of
dX0

dt
is replaced by U2 according to the boundary condition

of equation 4. The boundary cohort cannot be continued infinitely, because the range would

become larger and larger and the approximation would break down. Therefore, the cohorts

have to be renumbered at regular time intervals 4t. this renumbering operation transform the

current boundary cohort into an internal cohort and initializes a new, empty boundary cohort

realizing the following operations

Xi(k4t) = Xi−1(k4t)

Li(k4t) = Li−1(k4t)

X1(k4t) = X0(k4t)

L1(k4t) = lb +
L̂0(k4t)
X0(k4t)

X0(k4t) = 0

L̂0(k4t) = 0.

k = 1, 2, 3 · · · (17)

The dynamics described by the equation 15 and 16 for the n internal cohorts and the single

boundary cohort approximate the dynamics described by the partial differential equation and

its boundary condition 4 for a constant environment E. These ordinary differential equations

together with equation 17 form part of the formulation of the mathematical optimization prob-

lem (P) such that it can be solved numerically.5 However, this would require programming skills

5Integration methods to numerically solve systems of ordinary differential equations such as the Runge-Kutta
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and knowledge of numerical techniques. Alternatively, the system of differential equations may

be written as a system of difference equations that can be employed in standard software such

as GAMS in order to solve mathematical optimization problems. In this way the numerical

solution of distributed optimal control problems is not limited to a small number of economists

with advanced programming skills and profound knowledge of numerical techniques.

For the derivation of the EBT method we assumed that the environment is constant. However,

this is a simplification which does not take into account that the individual trees compete for

space, light and nutrients among each other. To consider this aspect we revoke the validity of

equation 3 such that the dynamics are now given by the partial integrodifferenetial equation

and the boundary condition 4. As de Roos (1988) shows the EBT method is also applicable in

this case. Therefore, equation (3) is approximated yielding

E(Li) =
n∑

i

π
(Li

2

)2
Xi (18)

Thus, in the case of competition between individuals the decision problem is now given by:

max
Ū1(t),U2(t)

∫ t1

0
V1(X̄(t), Ū1(t), L̄)e−rt dt

−
∫ t1

0
V2(X̄(t), U2(t))e−rt dt

+ V3(X̄(t1))e−rt1

+
∫ t1

0
V4(Xn(t))e−rt dt,

(P’)

subject to the constraints

dXi(t)
dt

= −δ(E(Li), Li)Xi(t)− U1i(t) and
dLi(t)

dt
= g(E(Li), Li)

dX0

dt
= −δ(E(Li), lb)X0(t)− d

dl
δ(E(Li), lb)X0(t) + U2(t)

dL̂0

dt
= g(E(Li), lb)X0(t) +

d

dl
g(E(Li), lb)L̂0(t)− δ(E(Li), lb)L̂0(t)

Xi(0) = X̄0, g(E(lb); lb)x(t, lb) = U2(t), U1i, U2 ≥ 0 U1i(t) ≤ Xi(t),

method may be employed in the formulation of the problem.
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where X̄, Ū1 and L̄ denote the vectors X̄ = (X1, · · · , Xn), Ū1 = (U1i, · · · , U1n), L̄ = (L1, · · · , Ln)

respectively, X̄0 the initial density of each cohort, and E(Li) is given by equation 18. Like before

the utilization of the EBT method requires to incorporate the equation 17 for the numerical for-

mulation of the mathematical optimization problem to take account of the required renumbering

operations.

4 Empirical study

The purpose of the empirical analysis is to illustrate the applicability of the EBT method

and to determine the optimal selective-logging regime of a diameter-distributed forest, that is

the selective logging regime that maximizes the discounted private net benefits from timber

production of a stand of pinus sylvestris (Scots pine), over time horizon of 300 years. The specie

pinus sylvestris has been chosen since it occupies most of the catalan forest. Thereafter the

optimal selective cutting regime is compared with the optimal clear-cutting regime based on the

Faustmann formula.

4.1 Data and Specification of Functions

For given specifications of the economic and biophysical functions of the model, and a given

initial diameter distribution of the trees, X̄0, a numerical solution of the decision problem (P’)

can be obtained. To proceed with the empirical study, different initial diameter distributions

of a forest have been chosen, specified on the base of a transformed beta density function θ(l)

with shape parameters γ and φ (Mendenhall, Wackerly and Scheaffer, 1990). The initial forest

consists of a population of trees which diameter lies within the interval 5 cm ≤ l ≤ 30 cm. The

distribution of the diameter of the trees is given by:

θ(l; γ, φ) =





1
25

Γ(γ + φ)
Γ(γ)Γ(φ)

( l

25

)γ−1(
1− l

25

)φ−1
, γ, φ > 0; 5 ≤ l ≤ 30,

0, elsewhere,
(19)

where θ(l; γ, φ) denotes the density function of the diameter of trees. Thus, the integral
∫ li+1

li
θ(l; γ, φ) dl gives the proportion of trees lying within the range [li, li+1). The beta density

function is utilized because it is defined over a closed interval and allows to define a great variety
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of distinct shapes of the initial distributions of the diameter of the trees. The interval [5, 30]

is divided into 10 initial subintervals of identical length. In this way, each cohort comprises

trees that differ in their diameter by a maximum of 2.5 cm, and thus, they can be considered

as homogeneous. The initial number of trees in each cohort, Xi(0), i = 1, · · · , n, is calculated

in such a way that the basal area of the stand is constant (25 m2/ha) in order to allow for

comparisons between the results of the different optimization outcomes. Figure 2, cases a-d) of

the appendix presents four different initial distributions obtained by varying the parameters γ

and φ of the beta density function.

The function V1(X̄(t), Ū1(t), ) accounts for the net margin of the timber at time t, and is de-

fined as: [
∑n

i=0(p(Li)− C0) V T (Li) V M(Li) U1i(t)− C1]− [C2(Xi(t))]. The first term in square

brackets denotes the sum of the revenue of the timber sale minus the cutting costs of each cohort

i, and second term, C2(X(t)), accounts for the maintenance costs. The parameter p(Li) denotes

timber price per cubic meter of wood as a function of the diameter, V T (Li) the total volume

of a tree as a function of its diameter, V M(Li) the part of the total volume of the tree that is

marketable, C0 variable cutting costs and C1 fixed cutting costs.

Data about costs and prices was provided by the consulting firm Tecnosylva which elaborates

forest management plans throughout Spain. The data shows that timber price per cubic meter is

an increasing function of the diameter of the tree, but its second derivative is negative. Thus, a

quadratic price function was estimated, given by p(L) = −23.02+4.35L−0.049L2. The cost C0

comprises logging, pruning, and the collection and removal of the residues. It is given by E23.4

per cubic meter of timber, and C1 by E3.6 per hectare. Maintenance costs are an increasing

function of the number of stems per hectare, and are given by C2(X) = 0.07X + 1.18 10−5X2.

The planting costs are linear in the amount of planted trees and are given by V2(U2) = E0.60U2.

The value of the parameters of tree volume, V T (Li), and the marketable part of the tree

volume, V M(Li), are estimated using information provided by a study from Can̄ellas, Mar-

tinez Garćıa and Montero (2000). The tree volume follows the allometric relation V T (L) =

0.0002949L2.167563, and the marketable part of the volume of timber of each tree is an increasing

function of the diameter, given by V M(L) = 0.699 + 0.000411L. The thinning and planting

period, 4t, is set equal to 10 years, which is a common practice for a pinus sylvestris forest

(Can̄ellas et al., 2000).
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To determine the dynamics of the forest, the growth of a diameter-distributed stand of pinus

sylvestris without thinning was simulated with the bio-physical simulation model GOTILWA

(Growth Of Trees Is Limited by Water).6 The model simulates growth and mortality and allows

to explore how the life cycle of an individual tree is influenced by the climate, characteristics

of the tree itself and environmental conditions given by the total basal area of the trees with

a greater diameter than the individual tree. The model is defined by 11 input files specifying

more than 90 parameters related to site, soil composition, tree species, photosynthesis, stomatal

conductance, composition of the forest, canopy hydrology, and to climate. To generate a wide

variety of possible initial distributions, 103 pairs of γ and φ were used, where the values of γ

and φ are taken from the set M, M={ 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10}.7 Fourteen of the

103 simulations were rejected because the resulting density of the stand (stems per ha) was

biologically not viable.

The results of the simulation were utilized to estimate the function g(E, Li), which describes

the rate of change of the diameter. It was specified as a von Bertalanffy growth curve (von

Bertalanffy, 1957), generalized by Millar and Myers (1990) which allows the rate of growth

of the diameter to vary with environmental conditions. Thus, the function g(E, Li) = (lm −
Li)(β0−β1 BAi) is estimated by OLS, where β0 and β1 are proportionality constants, and BAi

is the sum of the basal area of all trees with a diameter larger than Li. The estimation yielded

the growth function: g(E, Li) = (80−Li)(0.0068993−0.00003107BAi). Other functional forms

of g(E, Li) were evaluated as well, but explained the observed variables to a lesser degree.

As GOTILWA only allows to simulate the survival or death of an entire cohort but not of an

individual tree, it was not possible to obtain an adequate estimation of the function δ(E, Li)

describing the mortality of the forest. Nevertheless, the information provided by Tecnosylva

suggests that in a managed forest, the mortality rate can be considered almost constant over

time and independent of the diameter. Thus, according to the data supplied by Tecnosylva,

δ(E,Li) was chosen to be constant over time and equal to 0.01 for each cohort.

6This program has been developed by C. Gracia and S. Sabaté, University of Barcelona, Department of
Ecology and CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), Autonomous University of Barcelona
respectively.

7The set M allows to generate 121 possible pairs of γ and φ, but some of them give rise to equivalent initial
distributions.
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4.2 Optimization Results

The mathematical optimization problem (P’) was programmed in GAMS (General Algebraic

Modelling System) (Brooke, Kendrick and Meeraus, 1992). For the numerical solution of this

problem the Conopt2 solver, available within GAMS, was employed. For a given initial distri-

bution, the numerical solution of the problem determines for every 10 year period the optimal

logging, U1i, and planting, U2, the optimal values of the state variables, Xi and Li, and conse-

quently economic variables, such as the revenue from timber sale, cutting costs, planting costs,

and maintenance costs. Optimizations with different random initializations of the control vari-

ables were carried to assure that the numerical method provides solutions that are independent

of the initially chosen values for the numerical optimization technique. All optimizations were

carried out on a per-hectare basis.

Selective Logging Regime

Given the initial diameter distribution of the trees in Figure 2, case a) of the appendix, Table

1 summarizes the results of the optimization where a discount rate of 2% was assumed. It is

shown that the first logging is delayed until the end of the first 10 year period. Consequently,

the forest owner has to wait 10 years to obtain the first benefits from the forest. During this

period the current value of the total maintenance cost per hectare sum up to E 78.82. The

optimal forest management requires to plant a small amount of trees at the initial time periods

of the time horizon.8 It can be observed that all economic and biophysical variables show a

cyclical pattern over time. While the phase of this cyclical pattern is maintained over time,

the amplitude decreases. In the long-run, the forest consists of approximately 955 trees, and

approximately 110 of these trees are logged each 10 year period. The volume of the logged trees

is 64 m3, of which 46 m3 is marketable timber. The current value revenue from the sale of this

amount of timber minus the logging cost is approximately E2000 per hectare. The current value

net benefits of the forest in the long-run are nearly E 1900. The total sum of discounted net

benefits of the forest over 300 years are E8654 per hectare.

Figure 1 a-f), depicts the number of trees in each cohort at different years of the planning

horizon together with their corresponding average diameter denoted below the bar, to illustrate

the optimal evolution of the forest.9 Each bar present the number of trees in one cohort. The

8The process of plantation starts after the end of the first 10 year period.

9The simulated data does not show a significant difference between the simple and weighted average of the
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Figure 1: Evolution of the Optimal Diameter Distribution with r = 0.02
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slightly shaded bars indicate the number of trees that should be logged within each 10 year

period, while the heavily shaded bars stand for the number of trees that should remain in the

stand. Figure 1 shows that it takes more than 100 years to reach a diameter distribution of

the trees which is relatively stable over time. Further numerical analysis beyond the 4 initial

diameter distribution of the trees presented in Figure 2 of the appendix showed that the obtained

uniform long-run distribution of the diameter of the forest is optimal independent of the initial

distribution.10 Hence, our results confirm the supremacy of the normal forest as the optimal

forest management objective.

Clear Cutting Versus Selective Logging Regime

Alternatively to adopting a selective-logging regime, the forest owner could continue with the

clear-cutting regime, that is, logging the entire stand at regular time periods. In this case, the

optimal rotation period can be calculated directly via the Faustmann formula. However, in order

to allow for a comparison of the different management regimes, the Faustmann model needs to

be specified such that both regimes are comparable. Contrary to the original Faustmann model

it is necessary to assume that no trees are planted at time 0, planted trees have a diameter of

6.25 cm, i.e. trees are approximately 15 years old, and the initial diameter distribution of the

trees is valid for both regimes, i.e., 1138 trees, with a diameter of 6.25 cm. The Faustmann

model maximizes the present value of the perpetual net benefits from the forest. The optimal

clear cutting regime is given by the solution of the following optimization problem:

max
T

F (T )
1− e(−r T )

, (FP )

where F (T ) denotes the discounted net benefits obtained from cutting the entire stand at time

T , i.e., the rotation period. In this model, F (T ) accounts for the revenue obtained from the

timber sale minus logging, maintenance11 and planting costs, that is:

diameter of each cohort. Thus, the diameter of each cohort was initialized with the simple average in order to
simplify the process of the numerical solution.

10In order to keep the length of the paper short we opted for not presenting these results. However, they can
be obtained from the authors upon request.

11Forest owners following a selective logging regime incur in maintenance costs every 10 year period. In order
to account for these costs adequately in the Faustmann model, the maintenance costs cannot be added simply
at time T since they incur every 10 years. Thus, the correct maintenance costs are calculated as the sum of
discounted periodic payments of the maintenance costs and they are added as a single payment to the Faustmann
model.
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F (T ) =
(
(p(L(T ))− C0) V T (L(T ))V M(L(T ))X − C1

)
e−r T

−C2(X)e−rT − C2(X)
e−10r − 1

− V2X e−r T

The resulting optimal rotation length is 62 years. The total discounted net benefits obtained

from a clear-cutting regime are about E 1800/ha, and about E 2941/ha from the selective-logging

regime. Therefore, using the same parameter values for the clear-cutting and the selective-

logging regime, the results show that discounted net benefits of the clear-cutting regime are

approximateley E1141 lower than those of the selective-logging regime. That is, the rigidity of

clear felling, given by the requirement of logging the entire stand instead of logging a part of

the stand at different time periods, together with the unfeasibility of choosing the number of

planted trees, causes a loss of the clear-cutting regime of approximately 38% compared to the

selective-logging regime.

The benefits of clear felling could only be superior to selective logging if timber prices increase

with the amount of timber offered. A clear-cutting regime allows to offer a large amount of

timber planks of a particular size. Consequently, the obtained timber prices per m3 may be

higher than with selective logging. While this is true for the case of a small forest area, it may

not be true for the case of a large forest area, where the volume obtained from selective logging

may be sufficiently large to achieve high timber prices per m3.

5 Conclusions

This paper presents a theoretical model that allows determining the optimal management of a

diameter-distributed forest where the growth process of the trees depend not only on individual

characteristics but also on environmental characteristics by considering the distribution of the

individual characteristics over the entire population. This modelling allows to account of the

fact that the life cycle of each individual tree is affected by the other trees since they compete for

light, nutrients and space. The density dependent formulation of the biological growth process

leads to a partial integrodifferential equation. The corresponding economic decision problem

to determine the optimal management of the forest can be formulated as a distributed optimal

control problem where the control variables and the state variable depend on the arguments
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time and diameter of the tree.

The resulting necessary conditions of this problem include a system of partial integrodifferential

equation that usually cannot be solved analytically. For this reason, the utilization of a numerical

method (Escalator Boxcar Train) is proposed. The Escalator Boxcar Train method allows to

transform the partial integrodifferential equation into a set of ordinary differential equation and

thereby to approximate the distributed optimal control problem by a standard optimal control

problem. In contrast to the existing literature the resulting optimization problem can be solved

numerically utilizing standard mathematical programming techniques and does not require the

programming of complex numerical algorithms.

To determine the optimal selective logging regime of a diameter-distributed and privately owned

forest where individual trees compete for scarce resources, an empirical analysis is conducted.

The empirical analysis shows that the clear-cutting regime, given by the Faustmann solution,

leads to lower private benefits than the selective-logging regime. This is due to the fact that

the selective logging regime permits the possibility of logging part of the forest after 40 years,

while the optimal clear-cutting requires that the forest owner waits until the 62st year before

the entire stand is cut. As a result, the clear-cutting regime leads to a loss of approximately

38% of the private benefits of the selective-logging regime.

The presented approach, however is not only helpful for determining the optimal management

of natural renewable resources but also for taking optimal economic decisions in fields where

network effects are present and the state variable of the dynamic system is structured. Thus,

we think that this approach will not only be useful in the field of natural resource management

but also in research areas such a optimal economic growth, capital replacement or technology

adoption.
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Gruyter, Berlin.

23



Feichtinger, G., Hartl, R., Kort, P. and Veliov, V. (forthcoming 2004). Environmental policy,

the porter hypothesis and the composition of capital: Effects of learning and technological

progress, Journal of Environmental Economics and Management .

Feichtinger, G., Hartl, R., Kort, P. and Veliov, V. (forthcoming 2005). Anticipation effects

of technological progress on capital accumulation: a vintage capital approach, Journal of

Economic Theory .

Feichtinger, G., Prskawetz, A. and Veliow, V. (2004). Age structured optimal control in popu-

lation economics, Theoretical Population Biology 65: 373–387.

Feichtinger, G., Tragler, G. and Veliov, V. (2003). Optimality conditions for age-structured

control systems, Journal of Mathematical Analysis and Applications 288(1): 47–68.

Haight, R., Brodie, J. and Adams, D. (1985). Optimizing the sequence of diameter distributions

and selection harvests for uneven-aged stand management, Forest Science 31: 451–462.

McKendrick, A. (1926). Application of mathematics to medical problems, Proceeding Edinburgh

Mathematical Society 44: 98–130.

Mendenhall, W., Wackerly, D. and Scheaffer, R. (1990). Mathematical Statistics with Applica-

tions, 4th. edn, PWS-Kent, Boston.

Metz, J. and Diekmann, O. (1986). The dynamics of physiologically structured populations,

Springer Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg.

Millar, R. and Myers, R. (1990). Modelling environmentally induced change in growth for

Atlantic Canada cod stocks, ICES C.M./G24 .

Mitra, T. and Wan, H. (1985). Some theoretical results on the economics of forestry, Review of

Economic Studies LII: 263–282.

Mitra, T. and Wan, H. (1986). On the Faustmann solution to the forest management problem,

Journal of Economic Theory 40: 229–249.

Muzicant, J. (1980). Systeme mit verteilten Parametern in der Bioökonomie, Dissertation,

Technische Universität Wien.
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Figure 2: Types of Initial Distributions of the Diameter of the Trees

a) γ = φ = 3 b) γ = φ = 1
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c) γ = 0.8, φ = 2 d) γ = 2, φ = 0.8
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