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Abstract

Costly search for rare items pervades society. We model R&D as a process of uncertain
search and discovery. A collection of research leads can be searched at random or in
a more efficient manner informed by additional information. We examine the value of
information that facilitates efficient search. We find that an inherent tension exists that
renders this value very small for a large class of problems. For example, when applied
to the current controversy over biological prospecting, optimally ordering research leads
improves the value of the collection only 2% above random search. Results contradict
widely-held views on the value of the research process.

1 Introduction

What do a cure for cancer, the incandescent light bulb, and the proof of Fermat’s Last The-
orem have in common? These are just a few examples of research and development (R&D)
applications that require costly search of a potentially large collection of research leads.
Information acquired through, for example, preliminary testing, indigenous knowledge, or
developing a scientific framework, can improve search efficiency and enhance the value of
the R&D project. However, acquiring this information may be costly. When determining
whether to pursue additional information, the pivotal question, and the focus of this paper
is: how large are the benefits of efficient search? And while a large theoretical literature
addresses the question of how to conduct maximally efficient R&D (Granot and Zuckerman
1991; Gallini and Kotowitz 1985; Roberts and Weitzman 1981; Lucas 1971; Ross 1969;
Charnes and Stedry 1966), the value of R&D efficiency has not been examined.

Across actual R&D applications, the amount of preliminary testing can vary signifi-
cantly. Take for example two famous R&D projects by the American inventor, Thomas
Edison. In the development of the incandescent light bulb, Edison’s technicians laboriously
waded, essentially at random, through thousands of different filament materials before find-
ing that carbonized sewing thread met his durability and brightness criteria. In contrast
to this largely unordered search, during the search for a domestic source of rubber, Edison
carefully ranked hundreds of plant species according to their potential before extensively
testing and cross-breeding varieties of the most promising species.

Why might some R&D applications call for a meticulously researched scientific frame-
work to inform discovery, while others require no more than a random search of even large
collections of research leads? In this paper we examine theoretically the value of efficient
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R&D. We apply the theoretical model to the pharmaceutical R&D problem of bioprospect-
ing.

Intuitively, it would seem that efficient search must have high value. Indeed, Rausser
and Small (2000, p. 174) argue “It is a powerfully general rule that no one ever searches
for anything by examining large collections of objects in random order”. Ordered search
generates an efficiency gain equal to the number of searches saved times the cost of an
individual search. If search cost is significant, this efficiency gain can be substantial, ceteris
paribus. However, our analysis reveals a counteracting effect that suppresses the value of
efficient search. This second effect is driven by the initial identification of the collection of
leads worth searching. As search cost increases, the collection of worthy leads shrinks. This
effect always acts to decrease the value of efficient search.

When the effects are combined, we find overall that for a large class of search problems,
the value of information facilitating efficient search is trivially small; this is the value of
Phase II R&D. This result is shown to be insensitive to particular features of the probability
distribution of leads. Moreover, we determine what properties tend to make efficient search
more, or less, valuable. Even in some seemingly favorable cases, the value is still small.

The paper is organized as follows. We develop in section 2 a model in which a collection
of leads is ordered and searched sequentially. We derive the expected value of efficient search.
The inherent tension between the intensive and extensive margins of search is explored in
section 3.

In section 4 we apply our theoretical model empirically to the case of bioprospecting,
where we find, contrary to previous studies, that the value of efficient search is only about
2%. We find that features of the bioprospecting problem (e.g. a very large number of highly
diverse research leads) should lead to a higher, rather than lower, value of efficient search.
Viewed in that light, we conclude that search problems with less extreme characteristics
may benefit even less from efficient search. We conclude in section 5.

2 R&D as a search

In this section, we lay out a stylized model of R&D, with three distinct phases: identifying
the collection of leads (Phase I), optionally refining information on quality of leads (Phase
II), and searching the leads for an eventual success (Phase III).

2.1 Overview

At the beginning of a project, the researcher faces a large collection of leads of potentially
varying quality (probability of success). Searching each of these leads entails a cost, c. The
search terminates on the first success, and a gross payoff of R is realized. The researcher is
risk neutral and so maximizes the expected payoff from the R&D project. In Phase I, the
researcher coarsely sorts the collection into two piles: those worthy of further investigation,
and those that should be discarded. Phase I sorting is conducted on the basis of crude prior
knowledge of the leads’ potentials. In the context of the light bulb example, one might think
of Phase I as the choice to search among carbonized filament materials.1 In the search for a
domestic rubber source, Phase I might be thought of as the limitation of leads to endemic
plant species with some known rubber content.

1In fact Edison purchased a patent on the use of carbonized filament from another inventor. The preferred
embodiment listed in the patent, carbonized bamboo filament, was not sufficiently durable for commercial
use.
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Once the collection of worthy leads has been identified, the researcher faces a choice that
is central to our analysis: whether to collect additional information about lead qualities in
order to more efficiently search among them. This is Phase II of R&D. Alternatively, the
researcher can skip this phase, and simply search randomly among the collection of leads
identified in Phase I as worthy.2 Of course the value of the project under ordered search
(with the information acquired in Phase II of research) will exceed the value of the project
under random search (without Phase II). But acquiring the information in Phase II may
carry a cost that exceeds this efficiency gain. In the search for a domestic source of rubber,
Edison’s team planted thousands of species for preliminary testing. After assessing the
rubber content of these initial plantings, the team ranked the species in terms of promise
for more thorough investigation with the top one being goldenrod. In contrast, in the
light bulb search, testing of thousands of candidate filament materials proceeded in a fairly
haphazard way. In our stylized view, we think of the light bulb search as skipping Phase II.

The actual search, Phase III, involves the full testing of leads for a success. In this phase,
the researcher sequentially tests leads. These tests resolve all uncertainty. In the light bulb
search, this involved checking whether a candidate filament in light bulbs met minimal
durability and brightness criteria. In the case of rubber, this involved testing whether by
cross-breeding of varieties a sufficiently low-cost, high-yield specimen could be developed.

This stylized view of R&D as a multi-stage process of lead identification, investigation,
and uncertain discovery of patentable products is consistent with approaches taken in the
literature (see, e.g. Gallini and Kotowitz (1985), Fudenberg et al. (1983), Roberts and
Weitzman (1981), Charnes and Stedry (1966)).3 For example, Fudenberg et al. (1983)
model two stages of R&D: a preliminary invention phase followed by the development
phase; our analyis maps these to Phase II and Phase III, respectively. Similarly Gallini and
Kotowitz (1985) distinguish between the basic research and the development phases. As in
Phase II here, the purpose of the basic research step is to reduce the number of research
avenues so that in the development phase research can focus in on the few most promising
projects.

As in Rausser and Small (2000), Granot and Zuckerman (1991), Gallini and Kotowitz
(1985), Lucas (1971) and others we will focus initially on an R&D project that is already
under way. Here, the researchers have already identified in Phase I which leads from a
potentially infinite initial set are worthy of further investigation. Most of this literature
focuses on optimally engaging in Phase II, the second development stage of a project.
While our focus is also on this phase, we find that the interplay between the basic research
and the development phases of research is central to the analysis of the value of efficient
search.

2.2 Model of the research process

In this section we formalize the model of efficient search of those leads. Following Rausser
and Small (2000), Simpson et al. (1996), Ross (1969), and others, N research leads iden-

2Of course, it is likely that a researcher would have some priors on lead quality. Here, we take a stylized
view that no prior information is available to rank lead quality. Then, if Phase II is omitted, search must
proceed in random order. This stylized view is conservative in that we tend to understate the real information
available to a researcher, and thus overstate the benefits of acquiring more information.

3We analyze the problem from the perspective of a single researcher or firm attempting to identify a
success among a pool of research leads. This is distinct from the “patent race” literature in which multiple
firms are competing to achieve the same success (see, e.g. Gallini and Kotowitz (1985) and Fudenberg et al.
(1983)).

3



tified in Phase I as worty of search are to be sequentially tested for a success. The search
terminates upon the first success yielding gross payoff R. Each test involves search cost c,
and lead i has success probability pi, which is independent of the success of all other leads
and, from the researcher’s perspective, may be uncertain. As a consequence of Phase I
research, leads are retained only if their expected benefits exceeded the cost of their search:
piR > c. We assume that while the researcher may not have well-formed priors over the
probabilities of success, he can distinguish between those leads worthy of search (pi > c/R)
and those that are not (pi < c/R). The presence of sequential search with positive search
cost is what distinguishes this model from that in Polasky and Solow (1995), who also con-
sider the value of a collection of leads. Because they treat search cost as zero, search order
is irrelevant, and therefore the type of information considered here could not have value.

The researcher may refine his beliefs about success probabilities by collecting additional
information, perhaps at some cost. The details of this updating process will depend on the
R&D application, but may involve things like preliminary testing, developing a scientific
framework, or incorporating indigenous knowledge. While this information will improve
search efficiency, its acquisition may be costly. To calculate the value of the information, we
take as a benchmark the case in which the researcher knows the distribution of probabilities
of success, but does not know the probability of success for any particular lead. Under this
assumption the researcher has no way to distinguish the quality of leads and so the collection
is examined in random order.

Undertaking Phase II of the research process would provide further refining information
that identifies the probabilities precisely and would thus facilitate a more efficient search.
We use the phrase “value of efficient search” to denote the difference in the ex ante expected
value of the collection of leads under fully optimal and random search; that is the difference
between the expected value of the project with the information provided in Phase II and the
expected value of the project when the researcher skips immediately from Phase I to Phase
III. Because less precise information would confer lower value, our calculations represent an
upper bound on the value of efficient search.

2.3 Value of a collection

Let S be a collection of N research leads with an associated set of probabilities {pi}. By
the virtue of Phase I, each lead in this collection is of sufficiently high quality to justify its
search; we relax this assumption in a later section. In this section, we calculate the value
of optimally ordering those leads in the search queue.

Denote a specific ordering of the N research leads in set S by S∧ with associated
probabilities {p∧1 , p∧2 , ..., p∧N}, respectively. The level of certainty the researcher has about
these probabilities depends on the information he has at the time of the search. In this
arbitrary ordering, lead S∧i is the ith lead to be tested. The expected value of the ordered
collection S∧ is given by

V (S∧) = R(1− aN+1(S∧))− c
N∑

n=1

an(S∧) (1)

where an(S∧) =
∏n−1

i=1 (1− p∧i ) is the probability that every preceding lead has been tested
unsuccessfully. The formula (1) has an intuitive explanation. The first term on the right
hand side is the expected revenue of the search: the probability that at least one lead
contains a success times the revenue upon success. The total value of the ordered collection
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is that revenue less the expected cost – the expected number of trials until the first success
multiplied by the cost of each trial.

2.4 Value of improving search efficiency

We consider two different queues consisting of the same collection of leads, each represented
by a researcher who searches that queue. Consider first Researcher 1 who acquires the effi-
ciency generating information in Phase II and thus knows precisely each of the probabilities
of success; this information facilitates efficient search of the collection. In other words, he
has a well-developed subjective belief about the success probabilities of her research leads,
and can therefore order them optimally. The problem of efficiently ordering the search
queue is then a special case of the “Pandora’s box” problem analyzed by Weitzman (1979).
In our case, an efficient search queue orders the leads in descending order of the probability
of success4. We denote by S∗ the optimally ordered queue. The ex ante expected value of
the collection by Researcher 1 is then V1 ≡ V (S∗).

How much would Researcher 1 be willing to pay, ex ante, for the queue S∗ rather than
some alternative ordering of the same leads, S∧? This value is given by:

V1 − V (S∧) = c

(
N∑

n=1

an(S∧)−
N∑

n=1

an(S∗)

)
(2)

Note that expected revenue plays no role here because the probability of conducting a full
search without any successes is independent of the search order: aN+1(S∗) = aN+1(S∧) for
the ordering, S∧. Equation 2 holds for any sequence S∧.

At the other extreme is Researcher 2 who skips Phase II and thus lacks any information
distinguishing one lead from another, and so searches the collection in random order. Denote
by V2 the ex ante expected value of the collection for Researcher 2. It is given by the sum
of the values of all possible search queues divided by the number of such queues, as follows:

V2 = E
[
V (S∧)

]
=

∑
S∧ V (S∧)

N !
. (3)

Here we would like to emphasize that search efficiency has value because it can lead to
success with fewer searches; to the extent that search cost is a factor, this efficiency can
generate significant savings, ceteris paribus. Because equation 2 holds for any alternative
queue S∧, it also holds for a random search. This implies that the value of efficient search
is a linear (increasing) function of the coast of an individual search, c. In the extreme case
in which search is costless (c = 0, see Polasky and Solow (1995)), efficient search has no
additional value relative to random investigation of the same collection.

We denote the difference in value between Researcher 1 and Researcher 2 by Θ12 ≡
V1 − V2, which gives the value of efficient search of the collection of leads. While the
remainder of the paper explores the properties and magnitude of this nominal measure of
the value of efficient search, an alternative is in percentage terms. We define this measure
Π12 ≡ (V1 − V2)/V1 = Θ12/V1 as the percent difference between the value of a collection
when it is searched optimally and the value of the same collection when it is searched at
random. This measure may be useful as it captures the value of efficient search relative to
the scale of the optimal search problem.

4A more general treatment would allow cost to vary across leads. Applying Weitzman’s (1979) formula,
it can be shown in that case that leads should be ordered in descending order of pi/ci.
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2.5 Implications for information gathering

The value of efficient search, Θ12 provides a measure of the gross economic benefit of the
information acquired in Phase II of R&D. Ultimately, the question faced by the researcher
is whether acquiring the information exceeds the cost of the information. While the focus
of this paper is on calculating the benefits, we provide the benefits vs. cost comparison for
completeness. Suppose the cost of acquiring information on each lead is k. Then acquiring
information on the entire pool of leads would be kN . Denoting by ∆S the number of
searches saved by ordered, relative to random search, we have Θ12 = c(∆S). So the benefits
of the information exceed the costs if and only if

k < c
∆S

N
(4)

Equation 4 reveals that information should be acquired if and only if the cost of information
is less than a certain fraction of the full search cost for a lead. The fraction (∆S

N ) can be
interpreted as the fraction of searches saved relative to an exhaustive search. For example if
the info will be expected to save 10 searches, and there are 1000 leads in the collection, then
the researcher should acquire the additional information if and only if acquiring information
about the lead is less than 1% as costly as fully testing the lead for a success.

3 Analyzing the theoretical model

In this section we analyze the theoretical model of Section 2 to derive general properties
of the value of efficient search. We begin by identifying and exploring an inherent tension
that we find suppresses the value of efficient search. We also examine the features of an
R&D problem that would tend to make gathering information more, or less, valuable and
use those results to derive an upper bound on the value of efficient search. We continue to
assume that the researcher has completed Phase I, and is faced with a collection of leads
already known to be individually worthy of search, but whose precise probabilities may be
unknown.

3.1 Exploring a tension: intensive vs. extensive margin

Equation 2 emphasizes the importance of search cost in the value of efficient search. If search
cost is low, efficiency in search confers little value to the R&D program. Intuitively, then, it
would seem that larger values of c should generate larger values of efficient search. Indeed
this intuition is correct on the intensive margin where other parameters of the problem do
not adjust.

While casual intuition and equation 2 may suggest an unambiguous effect of search cost
on the value of efficient search, Lemma 1 below reveals a second, countervailing effect on
the extensive margin. Larger values of c also raise the Phase I cutoff for the minimum
acceptable probability (recall that the researcher retains only leads for which pi > c/R).
In general then, the pool of leads shrinks for larger values of c. We will demonstrate that
this effect always works in a predictable direction - to decrease Θ12. This extensive margin
result, which decreases the value of efficient search, is in tension with intensive margin effect,
which increases the value.

Lemma 1 : The value of efficient search, Θ12 decreases if the lowest probability lead is
dropped from a collection of leads.
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The proof is in the Appendix.
The tension between the intensive and extensive margin effects is made explicit in Propo-

sition 1 below.

Proposition 1 : As c increases, the value of efficient search, Θ12 (a) increases on the
intensive margin, (b) decreases on the extensive margin (c) is 0 for sufficiently high c.

Proof. (a) Equation 2 shows that on the intensive margin Θ12 is linear in c, with a
positive slope.

(b) Lemma 1 shows that on the extensive margin Θ12 decreases when a lead is dropped.
(c) Let c be large enough that only leads with the highest probability level survive Phase

I. Since all remaining leads have the same (high) probability value, they are homogenous
from a search perspective, and no value accrues to distinguishing among them.

Intuitively, the tension illuminated in Proposition 1 can be illustrated with a continuous
representation of research leads. If we define by D(c) the pool of leads that are discarded
as a function of c, then we can think of Θ12 as a function of search cost (c) and the pool of
discarded leads: Θ12(c,D(c)). Then the effect of search cost on the value of efficient search
can be intuited by taking the derivative of this expression with respect to c:

dΘ12

dc
=

∂Θ12

∂c
+

∂Θ12

∂D

∂D

∂c
. (5)

The first term is the direct effect of c on Θ12, holding the pool of leads constant. This effect
is always positive, and we think of this as the intensive margin because no other features
are adjusting to the search cost. The second term is always negative. It consists first of the
term ∂Θ12

∂D which is the cost of losing a lead at the cutoff c/R, which by Lemma 1 is always
negative. The term ∂D

∂c is the rate of loss of leads as c increases, which is always positive or
zero. This tension means that the effect of increasing c on Θ12 is not always positive. In
fact, as c gets larger, the extensive margin effect dominates, and eventually, for high enough
c, the value Θ12 = 0. In other words, for large enough c, the value of efficient search is zero.

We illustrate the intensive vs. extensive margin of search with a simple example with
N = 100 leads that are uniformly distributed between 0 and 1 (p∗1 = 1.0, p∗2 = .99,...,p∗N =
.01) and revenue on success R = 1000. Figure 1 depicts Θ12 as a function of search cost,
c. Although higher costs are associated with higher values of Θ12 on the intensive margin,
the figure illustrates the importance of the extensive margin which reduces the size of the
pool of leads in Phase I of R&D, thus driving Θ12 down. As shown in Proposition ??, the
extensive margin effect eventually dominates, driving Θ12 to 0.

3.2 Bounding the value of efficient search

Proposition 1 shows that while dΘ
dc may be positive for very low values of c, the extensive

margin eventually dominates, thus suppressing the value of efficient search. But the size
of Θ is still an empirical question. How large could Θ get? And in particular, do certain
characteristics of the distribution of p’s tend to generate a larger value of efficient search?
In general, the value of efficient search will depend in a complicated way on the probabilities
of all the leads, as shown in equation (2). It thus seems intuitively plausible that for some
favorable probability distributions the value of efficient search could be enormous. In this
section we examine this question by deriving the non-parametric distribution of probabilities
that gives the theoretically maximal value of efficient search.

7



0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

1000

search cost, c

V
al

ue
 o

f E
ffi

ci
en

t S
ea

rc
h,

 Θ
12

Figure 1: Value of efficient search, Θ12 as a function of search cost for N = 100 uniformly
distributed leads (∈ [0, 1]) and R = 1000.

Dependence on probability of success

We now explore the role of the overall probability of success of the search in determining the
value of efficient search. To do so we need to be specific about how the overall probability
of success is increased. One natural way to do so is to increase by a small amount all of
the probabilities. Intuition may suggest that the less likely is an eventual success, the less
important is information that facilitates optimal search. This intuition turns out to be
precisely backwards. Careful analysis reveals that the savings in the expected number of
searches as the probabilities are increased is smaller under the optimal ordering than under
any alternative ordering. Therefore, the value of efficient search declines as the probabilities
are increased. This result is summarized in Lemma 2 below.

Lemma 2 The value of efficient search, Θ12 decreases if all lead probabilities are additively
increased by the same small amount.

A proof is in the Appendix.

Dependence on the spread of the probabilities

Lemma 2 explores how the value of efficient search depends on the overall probability of
success. But how does it depend on the spread of probabilities? To begin, note that if
all probabilities are equal, random search is optimal, so Θ12 = Π12 = 0. In contrast, the
greater the dispersion of lead qualities, the greater is the opportunity to exploit information
to re-order the search. This is essentially the phenomenon that Rausser and Small (2000)
intended their data to illustrate.

To analyze this effect, we need a working definition of “spread”. Suppose we replace
two leads pi, pj in a pool with qi, qj such that qi > pi > pj > qj and (1 − pi)(1 − pj) =
(1 − qi)(1 − qj). Then we say that the second pool has greater spread, as suggested by
the values of p and q. The second condition is a normalization, which preserves the overall
probability of success in the search. The effect of spread is summarized in Lemma 3 below:
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Lemma 3 The value of efficient search, Θ12 increases if the spread of lead qualities is
increased.

A proof is in the Appendix.

An upper bound

What would the most favorable non-parametric probability distribution look like? Under
optimal search, the worst lead must have probability of at least c/R to justify search. This
is because the marginal value of the worst lead under optimal search is piR − c and so if
pi < c/R the lead would be dropped.5 Holding constant the overall success probability, P ,
the probability distribution that yields the largest value of efficient search would, by Lemma
3, have maximal spread. In this case, we would have N − 1 leads of probability c/R. The
remaining lead p̄ would then be set large enough that the overall success probability equals
P , as required; this value is p̄ = 1− (1−P )

δN−1 . Under this probability distribution, Researcher
2 (who searches at random) must wade through a large number of marginal leads before
eventually succeeding but Researcher 1 (who searches the best lead first) is most likely to
find success on the first trial. Proposition 2 below calculates the value of efficient search
under this probability distribution. Because this value would be smaller under any other
probability distribution, we interpret it as an upper bound on the value of efficient search.
Defining by δ = 1− c/R the probability of failure when searching a marginal lead, we have:

Proposition 2 The nominal value of Phase II R&D, Θ12, cannot exceed:

Θ̄12 = c(
p̄

1− δ
− 1)(1− 1− δN

N(1− δ)
). (6)

A Proof is in the Appendix.

For reference, note that rewriting Proposition 2 in percentage terms, we find that the
percentage value of Phase II R&D, Π12, cannot exceed6 :

Π̄12 = 100
[
1− 1− δN

N(1− δ)

]
(7)

The calculations in Proposition 2 are important for two reasons. First, they will support our
empirical investigation in the next section. Second, they provide rules of thumb that could
help guide the direction of research. Because Θ̄12 and Π̄12 do not require any knowledge of
the probability distributions of leads, the bounding argument could be used in practice to
provide an upper bound on the value of the research process even when very little is known
about the nature of the leads themselves. Π̄12 is particularly useful in this regard because it
requires estimates only of the size of the collection of leads (N) and the ration of search cost
to revenue (c/R = 1− δ). In particular, it is independent of the overall success probability,
P so little information is required to assess whether further refining information would be

5Note that under random search the “cutoff” value could be slightly larger than c/R, so leads with
probability < c/R would not ever be searched. Calculating analytically this precise cutoff value is extremely
complex. Simulations reveal that the cutoff is numerically extremely close to c/R (typically within less than
1%). Using c/R as the cutoff only overstates the value of efficient search. This is a second reason for calling
the derived value an upper bound.

6Formally, it can be shown that the maximal spread distribution maximized Π as well as Θ.
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useful in the R&D process. It is straightforward to show using the bounding argument that
the attractiveness of efficient search increases in the pool of leads, N , and the relative size
of c/R; ∂Π̄12

∂N > 0 and ∂Π̄12
∂δ < 0. The empirical magnitude of Π̄12 remains an open question

which we address in section 4.

4 Bioprospecting as an R&D search

In this section we apply the theoretical results from sections 2 and 3 to the pharmaceutical
R&D problem of bioprospecting - the search for valuable products in nature. This is a prob-
lem with some pedigree within the economics literature. Simpson, Sedjo, and Reid (1996)
are the first to consider the search aspect of the bioprospecting problem. They are primarily
interested in the conservation implications from bioprospecting and thus focus attention on
the marginal values of research leads - endemic plant species present in biodiversity hotspots
around the world. In that model, the researcher has no prior information on how to order
the search, and so all leads are treated as having the same probability of success, p̃, and
they are searched at random. The search terminates upon the identification of a natural
compound with high pharmaceutical value. They find surprisingly that the marginal value
of a species is likely to be small regardless of p̃. When p̃ is small, the marginal value of a
species is small because any one species is unlikely to produce a success. When p̃ is large,
the marginal value is small because species are close substitutes (any one species is likely to
be redundant). Using a species area curve relationship, they translate the value per species
into a value per hectare. The maximum value per hectare is about $21 and is in Western
Ecuador, the most biodiverse region on earth.

In sharp contrast is the result derived by Rausser and Small (2000) in which leads are
kilo-hectares of biologically diverse land (they consider the same 18 biodiversity hotspots
considered by Simpson et al.). In that model, success probabilities are heterogeneous,
and the researcher benefits from ordering her search to improve efficiency. Rausser and
Small (2000) conclude that the most biodiverse hectare of land on earth (again in Western
Ecuador) has a bioprospecting value of $9,177 given an efficient search queue. Rausser
and Small attribute this dramatic increase (from $21/hectare to $9,177/hectare) to efficient
search. The large discrepancy in marginal values between these two studies is suggestive
that efficient search may have high value in this case. We will examine this possibility
below, beginning with the value of Phase I R&D.

4.1 Phase I sorting

We begin our empirical inquiry with an emphasis of the importance of Phase I of the
research process: deciding which leads are worthy of search. We provide the following
example. Suppose that in addition to the 18 biodiversity regions originally considered, the
collection had also contained a less promising biodiversity region. To make the example
concrete, suppose the biodiversity-rich country of Argentina was included in the original
collection. Argentina contains about 1100 endemic plant species over 273,669 kilo-hectares
for a success probability of pA =4.8E-8.7 Since pAR < c, Argentina would be eliminated
from the collection in Phase I. But before Phase I the researcher has insufficient information
to eliminate Argentina and all leads (including Argentina) are searched in random order,

7We assume here the Rausser and Small (2000) formula for the probability of success, which is p̃ ∗
1100/kilo-hectares.
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the ex ante expected value of the collection is only $40 million. This can be compared with
a value of $141 million when Argentina is removed but the remaining leads are searched in
random order (Phase I only), and a value of $144 million when Argentina is removed and
the remaining leads are searched in fully efficient order (Phases I and II).

Even more striking is the case in which the collection has a sufficiently large number of
low probability leads to render the expected value of random search negative. In the absence
of further refining information, such collections would never be searched. For example,
suppose in addition to the California Floristic Province (hotspot # 18), the remainder of
the United States was included in the original collection of biodiversity hotspots. This
region contains 1900 endemic plant species over 891,296 kilo-hectares for a probability of
success of pUS =2.5E-8. If no information distinguishing lead quality is available, adding
the US renders the total collection of leads valueless (searching this entire collection at
random would entail an expected loss of $194 million), so the collection would never be
searched. In such cases, a coarse-grained sorting of leads can eliminate the low quality
leads from the collection thereby saving search costs and substantially increasing the value
of the remaining collection. Even when the remaining collection of leads is searched in
random order the value of the collection is vastly improved.

4.2 Phase II ordering

We now apply the value of efficient search model derived in section 2. While the Simpson
et al. and Rausser and Small models did differ slightly, the central message of Rausser
and Small (2000) is that information that facilitates optimal search significantly improves
value, and therefore raises the likelihood of private sector conservation. They refer to the
random search assumption in Simpson et al. (1996) as a “nearly cost maximizing approach
to discovery” (p. 175). In that debate, search efficiency appears to have an important
effect; under efficient search the marginal values increase 440-fold (from $21/hectare to
$9,177/hectare). Here we carefully examine that result.

As a point of departure, we conduct the following experiment. We employ the setup and
parameter values from Rausser and Small (2000) to determine the value of the collection of
18 biodiversity hotspots under three different assumptions about the information available
to the researcher (and therefore about the search order). The first case is analogous to our
Researcher 1, who has already conducted Phase II of R&D and therefore searches the pool
of leads in the most efficient order. The second case is analogous to our Researcher 2, who
searches the leads at random. Finally, for illustrative purposes, we present a third case in
which the leads are searched in the maximally inefficient order - in ascending order of the
likelihood of success.Table 1 provides the results of this experiment.

Search Order Value of Collection % Loss relative to Optimal
Fully Efficient $144 million –

Random $141 million 2.3%
Fully Inefficient $138 million 4.9%

Surprisingly, efficient search has relatively little value in the bioprospecting example.
The value of the collection of the 18 biodiversity hotspots is reduced by only about $3
million (2.3%) if the researcher is forced to search for a success at random. Even in the worst
possible case in which the researcher searches in the maximally inefficient order (backwards),
the value of the collection is relatively unchanged ($138 million vs. $144 million).
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To what extent is this result an artifact of specific features of the bioprospecting prob-
lem? The bioprospecting data have several salient features. There is a very large pool of
leads (74,600 kilo-hectares). Although success probabilities vary dramatically among the
leads, the probabilities are all quite small. The greatest probability is 0.000105, and the
smallest is about two orders of magnitude smaller. Given the empirically small value of effi-
cient search in the bioprospecting problem, it is tempting to conclude that at least some of
these features are responsible for the low value of efficient search. In fact careful inspection
of equation 2 reveals the opposite; each of these factors tends to increase the value efficient
search.

Ultimately the question faced by the researcher is whether additional information should
be pursued. In the bioprospecting example, this information may take the form of, for
example, ethnobotanical knowledge. Implementing equation 4, we find that this information
should be acquired if and only if its cost is less than $46 per lead (about 9% of the cost of
fully searching the lead for a success).

We have shown using the data from Rausser and Small (2000) that the value of ef-
ficient search is small and that gross features of the bioprospecting model are conducive
to a relatively high, rather than low, value. To determine whether some peculiar feature
of the probability distribution itself is responsible for the low value of efficient search we
implement Proposition 2 and find that even under the most favorable nonparametric prob-
ability distribution of leads, the value is still small (Θ̄12 =$5.2 million; in percentage terms
Π̄12=3.9%).

4.3 Interplay between Phase I and Phase II

We have argued that while information facilitating efficient search has low value (Phase II),
there may be significant value derived from eliminating inferior leads from the collection
(Phase I). In the Rausser and Small bioprospecting model, c and R were chosen specifically
so the marginal value of the worst lead would be zero (see p. 192). In that example if c were
higher than $485, an efficient search would entail eliminating some leads from the queue.
How well will the researchers fare under different values of c?

Figure 2 illustrates the empirical effect of search cost on the value of efficient search.
The top panel does so for the nominal value (Θ12) and the bottom panel presents results
as a function of the total value of the collection (Π12).

Inspection of Figure 2 reveals that for the bioprospecting data the loss from inefficient
search never exceeds about $6 million (about 6%), regardless of the search cost. This sup-
pression of the value of efficient search, even for favorable choices of c is a direct consequence
of the intensive vs. extensive margin tension captured in Proposition 1.

5 Discussion

One purpose of research is to resolve uncertainty and thus inform better decisions. Whether
searching for WMD, the cure for cancer, or the meaning of life, efficient search of a collection
of leads must have higher value than random investigation of the same collection. Previous
work suggested that dramatic dividends typically accrue from the use of an organizing
scientific framework to better sequence search (Rausser and Small 2000). However, because
such organizing information is often costly to acquire, the pivotal question is: how large is
the value of information that facilitates efficient search?
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Figure 2: Value of efficient search (top) and percentage value relative to V1 (bottom) as a
function of search cost, c increases.

We identified an inherent tension between the intensive and extensive margins of search.
When search cost is low, search efficiency is less important, because the searches it saves are
inexpensive. On the other hand, when search cost is high, the collection of leads worthy of
search is diminished. This effect always acts to decrease the value of efficient search. And
for sufficiently high search cost, this effect always dominates. This effect tends to suppress
the value of efficient search.

But in general, the empirical magnitude of this value will depend in a complicated way
on the probability distribution of leads. We derived an expression for the value of efficient
search, and calculated its theoretical upper bound as a function of the key parameters
of any R&D problem. In the bioprospecting problem, we found this upper bound to be
exceedingly small; about 4% of the total value of the collection. We argued that features
of the bioprospecting problem were particularly well positioned to generate a high value of
efficient search. For search problems with less extreme characteristics (e.g. smaller N or
less heterogeneous probabilities) efficient search would be even less valuable.

Do the results of this analysis imply that basic scientific research and development has
only negligible value? No. The result that even under favorable conditions the value of
efficient search is often small applies only to a collection of leads that has already been
identified as worthy of search. But as the tension in Proposition 1 reveals, leads for which
pR < c should never be searched. Information that allows the researcher to eliminate
very low quality leads from the collection may have tremendous value, even when the good
leads are subsequently searched at random. In many cases, information enabling coarse
sorting can provide incentive to search a collection that was previously valueless; this was
empirically illustrated with the example of adding Argentina or the United States to the
collection of biodiversity hotspots. Again, in that case, the additional value of optimally
ordering the good leads may be negligible.

The principles of this kind of search problem apply to any research inquiry. In all search
applications of this type, the researcher faces the conceptually separate questions of which
leads to search and in what order to search them. Although the R&D literature to date has
focused on search efficiency, our analysis suggests that the former question is much more
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crucial than the latter.

6 Appendix

Proof of Lemma 1. Let S∗ denote the optimally ordered collection of leads and let S∧

be an alternative ordering. We require notation for these ordered collections for the case
in which the worst lead is omitted from the collection. We denote these by S̃∗ and S̃∧,
respectively.

Let p∧t ≡ p∗N be the value of the lowest lead.
Let ai,j =

∏j−1
k=i(1− p∗k). For i ≥ j, ai,j = 1

Let bi,j =
∏j−1

k=i(1− p∧k ). For i ≥ j, bi,j = 1
Then,

∆Θ = (V (S∗)− V (S∧))− (V (S̃∗)− V (S̃∧)).

The expected revenue for the pairs V (S∗), V (S∧) and V (S̃∗), V (S̃∧) are the same, because
the same set of leads is being searched (in different order). So, Θ is determined only by
search costs.

Let EC be the expected search cost for each case. Then rearranging,

∆Θ = (EC(S∧)− EC(S̃∧))− (EC(S∗))− EC(S̃∗)).

Note that the marginal value of lead p∧t in the alternative queue is:

(p∧t R− c)b1,t − p∧t
1− p∧t

N∑

i=t+1

(p∧i R− c)b1,i.

So, EC(S∧)− EC(S̃∧) = c (b1,t − p∧t
∑N

i=t+1 b1,i). Similarly, EC(S∗)− EC(S̃∗) = c a1,N .
Substituting in these expressions yields

∆Θ = c (b1,t − p∧t
1− p∧t

N∑

i=t+1

b1,i − a1,N ).

Since the worst lead goes last in the optimal queue, a1,N = b1,t bt+1,N+1. Using this
fact, then factoring out b1,t yields

∆Θ = c b1,t(1− p∧t
1− p∧t

N∑

i=t+1

bt,i − bt+1,N+1).

We now bound the summation term. Since p∧t is the worst lead, bt,i ≤ (1− p∧t )i−t. So,

N∑

i=t+1

bt,i ≤
N∑

i=t+1

(1− p∧t )i−t = (1− (1− p∧t )N−t)(1− p∧t )/p∧t .

Substituting in this bound,

∆Θ ≥ c b1,t((1− p∧t )N−t − bt+1,N+1).

By the same argument, bt+1,N+1 ≤ (1− p∧t )N−t. Substituting in this bound,

∆Θ ≥ 0.
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Since this is true for any alternative queue, it must also be true in expectation for a
random search queue; dropping the worst lead decreases (weakly) Θ12.

Proof of Lemma 2. Consider an alternative researcher A who searches the collection
in order S∧. Then let Θ1A = V (S∗) − V (S∧). The optimally ordered sequence is S∗; the
alternative sequence is S∧. Letting P ∗

i ≡ (1− p∗i ) and P∧
i ≡ (1− p∧i ), the value of ordered

search is:
Θ1A = c

[(
1 + P∧

1 + P∧
1 P∧

2 + ...
)− (1 + P ∗

1 + P ∗
1 P ∗

2 + ...)
]

. To prove our result, consider increasing each pi (∀i) by some amount, k. We now have

Θ1A

c
=

(
(P∧

1 − k) + (P∧
1 − k)(P∧

2 − k) + (P∧
1 − k)(P∧

2 − k)(P∧
3 − k) + ...

)

− ((P ∗
1 − k) + (P ∗

1 − k)(P ∗
2 − k) + (P ∗

1 − k)(P ∗
2 − k)(P ∗

3 − k) + ...)
(8)

Taking the derivative, and evaluating at k = 0 gives:

1
c

dΘ1A

dk
|k=0 =

[
P ∗

1

(
1

P ∗
1

)
+ P ∗

1 P ∗
2

(
1

P ∗
1

+
1

P ∗
2

)
+ P ∗

1 P ∗
2 P ∗

3

(
1

P ∗
1

+
1

P ∗
2

+
1

P ∗
3

)
+ ...

]

−
[
P∧

1

(
1

P∧
1

)
+ P∧

1 P∧
2

(
1

P∧
1

+
1

P∧
2

)
+ P∧

1 P∧
2 P∧

3

(
1

P∧
1

+
1

P∧
2

+
1

P∧
3

)
+ ...

]

(9)

which is term-by-term non-positive, meaning that dΘ1A
dk ≤ 0 with equality only if S∧ = S∗.

Since this result holds for any sequence S∧, it holds for the randomized sequence.

Proof of Lemma 3. The expected value of a random search can be evaluated by taking
the average value of all search order permutations. Consider any specific permutation
{..., i, ..., j, ...} and pair it with the corresponding permutation which reverses the position
of i and j. For example, let these permutations be {1, i, 2, j, 3, 4} and {1, j, 2, i, 3, 4}. Let
{pi} be the set of lead probabilities, and let Pk = 1− pk. The expected number of searches
under the first permutation is 1+P1+P1Pi+P1PiP2+P1PiP2Pj +P1PiP2PjP3. The average
search duration over both permutations is thus 1+P1+(P1+P1P2)(Pi+Pj)/2+P1PiP2Pj +
P1PiP2PjP3. Now consider an increase in spread that increases pi to qi and decreases pj to
qj such that PiPj = QiQj , where Qk = 1 − qk. For the new set of probabilities, the only
terms that change in the average search expression are those with the element (Pi + Pj).
The leading terms do not depend on i or j. The trailing terms are unchanged because
of the normalization assumption. So, the increase in search duration attributed to the
spread is (P1 + P1P2)(Qi + Qj − Pi − Pj)/2. This term is positive since PiPj = QiQj and
Qj > Pj > Pi > Qi. This same approach applies to any pair of permutations which switches
the positions of lead i and j. Averaging over all such pairs gives the expected value of a
random search.

Proof of Proposition 2. Let P be overall probability of success. Let δ be 1 − c/R.
By Lemma 3 the maximal spread distribution will give an upper bound for Θ12. Given N
leads, the maximal spread distribution satisfying P has N−1 leads at 1−δ. The high-value
lead has probability p̄ satisfying

1− δN−1(1− p̄) = P.
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p̄ = 1− (1− P )/δN−1.

Given this distribution, the expected number of searches can be calculated by averaging
over all N distinct positions for p̄. If we have T initial low leads, the expected number of
searches in that queue is (for example)

1 + δ + δ2 + . . . δT + δT (1− p̄)(1 + δ + δ2 + . . . δN−T−2).

= (1− δT+1)/(1− δ) + δT (1− p̄)(1− δN−T−1)/(1− δ)

= (1− δT+1)/(1− δ) + (1− p̄)(δT − δN−1)/(1− δ)

Averaging over all positions and reducing the sums yields the expected number of searches
in random order (Researcher 2):

ES2 = (1− δ)−1(1− (1− p̄)δN−1 +
1− δN

N(1− δ)
(1− p̄− δ)).

Now the optimal search queue orders p̄ first. In that case, the expected number of searches
in optimal order (Researcher 1) is

ES1 = 1 + (1− p̄)(1− δN−1)/(1− δ)

So the maximal Θ12 is
Θ̄12 = c(ES2 −ES1)

Collecting terms in the expected search expressions and simplifying yields

Θ̄12 = c(
p̄

1− δ
− 1)(1− 1− δN

N(1− δ)
).
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