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Abstract 

 

The U.S. government operates the multi-peril crop insurance (MPCI) program to provide farmers with 

comprehensive protection against yield risk due to weather-related causes of loss and certain other unavoidable perils.  

Coverage is available on over 75 crops in primary production areas of the U.S. Producers may elect a coverage level on 

the range from 50 to 75 percent of the actual production history (APH) mean yield, where APH mean yield is defined 

as the farm-level average of a minimum of four, and a maximum of up to ten, consecutive years of yield. 

A widely recognized feature of crop yield data are the high levels of spatial and temporal dependence.  The 

MPCI ratemaking procedure currently in force makes little use of this dependency in the data, thereby failing to utilize 

information which could be used to more accurately price the insurance.  We develop a methodology for estimating 

farm-level yield distributions that incorporates the spatial and temporal dependencies in yield data.  The approach also 

permits actual learning across space and time, and from aggregate (county and regional) to disaggregate (individual 

farm) levels of crop production. 

The U.S. federal crop insurance program has long been plagued with low participation rates, and taxpayer-

funded subsidies are routinely employed to encourage higher participation levels.  Current provisions of the insurance 

contract allow for premium subsidies on the range from 64 percent at the 75 percent coverage level up to 100 percent at 

the 50 percent coverage level.  Besides covering over 50 percent of the premiums, additional subsidies are employed to 

provide incentives for private insurers to deliver the coverage, in the form of delivery expenses (marketing and service 

cost reimbursements), and reinsurance protection.  Unlike private insurance, where the insurance company must charge 

a premium to cover the cost of claims payments and administrative expenses, government-provided MPCI relies on the 

taxpayer to cover well over half the cost of the program. 

The current ratemaking procedure employed by the Federal Crop Insurance Corporation applies a pooled rate 

to the ten year farm-level average yield to determine farm-level premiums.  Pooling results in adverse selection, as low-

risk producers will to pay too much, and high-risk producers will pay too little. Further, the ten year average yield is 

subject to a high level of stochastic volatility; setting premiums proportional to the ten-year average thus results in a 

high level of intertemporal variance in premiums. 

According to insurance theory, with actuarially fair insurance a risk-averse producer would prefer 

participating to foregoing coverage, risk-neutral producers would be indifferent between participating and not 
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participating, and risk-loving individuals would prefer exposure to the full range of possible yield outcomes to the 

smoothing effect of insurance on income.  Hence with unsubsidized but actuarially fair premiums, theory predicts full 

participation among risk-averse producers whose expected utility would increase with insurance, while risk-loving 

producers could forego coverage.  Low participation rates with subsidized premiums suggest either that many farmers 

are risk-lovers or the premium rates are not perceived to be calculated correctly. 

This chapter focuses on the latter of these two issues. We combine data sets on Kansas winter wheat yields—

annual county-level yields over the period from 1947 through 2000, and farm-level sample moments, based on ten 

years of reported APH yield.  We develop an information theoretic learning rule to combine statewide, county, and 

farm data to estimate individualized farm-level distributions for crop yields.  Maximum entropy is used to estimate 

farm-level yield densities from these moments. Actuarially fair premiums are computed by using numerical quadrature 

to integrate the claim function over the farm-level yield distribution. 

The spatial and temporal dependence in crop yield data represent information which should be reflected in 

premium calculations.  Our approach is designed to set rates which explicitly reflect the dependency structure of the 

data.  We anticipate premiums that are more temporally stable and which better reflect farm-level risk.  
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A Learning Rule for Updating the Distribution of Crop Yields over Space and Time 
 

Introduction 
 

The U.S. government operates the multiple-peril crop insurance (MPCI) program to provide farmers 

comprehensive protection against the risk of weather-related causes of income loss and certain other unavoidable perils.  

Insurance payments under MPCI are a function of individual farm-level realized crop yield.  As a result, the cost of 

MPCI depends on the distributions of farm-level yield for insured farms.  A widely recognized feature of crop yields is 

high levels of both spatial and temporal dependence.  The current ratemaking procedure makes little use of this. 

Until recently, the federal crop insurance program had been plagued with low participation rates.  Taxpayer-

funded subsidies are routinely employed to encourage higher participation levels.1  Current provisions allow premium 

subsidies of 64 percent at the 75 percent coverage level to 100 percent at the 50 percent coverage level.  Additional 

subsidies are employed to provide incentives for private insurers to market MPCI.  These subsidies include payments 

for delivery expenses (marketing and service cost reimbursements), and reinsurance protection provided by the FCIC.  

Unlike private insurance, where the private insurance company charges premiums to finance the costs of indemnity 

payments and administrative expenses, federally-subsidized MPCI relies on the taxpayer to cover more than half the 

costs of this form of insurance.  

The existence of large premium subsidies to foster participation in MPCI is an economic puzzle.  Theory 

implies that, with actuarially fair insurance2 , a risk-averse producer would prefer participating to foregoing coverage, 

risk-neutral producers would be indifferent between participating and not participating, and risk-loving individuals 

would prefer gambling over the full range of possible yield outcomes to the smoothing effect of insurance on income.  

With unsubsidized actuarially fair premiums, we expect full participation among risk-averse producers who capture 

increases in expected utility by insuring.  Low participation rates without subsidies suggest either that most farmers are 

risk-lovers or that the insurance is perceived to be too costly for producers who would otherwise insure at actuarially 

fair rates.  

                                                 
1For example, in 1996, only 75 percent of eligible acres were insured, despite an effective subsidy rate of 60 percent.  
Government outlays for 1996 were a record $1.76 billion, more than triple their level in the mid 1980s. 
 
2 By actuarially fair, we mean [ ]P E I= , where P is the premium paid by an individual, and I is a stochastic indemnity 
which depends on a producer's yield by a formula stated in the insurance contract. A producer’s expected gain from 
purchasing the insurance is zero if the premium is actuarially fair. 
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Many agricultural economists argue that a key factor causing low participation is a failure of premium rates to 

accurately reflect individual producer risk.  There are several reasons that may be so, aside from the prima facie 

evidence of low participation levels:  

1. The formula used to set rates is designed and computed by a single actuarial firm under government contract.  

All providers of insurance charge the same centrally-determined rates, eliminating any competitive incentive 

to improve ratemaking efficiency through more accurate rate calculations. 

2. The rates are computed by first pooling producers into discrete risk classes delineated by county, crop, 

practice, and elected coverage levels. Aggregate loss cost ratios3 (LCRs) are then computed within each risk 

class using the years 1975 to the present. The result is an estimate of the average claim as a percentage of the 

maximum potential premium within each risk class.  The pooled average LCR is multiplied by an adjustment 

factor which reflects production practice, coverage level, and yield differential to arrive at a premium rate for 

each particular risk class. There is no a priori reason to assume this ad hoc classification scheme produces risk 

pools with the average LCR as a good estimate of expected claims for any given producer.  Within any 

particular risk class, some farms will expect to profit by insuring and others will expect to lose money. 

3. Although historical county-level yield data shows strong spatial correlation in contemporaneous yields, the 

current ratemaking methodology makes limited use of this property. 

4. The premium charged an individual producer is proportional to a ten-year average of farm-level yields. Due to 

the high variance of farm-level yields4, a ten-year average is an imprecise measure of expected farm-level 

yield and does not reliably measure the prospective field risk. For example, assuming a trend-reverting 

stochastic process for farm-level yield, producers with relatively poor recent production experience will tend 

to be charged too low a premium, as their true expected yield will be higher than their ten-year average.  

Conversely, producers with favorable recent production experience will have a lower expected yield than 

predicted from the ten-year average, resulting in overpriced coverage. 

 

                                                 
3 The loss cost ratio is defined as the total of indemnities paid divided by total of liabilities for a pool of insured 
producers. Liability for an individual producer may be simply described as the indemnity which would be paid in the 
event of a total loss, taking into account all factors which determine coverage level. 
 
4 For illustration, the sample coefficient of variation of farm-level yield for 20,720 Kansas winter wheat farms over the 
period from 1991-2000 generally fell in a range from 20 to 80 percent, with an average of 39.45 percent. 
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We develop methods to obtain more reliable estimates of farm-level crop yield distributions by incorporating 

information from regional and county-level yield data into the farm-level estimates.  These methods are based on 

information theory and optimal learning rules (Zellner 2000) and minimum expected loss combinations of two 

estimators (Judge and Mittlehammer 2003).  This new approach offers a number of potential advantages over the 

existing method: 

• It makes efficient use of the spatial and time dependencies in the data; 

• The method of combining information from the regional and county levels and from farm levels of data 

corrects for aggregation bias estimates based solely on county yield data; 

• The density estimates are robust to departures from normality; 

• Sensitivity of premiums to volatility in the ten-year average farm-level mean yield is reduced or eliminated; 

• The learning rule offers an efficient mechanism for updating our estimates as new information becomes 

available. 
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Related Work 

 

The provisions and operation of the U.S. federal multiple-peril crop insurance program are discussed in a 

number of sources.  The survey by Knight and Coble (Knight and Coble 1997) provides a broad overview of the 

relevant literature.  Wright and Hewitt (Hueth and Furtan, eds. 1994) compare the operation of federal crop insurance in 

various countries which have implemented programs, and suggest reasons why insurance schemes fail to thrive without 

the support of large taxpayer-funded subsidies.  Harwood et al. (Harwood, Heifner, Coble, Perry, and Somwaru 1999) 

discuss agricultural risk management in general, including a section which explains the provisions of the U.S. federal 

multiperil crop insurance program. Details of the procedures for determining premium rates are provided in Josephson, 

Lord and Mitchell (Josephson, Lord, and Mitchell 2000).  

An efficient method for estimating seemingly unrelated regression equations (SUR) was originally introduced 

by Zellner (1962) and is described at length in Davidson and MacKinnon (Davidson and MacKinnon 1993) and Greene 

(Greene 2000). SUR is applicable to estimating a linear regression model such as ours with panel data that is subject to 

contemporaneous correlation across cross-sectional observation units.  In the present case, the data are Kansas county 

winter wheat yields over the years 1947–2000.  The data exhibit a high degree of contemporaneous spatial correlation.  

This spatial correlation is estimated and used to implement feasible generalized least squares within the SUR 

framework.  

The approach we use to combine information from the county and farm-level yield data farm-level moment 

data is based on an application of Bayes’ rule to the normal distribution.  This approach is explained in Gelman et al. 

(Gelman, Carlin, Stern, and Rubin 1995). Gelman et al. make an analogy between classical analysis of variance 

(ANOVA) and empirical Bayes estimation, characterizing the estimates produced by the latter as a compromise 

between the null hypothesis that all units share a common mean and the alternative hypothesis that the mean differs 

across units.  The Bayesian approach produces a convex combination of the two estimates that balances the relative 

precisions of the estimates made under each of the two competing hypotheses.  

The information theoretic method that we employ to update our yield distributions from one stage in the 

analysis to the next is based on the principle of maximum entropy.  This theory is described in Jaynes (Jaynes 1982), 

Zellner and Highfield (Zellner and Highfield 1988), Ormoneit and White (Ormoneit and White 1999), and Tagliani 

(Tagliani 1993).  Jaynes dispels the common misconception that the maximum entropy method is equivalent to 
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maximum likelihood estimation; in the latter case, the choice of statistical model is ad hoc, while the maximum entropy 

criterion provides a rationale for both selecting and estimating the exponential polynomial form5. Zellner and Highfield 

apply the maximum entropy method to the problem of estimating a probability density function on the real line subject 

to a set of moment constraints—referred to elsewhere in the literature as the Hamburger moment problem (Tagliani 

1984). Ormoneit and White provide a numerical algorithm for computing maximum entropy densities on the real line 

and provide a table of numerical results. Tagliani wrote a series of papers in which he considered both the case 

investigated by Zellner and Highfield as well as the Stieltjes moment problem, where the support of the density is 

restricted to the non-negative half line. Because crop yields are by nature nonnegative, the Stieltjes case applies to the 

problem of estimating crop yield densities.  

A number of researchers have focused on the role of ratemaking inaccuracies in fostering low participation in 

the crop insurance program (e.g., Just, Calvin, and Quiggin 1999).  The general theme is that a key factor in 

determining whether a producer will participate is whether the expected return to insuring is positive.  If insurance rates 

are inaccurate, some farms will face an expected gain to insuring, while others will face an expected loss.  The adverse 

selection problem arises when only farms which expect a positive return to insuring choose to participate.  The results 

are a pattern of persistent aggregate losses to the program, and the need to employ subsidies in order to foster 

participation among producers for whom the expected return to insuring is negative.  

One factor leading to ratemaking inaccuracy is the pooling of producers used in the current ratemaking 

methodology. This pooling procedure is ad hoc and creates groups of individuals with heterogeneous risk profiles.  

Skees and Reed (Skees and Reed 1986) suggest farm-level ratemaking as a means of avoiding the problems due to risk 

pooling.  They point out that the coefficient of variation is a key statistic in measuring farm-level risk, and that the 

pooling procedure currently employed likely results in grouping producers with differing coefficients of variation.  

They also conjecture that farms with a higher level of expected yield tend to have a lower coefficient of variation in 

yields, suggesting that they should be charged lower rates. The data and methodology of this chapter are conducive to 

addressing all of these kinds of questions, including whether crop yields exhibit negative skewness, whether farms with 

a higher mean yield tend to have a lower coefficient of variation, and whether a higher coefficient of variation is 

tantamount to a higher expected insurance claim.  

                                                 
5 A number of authors including Zellner have demonstrated that the solution to the maximum entropy problem assumes 
the form of an exponential polynomial function, ( ) ( )0

exp n i
ii

f x xλ
=

= −∑ . 
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The Modeling Approach 

 

One farm-level ratemaking approach is based on the first four moments of the individual farm-level yield 

distributions.  We first decompose farm-level yield into the sum of the county-level yield and a farm-level residual. 

This decomposition facilitates separate estimation of the density parameters for the county-level yield and farm-level 

residual distributions, which may be combined to provide estimates of farm-level yield distribution.  This approach 

offers several advantages:  

 
1. Incorporating the information from the relatively long series of county-level yield data should result in a more 

reliable estimate than the current method based on at most only ten years worth of farm-level data. 

2. Using the third and fourth moments in density estimation incorporates the widely accepted properties of 

negative skewness and excess kurtosis in the yield distributions, relaxing the assumption of normality 

frequently made in econometric estimation of crop yield distributions (Just and Weninger). 

 

The first step models the stochastic dependence of farm-level yield on the county-level and farm-level data 

generating processes.  Let f
jtY  denote the period-t yield on farm j within county ( )i j .  The farm-level yield is modeled 

by 

(1)
( ), ( ),

f f
jt i j t i j j j jtY Y δ ς η= + +  (1) 

County-level yield in county I, in turn, is modeled by 

(1) f
jt jtEYµ =  (2) 

where 

(1)
itω = county-level yield trend at time t, 

(1)
( ),i j jδ = the difference between farm-level and county-level trend (assumed constant), 

itη is a standardized county-level yield shock6, 

f
jtη is a standardized, idiosyncratic farm-level yield shock, 

                                                 
6 0itEη =  and ( ) 1itVar η = . 
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(2)
i iσ ω= √ is the standard deviation of the county-level yield shock, where (2)

iω  is the county-level yield variance, 

The county-level yield coefficient of skewness is (3) 3
i itEω η= , 

The county-level yield coefficient of kurtosis is (4) 4
i itEω η= , 

The farm-level residual standard deviation is (2)
j jς δ= √ , where (2)

jδ  is the farm-level residual variance, 

The farm-level residual coefficient of skewness is (3)
jδ , 

The farm-level residual coefficient of kurtosis is (4)
jδ , 

( ), 0f
it jtCov η η = , for all i and j, for all t, 

The moments7 of the farm-level yield distribution for farm j are given by 

(1) f
jt jtEYµ =  (3) 

( )(2) f
j jtVar Yµ =  (4) 

( )(3) f
j jtSk Yµ =  (5) 

( )(4) f
j jtKu Yµ =  (6) 

All higher-order moments ( )k
jµ , for k = 2, 3, 4, are assumed to be time-invariant. 

Given these assumptions about the county- and farm-level yield, it can be shown that the moments of farm-

level yield are given by 

(1) (1) (1)
( ), ( ),jt i j t i j jµ ω δ= +  (7) 

(2) (2) (2)
( )jt i j jµ ω δ= +  (8) 

( )
3 (3) 3 (3)

( )(3)
3 22 2

( )

i i j j j
jt

i j j

σ ω ς δ
µ

σ ς

+
=

+
 (9) 

( )
4 (4) 2 4 (4)
( ) ( ) ( )(4)

22 2
( )

6i j i j i j j j
jt

i j j

σ ω σ ς δ
µ

σ ς

+
=

+
. (10) 

                                                 
7 We apply the sobriquet moment loosely here, in the sense that the strict definitions of the (noncentral) moments are 

( ) , 1,2,3,4
kf

jtE Y k = .  The characterizations by noncentral moments or by the mean, variance, skewness and kurtosis 
are equivalent, due to the general existence of a bijective mapping between the two sets of moments. 
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These formulas provide the basis for combining estimates of the moments of the county-level yield 

distribution with the moments of the farm-level residual distribution.  Estimates of the moments of the individual farm-

level yield distribution are then based on these combined moment estimates. 

Seemingly unrelated regression (SUR) was used to estimate county-level yield trends using National 

Agricultural Statistics Service (NASS) county-level yield data for Kansas winter wheat over the period from 1947-

2000 (T = 54 time periods and M = 105 counties).  The SUR method used an iterative two-stage feasible generalized 

least squares procedure, where the first stage used SUR to estimate a simple linear trend model8 of the county-level 

yield trend:  

it i i itY tα β ε= + + . (11) 

The linear time term captures the predictable pattern of technological growth, while the error term includes weather-

related productivity shocks as well as the stochastic component of technological change.  The trend specification 

implicitly assumes the absence of a stochastic unit root in yields; the effects of past stochastic shocks are assumed to be 

transient.  The first estimation step is to use ordinary least squares to estimate each county field trend:  

1 1 1 1

2 2 2 2

0 0
0 0

0 0M M M M

y X B
y X B

y X B

ε
ε

ε

       
       
       = +
       
       
              

L

L

M M M O M M M

L

, 

where [ ]1i TX t≡ , 

1

2

1 1
1 2

1 , , ,

1

i

i i
T i i

i

iT

t B and

T

ε
α ε

ε
β

ε

    
           ≡ ≡ ≡ ≡             

          

MM M
. 

 

The second stage estimates the covariance structure across counties using an exponential quadratic function of 

the distance between centroids of individual counties for the specification of the covariance between counties.  Let îtε  

be the estimated residual for county i in period t, 

1

1
ˆ ˆˆ T

ij it jtyT
σ ε ε

=
= ∑  (12) 

                                                 
8 Higher-order polynomial trends were also considered, but the improvement in fit was negligible, as measured by the 
Bayes Information Criterion (BIC).  On grounds of parsimony, the linear trend model was selected. 
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be the estimated sample covariance and 

ˆ
ˆ

ˆ ˆ
ij

ij
ii jj

σ
ρ

σ σ
=
√

 (13) 

be the estimated sample correlation coefficient between counties i and j in period t for i, j = 1, 2, . . . , M and t 

= 1, 2, . . ., T. The Singh-Nagar procedure is used to estimate the exponential quadratic function:  

{ }2
1ˆ expij ij ijd dρ δ= +  (14) 

where ijd  represents the distance between the centroids of counties i and j.  A weighted second-stage regression is used 

to correct for heteroskedasticity in the residuals in the correlation equation.  Due to the large sample size (5670 

observations) and the consistency of the first-stage procedure in the presence of heteroskedasticity, this second-stage 

correction had little effect. 

The predicted correlation function is assumed to provide a reasonable approximation to the contemporaneous 

covariance structure for the linear trend regression residuals.  We assume that the correlation structure across counties 

is stationary over time: i j ijE Iε ε σ′  =  , so that the covariance matrix took the following form:  

V I= Σ⊗  

where I is a T T×  identity matrix and ijσ  is a typical element in the contemporaneous correlation matrix Σ  which 

describes the correlation structure across counties. 

Letting ˆ̂
ijρ  denote the exponential quadratic fit of the correlation between counties i and j,  

12 1

21 2

1 2

ˆ ˆˆ ˆ1
ˆ ˆˆ ˆ1ˆ

ˆ ˆˆ ˆ 1

M

M

M M

R

ρ ρ

ρ ρ

ρ ρ

 
 
 

=  
 
 
  

L

L

M M O M

L

, 

and 

11

22

ˆ 0 0
ˆ0 0ˆ̂

ˆ0 0 MM

S

σ
σ

σ

 
 
 =
 
 
  

L

L

M M O M

L

 

then 

ˆ ˆˆˆ SRSΣ =  (15) 
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and 

ˆ ˆV I= Σ⊗  (16) 

is the estimated variance-covariance matrix in our FGLS estimates of the country-level field equations. 

The estimated residuals are defined by 

1

2

ˆ
ˆ

ˆ

ˆM

ε
ε

ε

ε

 
 
 =
 
 
  

M
, 

where îε  is the vector whose components are the estimated residuals 

( )ˆˆ ˆit it i iy tε α β= − +  (17) 

where ˆia and ˆ
iβ are the coefficient estimates from the previous iteration.  The regressor matrix is defined by MX I⊗  

with [ ]1TX t≡ . 

After updating β̂  to reflect the estimated covariance matrix, the algorithm re-estimates the correlation 

structure, using the residuals from the revised trend estimates, iterating9 until the relative percentage change in the 

norm of the coefficient estimates for the correlation function estimation is less than 610− . 

The predicated correlation function, { }2
1 2

ˆ̂ ˆ ˆexp ij ijd dρ γ γ= + , produced an 2 0.835R =  with the following 

parameter estimates, standard errors, and t-statistics(insert footnote): 

Parameter Estimate Standard Error t-statistic 

1γ  33.370 10−− ×  56.088 10−×  55.4−  

2γ  51.067 10−×  73.718 10−×  28.7−  

 

The final predicted correlation function is shown in Figure 1, illustrating the high level of spatial correlation 

between contemporaneous county-level yields. 

                                                 
9 The need to iterate is due to the nonlinear least squares procedure used to estimate the restricted covariance structure.  
Although the regressor matrix is the same at each iteration, the covariance structure estimates and the corresponding 
SUR coefficient estimates converge sequentially through iteration.  Since there are more equations (M=105) than time-
series observations (T=54), an unrestricted estimated error covariance matrix will be singular and not empirically 
implementable. 
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We applied the Jarque-Bera (J-B) test to the transformed residuals ˆLε , where ( )( )1L chol SRS −=  is the 

Cholesky factor for the inverse covariance matrix SRS, with S the diagonal matrix of estimated residual standard errors 

and R the correlation matrix. Under the null hypothesis of normality, the J-B test statistic is asymptotically Chi square 

distributed with two degrees of freedom. The J-B test statistic took a value of 767.7, while the 1 percent critical region 

boundary for a ( )2 2X  random variable is 9.21, so that the test rejects normality at all reasonable levels of confidence.  

We conclude that the county-level yield data is not normally distributed.  It follows that farm-level densities are not 

normally distributed either (Feller 1971). 

In principle, given our estimated county-yield trends and estimates of the farm-level residual moments, we can 

calculate estimates of the individual farm-level yield distributions.  However, the farm-level residual moments are 

based on at most ten years of data, and the high variation in crop yields over time makes these estimates unreliable.  To 

illustrate this issue, we simulated twenty-thousand simulated samples of size 10 from a standard normal distribution.  

The population mean, variance, skewness and kurtosis are well known to be 0, 1, 0 and 3, respectively.  Figure 2 is a 

scatter diagram for the simulated sample variance on the sample mean.  Figure 3 is a scatter diagram for the sample 

kurtosis on the sample skewness. 

A similar pattern of variation can be seen in the corresponding graphs of the raw farm-level residual moment 

estimates.  Figure 4 is a scatter of the sample farm-level residual variance on sample mean, based on ten-year actual 

production history (APH) yield.  The yield data are not normalized, and the sample statistics are positive-valued and 

have large ranges of variation in both the sample mean and variance.  Figure 5 is a scatter of farm-level residual 

kurtosis on skewness, based on ten-year APH yield.  The simulation results suggest that a large portion of the variation 

in these moments is due to sampling error. 

We adopt a simple learning rule to address this issue by exploiting our large data set across farms and counties 

to obtain pooled estimates of the shape parameters. These pooled estimates are used to sequentially update the moment 

estimates, first from the pooled state level to the county level, then from the county level to the farm level. A similar 

procedure is used to obtain initial mean and variance estimates for a representative farm in each county, then to update 

these estimates to the individual farms within each county.  Figure 6 presents a diagram of this updating procedure. An 

outline of the method is the following: 
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1. We begin with a diffuse prior and a normal likelihood for each of the mean, variance, skewness and kurtosis 

parameters of farm-level residual distributions10. We interpret farm-level residual distribution moments as 

independent random draws from the likelihood, and apply Bayes’ rule sequentially in two updating steps, first 

to the average farm-level yield within a county, then from the county-level average to the individual farm-

level residual moment estimates.  The formula for updating the mean of a normally distributed random 

variable with new information is 

2 2
0

1 1
0

1

2 2
0

1 1
y

τ σ
µ

µ

τ σ

+
=

+
, (18) 

where 0µ  and 2
1τ  are the parameters of the prior distribution, y and 2σ  are the observation and its variance, 

and 1µ  is the posterior mode.  The corresponding formula for updating the variance is 

2
1

2 2
0

1
1 1τ

τ σ

=
+

, (19) 

where 2
1τ  is the posterior variance.  In each step, these formulas are used to update the prior information using 

the likelihood function to reflect the new information for the case at hand. 

2. A similar procedure is used to obtain moment estimates for county-level yield distributions. 

3. The county-level yield moments are combined with the farm-level residual moments to obtain estimates of the 

moments of farm-level yield distributions.  These moment estimates provide the input for the maximum 

entropy estimation of the individual farm-level yield densities. 

 

In the more detailed discussion below, w and d  denote the sample estimates of county-level yield moments 

and farm-level residual moments, ω̂ and δ̂  denote the respective posterior updates, and µ̂  denotes posterior updates 

of the farm-level yield distribution moments.  The corresponding population parameters areω , δ , and µ , a subscript j 

indexes farm-number, ( )i j indexes the county in which farm j is located, and a superscript ( )k  denotes the order of 

the moment under consideration. 

 
                                                 
10 The normal prior may be justified by an appeal to the asymptotic distribution of our moment estimators, which is 
normal, and to the large data samples on which our prior estimates are based. 
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Constructing the Farm-Level Moments 

The farm-level residuals are defined by the difference between the farm-level yield deviation from the ten-year average 

farm-level yield, and the county-level yield deviation from the ten-year average county-level yield, 

( ) ( )( ), ( )
f f

jt jt j i j t i jY Y Y Yε = − − − , (20) 

where f
jtY  is the farm-level yield on farm j in period t, f

jY is the ten-year farm-level APH mean yield on farm j, ( ),i j tY is 

the county-level yield in county i in period t, and ( )i jY  is the ten-year average county-level yield for county ( )i j . 

The maintained assumption about the relationship between county-level and farm-level yield is 

(1)
( ), ( ),

f f
jt i j t i j j j jtY Y δ ς η= + + . (21) 

Rearranging and taking the expectation of both sides shows that 

( )(1)
( ), ( ),

f
i j j jt i j tE Y Yδ = − . (22) 

Under the assumption that the expected difference between an individual farm-level yield and its corresponding 

county-level yield trends is time-invariant, an unbiased estimate of the difference is given by 

( ),1 9
( ), ( ) 10

t f
js i j sf s t

i j j j i j

Y Y
Y Yδ = −

−
= − = ∑ . (23) 

The farm-level residuals are then defined to be the remaing farm-level error terms, 

( ) ( )(1)
( ), ( ), ( ), ( )

ˆf f f
jt jt i j t i j j jt j i j t i jY Y Y Y Y Yε δ= − − = − − − . (24) 

The farm-level residual moments were computed from actual farm-level data.  The average difference between a farm-

level yield and the county-level yield trend is 

(1)
( )

f
j j i jd Y Y= − , (25) 

which is the excess of the 10-year farm-level mean yield over the corresponding county-level mean yield.  Higher 

individual farm-level residual sample moments estimates are calculated by 

10

( ) 1

10

k
jtk t

jd
ε

== ∑ , (26) 

for k = 2, 3, 4.  Under the hypothesis of common residual moments across all 20,720 farms in the sample, pooled 
momentz for the farm-level residual moments are 

( )
1( )

N k
jjk

p

d
d

N
==

∑
 (27) 

with the associated variance estimates 
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( )2( ) ( )
1( )

1p

N k k
j pjk

d

d d
V

N
=

−
=

−
∑

, (28) 

for k = 1, 2, 3, 4.  These sample moments and their associated sample variances were used to construct the pooled prior 

distribution for each residual moment 

( ) ( ) ( )( ),
p

k k k
P dN d Vδ , (29) 

as the first step in our learning rule. 

An alternative to the common-moment hypothesis is that the moments vary geographically by county, but 

farms within each county share common residual moments.  This alternative would be supported by the data if the 

cross-county variation in moment estimates were relatively large compared to within-county variation.  On the other 

hand, if within-county variation were relatively large compared to cross-county variation, the pooled moment 

hypothesis would be supported.  The classical resolution of this dichotomy applies analysis of variance.  If the null 

hypothesis is accepted, the pooled sample moments are is used, while if it is rejected, the county-specific moment 

estimators are used instead. 

A Bayesian approach resolves the dichotomy through a compromise rather than an absolute choice between 

the two hypotheses.  Under the alternative hypothesis, the county-specific moments and their variances may be 

estimated using 

( )
( )

i

k
jj Jk

i
i

d
d

N
∈=

∑
, (30) 

and 

( )
( )k

k i
dj

i

VV
N

= , (31) 

where iJ  is the set of farms in county i, iN is the number of farms in county i, and 

( )
( ) ( )( )2

1
i

k k
j ij Jk

j
i

d d
V

N
∈

−
=

−
∑

 (32) 

is the sample variance of the corresponding farm-level sample moment for county i.  This method computes the 

posterior mode as the precision-weighted average between the sample pooled moment and the county-level sample 

moment, 
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( )
( )
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1 1
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+
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, (33) 

with posterior variance given by 

( )

( ) ( )

1
1 1i

j p

k

k k
d d

V

V V

δ =
+

.  (34) 

It is straightforward to show11 that the posterior variance is less than the smaller of the prior variance, ( )
p

k
dV , and the 

likelihood variance, ( )
j

k
dV .  Hence the posterior distribution has a mean which is the precision-weighted average of the 

prior mean and the likelihood mean, and a variance which is smaller than the variances of either the prior or the 

likelihood. 

After updating the farm-level residual moments from the statewide pooled level to the county level, the 

question remains whether there are significant differences in these moments at the individual farm level within each 

county.  In principle, if the variation between farm-level moments is large relative to the sampling variation, then farm-

level moment estimates should differ across the farms in each county.  Conversely, if the sampling variance in the 

farm-level moment estimates is large relative to the inter-farm variation in moments for farms within a given county, 

then there is little basis for separate estimates across farms.  An attractive aspect of the updating procedure we have 

developed and applied to this problem is that, at any stage, new information can be taken into account by treating the 

posterior from the previous update as the new prior and entering the new information through the likelihood function.  

We therefore update from county-level to farm-specific residual moments with the formulas: 

                                                 
11 Suppose 0iV > for i = 1, 2, 3, and, without loss of generality, that 1 2V V≥ . If  
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V V
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+
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then since 
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> , it follows that 
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 (35) 

and 

( )

( )

( ) ( )

1
1 1j

ji j

k

k k
d

V

V V

δ

δ

=
+

. (36) 

 

County-level Sample Moments 

Initial estimates of the moments of the county-level yield distributions are based on the trend regressions.  The 

estimated county-specific trends provide estimates of the county-level mean yield, and exhibit a small standard error.  

These estimated county-specific means are not updated in our procedure.  The estimated county-level yield trend is 

( )1
0

ˆˆi i itω α β= +  (37) 

with corresponding variance equal to 

( ) ( )
( ) ( ) ( )

1
0

2
0 0

ˆˆ

ˆ ˆˆ ˆ2 ,

i i i

i i i

V Var t

Var t Cov t Var

ω α β

α α β β

= +

= + +
 (38) 

The parameter estimates ˆiα  and ˆ
iβ  are the SUR trend regression coefficient estimates, 0 1t T + is the next period after 

the last observation in the data, and the estimated variances and covariance in the variance formula are obtained from 

the county-specific elements of the SUR covariance matrix. 

Higher moments for the county-level yield distribution are initially estimated using the sample moments of 

county-specific residuals.  These consistently estimate the corresponding population moments when the trend 

regression is correctly specified.  The hyperparameters (mode and variance) of the estimated variance are computed as 

( )

2

2 1
ˆT

t it
iw

T K
ε

==
−

∑  (39) 

and 
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∑

 (40) 
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The county-level sample skewness and kurtosis are calcuted with the normalized residuals, ( )2ˆˆit it iu ε ω= .  

The formulas for the residual skewness ( 3k = ) and kurtosis ( 4k = ) are 

( ) ( )
1

ˆ
T

k k
i it

t
w u T K

=

= −∑  (41) 

and 

( ) ( ) ( ) 2
ˆ

i

kuk
it ik

w

u T K w
V

T

 − −  =
∑

. (42) 

The updating procedure for the variance, skewness and kurtosis of the county-level trend residuals is the same 

for k = 2, 3, 4, and is described generically for all three cases.  Under the hypothesis of a common thk  moment across 

all counties, a pooled prior mean and variance are computed from the county-specific moment estimates: 

( )
( )

1

M k
lk i
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w
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 (44) 

These pooled priors are combined with the county-specific sample moments, again using Bayes’ rule, 

generating posterior distributions for the higher order moments of the county-level yield distributions, 
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, (45) 

and 

( )

( ) ( )

ˆ
1

1 1i

i p

k

k k
w w

V

V V

ω =
+

. (46) 

Combining the County-level and the Farm-level Moments 

The means and variances of the posterior county-level yield moments and the posterior farm-level residual moments 

may be combined by the moment decomposition formulas described previously to obtain posterior modes and 
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variances of the farm-level density parameters.  For the mean and variance of farm-level yield, the formulas are 

additive 

( )
( )
( ) ( )ˆˆ ˆk k k

j ji jµ ω δ= +  (47) 

and 

( )
( )

( ) ( )
ˆˆ ˆi j j

k k k
jV V Vµ ω δ
= +  (48) 

define the updates of the mean and variance hyperparameters for the respective mean (k=1) and variance (k=2) 

parameters of the farm-level yield distribution. 

However, for the subsequent calculation of the farm-level maximum entropy yield distributions, it is useful to 

characterize the farm-level yield distributions in terms of dimensionless statistics, namely, the coefficients of variation, 

skewness, and kurtosis.  The calculation of posteriors for these three cases is somewhat more complicated, as the 

formulas depend on ratios of random variables. We use the delta method as it applies to a univariate function of a 

multivariate distribution.  

The coefficient of variation is defined as the ratio of the standard deviation to the mean.  The posterior mode 

may be found by computing 

( )( ) ( )1 22 1ˆ ˆ ˆj j jγ µ µ= . (49) 

and the posterior variance is 
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The posterior mode for the coefficient of skewness is 
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and the posterior mode for the coefficient of kurtosis is 
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Updating Results 

Figure 7 shows that the updating procedure begins with two separate sequences of calculations.  The updating 

sequence at the county level results in posterior moments (the mean, variance, skewness, and kurtosis) of the yield 

distribution in each county.  A separate sequence of steps results in farm-level posterior moments of the farm-level 

residual deviation from county-level yield.  The final stage in the process uses equations 3.52, 3.53, 3.56,  and 3.57  to 

combine the posterior moments for the county-level yield distribution with the posterior moments for the farm-level 

residual distribution to obtain the updated farm-level yield distribution. 

To provide insight to the operation of this updating procedure, we present two collections of four graphs each.  

The first collection of four graphs illustrates estimates of the moments of the farm-level residual distribution at each 

stage of the updating process.  The second collection of four graphs compares estimates of the moments of the county-

level yield distributions on the horizontal scale to estimates of moments of the farm-level yield distributions on the 

vertical scale. 

In the first group of four graphs, the cross-hairs in each case represent the mean of the initial, pooled prior 

distribution.  Each point in the plot represents an estimate of the applicable moment from an individual farm at two 

different stages in the process.  The horizontal position of a point corresponds to the estimate after updating to the 

county-level; hence the vertical position of each point represents the estimate after updating to the farm-level. 

Figure 8 illustrates the updating process for the farm-level residual mean.  The solid horizontal and vertical 

line segments which intersect in the interior of the graph indicate the position of the pooled mean of -0.82 on the 

horizontal and vertical scales12.  The horizontal position of each point in the scatter represents the county-level update 

of the farm-level residual mean; in other words, each vertical cluster of points represents a group of farms from within 

one particular county.  The vertical position of each point represents the farm-level update of the farm-level residual 

mean. 

The initial stage of updating from the pooled-level to the county-level results in a range of values on the 

horizontal scale from slightly below -4 to slightly below 5.  There apparently is a significant difference across counties 

in respect to the deviation of farm-level mean for insured farms from the mean level of county yield. 

                                                 
12 The farm-level residual mean indicates the extent to which mean farm-level yield for an insured farm falls below 
mean county-level yield; the negative value for the pooled mean indicates the degree to which the average yield for 
insured farms falls short of the overall average yield. 
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The second stage of updating is indicated by the vertical spread of points about the dashed “45°” line segment 

that is superimposed.  With the exception of one large outlier, the updated farm-level residual means lie within a very 

similar range to that of the county-level updates.  Each vertical cluster of points about the dashed line represents the 

variation in farm-level estimates for insured farms in a specific county. Points which lie above the dashed line segment 

have a higher residual mean than average for the county in which they are located, while points below the line have a 

below-average residual mean for their respective county. 

To summarize the results of farm-level updating of the residual mean displayed in Figure 4.1, we comment on 

the key qualitative features of the graph: 

 

1. For the majority of farms, the county-level update was the most significant determinant of the residual mean, 

as indicated by the fairly tight vertical clusters of points about the dashed line segment.  The indication is that 

geographical variation across counties is an important explanatory variable for the difference between the 

farm-level mean of insured farms and the mean of county-level yield. 

 
2. For most farms, the additional variation captured in the update from county-level to farm-level estimates is 

negligible, resulting in a moderate degree of vertical spread within county groups. But for a handful of farms, 

the departure of farm-level experience from the county average is significant, producing the smattering of 

outliers in the vicinity of the origin which lie as far as three units above or below the county-level estimate. 

These outliers illustrate the ability of Bayesian updating to distinguish atypical cases. 

 
Figure 9 shows the updating process for the farm-level residual variance, which measures the residual 

variance of farm-level yield about the county-level yield.  Under the independence assumption, this quantity represents 

the portion of farm-level variance which is smoothed out, and hence missing, from the county-level yield variance. 

The construction of the graph is similar to that of Figure 8.  The pooled variance, represented by the horizontal 

and vertical solid line segments which cross in the interior of the graph, assumes a value near 90, indicating that the 

farm-level yield variance significantly augments the measurable variation in county-level yields. 

The qualitative features of Figure 9 are quite similar to those of Figure 8; in both cases, the majority of the 

variation in farm-level variance is accounted for by the update to the county-level mean, with a negligible additional 

amount of variation estimated at the farm-level. Again, for a smattering of cases, the farm-level update produced an 
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estimate which differed significantly from the county-level update, as evidenced by the points which lie more than ten 

units above or below the 45° line. 

Figures 10 and 11 show the respective updating processes for farm-level residual skewness and kurtosis.  The 

qualitative features of these graphs are similar to those for the mean and variance, and hence the same descriptive 

comments of the updating process apply.  It is interesting to note that the average farm-level skewness is below -0.2, 

while the average farm-level kurtosis is 3.5.  Given that these averages represent consistent estimates of the pooled 

mean residual skewness and kurtosis, and that they were computed over 20,720 farms, significant departure from the 

normal distribution is suggested13. 

Figures 12, 13, 14, and 15 display scatter diagrams with the post-update county yield moment estimates on the 

horizontal scale and the post-update farm-level moment estimates on the vertical scale. The dashed line segment in 

each graph is a 45° line; points on the dashed line have identical county-level and farm-level moments. The county-

level moment estimates are the result of applying the updating process to county-yield regression results, without 

taking into consideration individual farm-level data. The farm-level moment estimates utilize the formulas for 

combining county-level moment estimates with farm-level residual moments in order to produce estimates of the 

moments of the farm-level yield distributions. 

Figure 12 compares the post-update county-level yield mean to the post-update farm-level yield mean.  The 

estimates on both levels fall on similar overall ranges, but the farm-level estimates fall on average below the county-

level estimates, suggesting that insured farms typically have mean yields which are slightly below average compared to 

the county-level yield means. 

The comparison suggests that the mean yield on insured farms is below the county-level average yield, 

supporting the notion that insurance adversity selects farms with below-average yield. 

Figure 13 compares post-update county-level variances to post-update farm-level variances.  The farm-level 

variance estimates exhibit a striking departure from county-level yield variances, demonstrating the large contribution 

of farm-level variability which is masked by the aggregation of yields into county-level averages.  While the county-

level variance estimates fall on a narrow range, from 52 up to 53, suggesting little ability to measure differences in 

variance from the county regression residual variances, the farm-level estimates exhibit a much wider range of 

variation, reflecting the large measured differences in post-update farm-level residual variance. 

                                                 
13The normal distribution features a skewness of 0 and a kurtosis of 3. 
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Figure 14 compares post-update county-level skewness to post-update farm-level skewness.  The range of 

county-level skewness lies lower and is more narrowly spread (roughly from -0.24 to -0.217) than the range of farm-

level skewness (from -0.22 to -0.14).  This reflects the greater range of variation which can be measured using 

individual farm-level data, as well as the interesting phenomenon that the sum of two independent random variables 

which both exhibit negative skewness will generally be less skewed14. 

Figure 15 compares post-update county-level kurtosis to post-update farm-level kurtosis.  In the majority of 

cases, the county-level kurtosis lies between 3.0 and 3.2, while the farm-level kurtosis typically lies between 3.0 and 

3.5.  There are a few outliers where the farm-level kurtosis exceeds 3.5, and a number of cases where the farm-level 

kurtosis lies significantly below 3.0. 

The overall outcome of the farm-level moment updates suggest that there are appreciable differences across 

farms in the moments which characterize their yield distributions and that for most farms, the normality assumption is 

not an accurate characterization.  In light of these observations, we estimate densities by the method of maximum 

entropy. The resulting family of estimates nests the (truncated) normal distribution as a special case, but also allows for 

departures from normality. 

 

Maximum Entropy Estimation of Farm-level Yield Densities 

Using the posterior modes of the dimensionless coefficients as estimates of the farm-level moments, it is 

possible to apply the method of maximum entropy to estimate the farm-level yield distributions.  This section provides 

details of this procedure. In order to demonstrate this methodology, We consider some representative cases. 

We argue below that the dimensionless coefficients of statistics (i.e., the coefficients of variation, skewness, 

and kurtosis) represent a set of sufficient statistics for the premium rate expressed as a percentage of the expected yield, 

in the case where the exponential quartic density15 is used to approximate the yield density. Because the post-update 

coefficients of skewness and kurtosis fall on a narrow range, while the post-update coefficient of variation has a wide 

range, we consider three cases: 

                                                 
14 The limiting case of this would be to add a large number of independent draws on a highly skewed random variable.  
By the central limit theorem, the sum of a large number of independent draws is normally distributed with a skewness 
of zero, regardless of the level of skewness in the random variable which generates the terms of the sum. 
15 The exponential quartic density solves the maximum entropy problem for the four moment case.  It has form 
( ) ( )2 3 4

0 1 2 3 4expf x x x x xλ λ λ λ λ= − − − − − − − .  For 0x > , the density family includes the truncated normal 

distribution, which is obtained for 3 4 0λ λ= = , and the exponential distribution, which is obtained for 2 3 4 0λ λ λ= = = .  
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1. minimum coefficient of variation; 

2. median coefficient of variation; 

3. maximum coefficient of variation. 

 

In each case, we employ the post-update point estimates of skewness and kurtosis for the selected farm. 

The maximum entropy density parameters for the representative cases were computed by indentifying the 

exponential quartic density which minimized the dual objective function for the given moments16. 

 

Calculation of Farm-level Premiums for Representative Cases 

We computed the farm-level premiums for each of the three representative cases using the maximum entropy 

density estimate. 

For illustration, the premiums were computed as a percentage of coverage level c =  65 percent, 75 percent, or 

85 percent. Let X denote the random variable for yield. The premium may be computed using the formula 
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 (53) 

 
where ( )f x is the probability density function for the case under consideration (either the truncated normal or 

exponential quartic density).  Alternatively, using the transformation to rescale X to a unit mean, 

Y X µ= where EXµ = , it is possible to write17 

( )
( )

0
0

100%

c
c yg y dy

P g y dy
c

 
 = − ×  
 

∫
∫  (54) 

                                                 
16 An exact fit of an exponential quartic density for a given set of moment constraints is not always possible.  When an 
exact fit is attainable, minimizing the dual objective function identifies the exponential quartic density whose moments 
exactly match the given moment constraints. 
17 It is easy to see that x y µ∂ ∂ = , and y c=  when x cµ= .  Making the appropriate substitutions leads to the formula 
in terms of the density of Y, which is ( ) ( )g y f y dyµ µ= . 
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The fact that the premium may be computed from the rescaled density implies that the coefficient of variation 

is a sufficient statistic for the premium in the truncated normal case, while the coefficients of variation, skewness and 

kurtosis are a set of sufficient statistics in the exponential quartic case. 

The table below displays the premium calculation results. As would be expected, the calculations are 

increasing in coverage level and in coefficient of variation. 

 

Converted Level Minimum CV Median CV Maximum CV 
65% 0.8% 1.7% 2.2% 
75% 1.8% 3.1% 3.7% 
85% 3.6% 5.2% 5.9% 

 
Exponential Quartic Premiums 
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Conclusion 

To conclude, we first summarize the advantages of the proposed premium calculation methodology.  Next we 

provide a simulated comparison between our approach and current practice.  Finally, we present an argument to for 

motivating the economic importance of better ratemaking. 

 

Summary of the Proposed Methodology 

In this paper, we have presented and provided examples of a new approach to computing farm-level crop 

insurance premiums.  The method offers a number of innovations over current practice: 

 

1. The farm-level yield density estimates systematically incorporate information from the long panel of county-

levels yields; current practice ignores the county yield data.  The incorporation of county-level yield data into 

farm-level density estimates is facilitated by a model which decomposes the farm-level yield into the sum of 

the county-level yield plus a farm-level residual. The county-level yield in any given year is computed as the 

total county yield averaged over harvested acreage. The farm-level residual is modeled as an independent 

deviation from this average, leading to formulas which express the farm-level yield distribution moments in 

terms of the respective distribution moments of county-level yield and farm-level residual.  Because the 

county-level yield represents a large share of farm-level yield, and there are many more available observations 

at the county-level than at the farm-level, including this information results in more reliable premium 

calculations than the current ten year APH approach. 

 

2. The SUR estimates of the county-level yield densities exploit the high level of spatial correlation between 

counties in close proximity.  County-level yields exhibit a high degree of contemporaneous spatial correlation.  

If the weather in one county is particularly bad in a given year, there is a better than even chance that the 

surrounding counties will experience similarly adverse conditions.  To the degree that such weather conditions 

affect harvests, these local weather effects are manifested in a high level of spatial correlation between 

proximate counties. The decomposition of county-level yields into mean trend and residual is designed to 
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exploit the spatial correlation at the county level.  In theory, the resulting GLS estimates should provide more 

efficient estimates of the trend and residual decomposition than if spatial correlation is ignored18. 

 

3. The Bayesian updating approach used to obtain county-level and farm-level residual moment estimates 

systematically updates farm-level yield density estimates with information from county-level and the other 

farms in the available data.  Premium calculations should reflect the extent to which the yield distributions of 

individual farms exhibit significant departures from the characteristics of surrounding farms.  The pooling and 

averaging of loss cost ratios under the current method obscures such local differences, increasing the risk of 

farm-level moral hazard. The Bayesian updating approach is designed to reflect the impact of farm-level 

differences on premiums.  The objective is to achieve rates which more accurately approximate the variation 

in farm-level risk. 

 

4. The maximum entropy approach to density estimation is robust to non-normality.  Our estimates suggest the 

presence of significant excess kurtosis in contrast to the truncated normal distribution, with values on the order 

of 3.2, compared to a limiting upper bound of 3.0 for the truncated normal distribution. The maximum entropy 

approach offers the possibility of capturing and measuring the effect of departures from the normality 

assumptions on density estimates. 

 

5. The premium calculations are derived from first principles.  We first estimate a farm-level yield density, 

which theoretically determines the probability distribution of claims.  Then we compute the actuarially fair 

premium as the expected claim with respect to this density.  Establishing an objective of estimating the 

moments of farm-level yield distributions and computed premiums as expected claims with respect to these 

estimated densities represents a stark departure from the current ad hoc practice of pooling and averaging loss-

cost rations, then multiplying by a ten-year APH yield to determine the premium. Since the ten-year APH 

yield is highly variable, so are the premiums under the current method. 

 

                                                 
18 Current APH-based ratemaking practice makes extremely limited use of spatial correlation in computing premiums. 
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Graphical Comparison of Maxent and APH Premiums 

The potential advantages of our approach are illustrated graphically in Figure 15, which displays kernel 

density estimates for the premium distributions for Morton County, Kansas. Three different densities are superimposed: 

 

1. the distribution of actuarially fair premiums, based on maximum entropy densities; 

2. the distribution of APH premiums, based on reported APH means; 

3. the distribution of APH premiums, based on trend-adjusted APH means. 

 

The actuarially fair premiums were computed by applying quadrature to the maximum entropy density 

estimates, treating the maximum entropy density estimates of farm level yield distributions as the true yield 

distributions. 

The (unadjusted) APH premium distribution was estimated by first computing a proxy for the average loss 

cost ratio which enters the APH premium calculation.  For each farm in the Morton County sample, a loss ratio equal to 

the expected loss as a percent of APH mean was computed by 
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that is, by computing the expected premium as a percentage of mean yield, based on the ten-year APH mean iy .  These 

farm-level expected loss ratios were averaged to obtain a proxy for the average LCR.  This average LCR was 

multiplied by the farm-level APH means to estimate the distribution of APH-based premiums. 

A similar procedure was used to compute adjusted APH-based premiums, except that the APH means were 

adjusted for trend growth. Because the APH means are computed for FCIC ratemaking purposes without a trend 

adjustment, a ten-year average of APH yields actually estimates the expected yield net of 4.5 years of trend growth.  To 

see this, note that 
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where ( ),i j t kε −   is the county-level yield shock, ,
f
j t kε − is the farm-level yield shock, and , , 0f

i t k j t kE Eε ε− −= = .  The APH 

mean is given by 
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which has expected value 
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In light of the downward bias, an adjustment for 4.5 years of trend growth was added to the APH mean for 

each farm before computing premiums in the adjusted case. 

Kernel density estimates illustrate the stylized differences between the three approaches.  The variation in the 

distribution of maximum entropy premiums reflects differences in the farm-level moments. The range of premium 

variation is relatively narrow, from about 3.25 percent up to 4.2 percent of mean yield19. 

The two APH premium distributions show a considerably larger range of variation than the maxent premium 

distribution, and the unadjusted APH kernel estimate shows downward bias due to the failure to reflect trend growth in 

the premium estimates. 

In addition to the graphical comparison, we measured the differences between the adjusted APH and maxent 

cases by a decomposition of mean square error, treating the maxent premium as the true premium and the APH 

premium as an estimator.  Let P represent the actual premium (proxied by the maxent premium) and P̂  the adjusted 

APH premium.  The mean square error decomposition is then 
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MSE E P P

E P EP EP P

P EP P
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= − + −

= + −

 (59) 

The left term in the decomposition is the variance, while the right term is the square of the bias.  The sample values of 

these terms for the adjusted APH premium calculations are a variance of 1.14 percentage points, and a bias of 0.17 

percentage points. 

While it is impossible to know on the basis of this simplified analysis to what extent the results are 

representative of actual experience over time, a couple of conclusions are suggested.  First of all, the variance of APH 

premiums is large compared to the magnitude of the premiums.  Because yields exhibit a large measure of 

intertemporal variation, a large share of the variance in APH premiums represents fluctuation in the premiums farmers 

will pay due to sampling variation, rather than actual variation in risk. 

                                                 
19 The mean refers here to the Bayesian update estimate. 
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A second suggested conclusion is that the current approach of using the unadjusted APH mean to estimate the 

expected current year yield results in significant negative bias to premium rates when compared to their actuarially fair 

values. 

Finally, the bias in APH premiums can be significantly reduced by adjusting the APH mean for trend, 

although the variance problem is not mitigated by this adjustment. 

 

Economic Implications of Reduced Bias and Intertemporal Variance 

The current practice of computing premiums based on multiplying pooled average loss cost ratios by ten-year 

APH yield is subject to problems of bias and high intertemporal variance.  Both problems help to explain the 

historically low rate of participation in the crop insurance program, and the need to use large subsidies to induce 

farmers to participate. 

The bias problem arises when farms with heterogeneous risk profiles are pooled together for rating purposes.  

The result is an implicit cross-subsidy from low-risk farms to high-risk farms within the pooled group. Low-risk farms 

thus optimally forego participation, unless they are enticed into participation by subsidies. 

The reliability problem arises because the premium is effectively proportional to the ten-year APH yield, and 

the high intertemporal variance of yields translates into a high variance in the ten-year average.  The result is premiums 

which similarly exhibit a high intertemporal variance.  If farmers are risk averse, then highly variable premium rates 

create another disincentive from participation. 

Our proposed method represents a step in the direction of premium rates that more accurately reflect farm-

level risk, and that are more intertemporally stable than those under the current ten-year APH approach used by the 

FCIC.  The result of offering rates which are more accurate and intertemporally stable should be a reduction in the 

subsidy requirement needed to achieve a high level of participation in the program.
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Figures 

 
Figure 1. Fitted Correlation Function 
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Figure 2. Mean and variance for 20,000 simulated standard normal samples 
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Figure 3. Skewness and kurtosis for 20,000 simulated standard normal samples 
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Figure 4. 10-year APH residual variance on APH mean yield 
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Figure 5. 10-year APH residual kurtosis on residual skewness 
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Figure 7. Schematic Diagram of Bayesian Updating Procedure 
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Figure 7. Update of Farm-level Residual Mean 
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Figure 8. Update of Farm-level Residual Variance 
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Figure 9. Update of Farm-level Residual Skewness 
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Figure 10. Update of Farm-level Residual Kurtosis 
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Figure 11. Post-update Mean Estimates 
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Figure 12. Post-update Variance Estimates 
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Figure 13. Post-update Skewness Estimates 



48 

 
Figure 14. Post-update Kurtosis Estimates 
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Figure 15. Kernel Density Estimates of Premium Distributions for Morton County 
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Figure 15. 


