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1 Introduction

Beginning with Gordon (1954) economists have pointed out that open access to

fisheries results in dissipation of economic rents, hypothesized about optimal fisheries

management by a sole owner, and studied how harvest levels should be set to maximize

economic yield.1 The declaration of 200-mile zones of extended fisheries jurisdiction in

1976 made explicit fisheries management reality in that most important fisheries were

brought under the authority of adjacent coastal nations. Economic research has proposed

regulations that would steer fisheries toward the rent maximizing ideal. While economists

have been influential in incorporating socioeconomic goals into fisheries management,

much of real world fisheries policy has been shaped by biological goals and short-term

political considerations. The question then arises of how real world regulations comply

with the economists’ ideal of rent maximization.

We examine regulatory objectives in the North Pacific Halibut fishery, one of the

fisheries with the longest history of regulation. 2 The International Pacific Halibut Com-

mission (IPHC) has regulated the halibut fishery since the early 1930's. The IPHC states

that its objective is to attain the optimum sustainable yield, but does not specify what is

considered optimum. The regulator's objective might be to maximize the sustainable

biological yield, the current economic rents, or the expected present discounted value of

the flow of rents. We do not know the regulator's objective function. However, we seek

to measure how the regulator's behavior complies with the ideal of rent maximization.

                                                
1 Other examples include Scott (1955), Turvey and Wiseman (1957), and Crutchfield and Zellner (1962).
2 Homans and Wilen (1997) have previously studied regulation in the North Pacific Halibut fishery. They
assume that a goal-oriented regulator chooses harvest levels according to a safe stock concept.
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We assume that the regulator solves a stochastic dynamic optimization problem to maxi-

mize the expected present discounted value of rents. We derive the stochastic Euler

equations that define the solution to the regulator's problem. From the Euler equations,

we estimate the discount factor that is consistent with our assumptions and the regulator's

observed behavior. The estimated discount factor provides an index of regulatory behav-

ior. A zero discount factor implies that the regulator maximizes current net revenue. A

discount factor equal to one makes no distinction between current and future net revenue,

implying the objective of maximum sustainable yield. The results show the extent to

which the regulator’s objective deviates from discounted rent maximization. The results

can be used to compute the welfare costs of following a suboptimal management policy.

Since Hansen and Singleton's (1982) contribution, the generalized method of

moments has become the mainstay method in estimating stochastic Euler equations. The

data based empirical likelihood method suggested by Owen (1988, 1991), Qin and Law-

less (1994), and Mittelhammer, Judge, and Miller (2000) is a new method that readily

lends itself to Euler equation estimation. We compare the results from estimating a sto-

chastic dynamic model using the traditional generalized method of moments and nonlin-

ear two-stage least squares procedures, and the empirical likelihood method.

The study's objectives parallel those of Fulton and Karp (1989) and Fernandez

(1996). Fulton and Karp study the objectives of a public firm in the uranium industry.

They estimate a linear control rule and state equations in an optimal control model in or-

der to determine how the firm balances different objectives. Fernandez examines the ob-

jectives of a public waste water treatment plant, using maximum entropy to estimate a

dynamic model. In the linear-quadratic setting of Fulton and Karp and Fernandez, the

maximum entropy method avoids the restrictions needed by two-stage least squares and

other traditional methods. The empirical likelihood method provides the same advantage

without forcing the economic model into an entropy framework.

The paper is organized as follows. Section 2 states the regulator’s optimization

problem, determines the optimal harvest level, and develops hypotheses about the regu-

lator’s behavior. Section 3 describes data for the North Pacific Halibut fishery. Section 4

presents the empirical analysis. Section 5 examines the welfare implications of the regu-

latory program, and section 6 concludes.
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2 The Bioeconomic Model

We use the bioeconomic model of a seasonal fishery developed  by Clark (1971)

and employed by Clark (1972), Clark (1973), Spence and Starrett (1975), Levhari, Mich-

ener and Mirman (1981), Hannesson (1997), and others. The biological model is deter-

ministic. Let tX denote the size of the fish stock at the beginning of the fishing season in

period t. The regulator sets a harvest quota tQ  prior to commencement of harvest, after

having observed the stock tX . Harvesting then takes place, and once the quota has been

reached, the fishery is closed for the season. The size of the stock left behind after har-

vesting is referred to as the escapement level tS . Neglecting natural mortality during the

fishing season, the relation between the initial stock tX , the harvest quota tQ , and the

escapement level tS  is ttt SQX =− . The growth of the fish stock is a function of the

escapement tS . The escapement spawns at the end of the season, and produces )( tSF

recruits available to harvest in period 1+t . Recruitment to the stock follows a Beaverton-

Holt type stock recruitment relation

(1) 2
1 ttt bSaSX −=+ ,

where a and b are biological growth parameters.

At a given price tp , the revenue tR  obtained from harvest tQ  in period t is

(2) ( )tttttt SXpQpR −== .
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The tp  are stochastic. The unit cost of additional harvest at any stock level x is xc / ,

where c is the unit cost of fishing effort.3 The total cost tTC  of harvesting the stock from

the initial level tX  down to tS  in period t equals

(3) ( )∫ −== t

t

X

S ttt SXcdx
x
cTC lnln .

The period t net revenue to the fishery is ( ) ( )tttttttt SXcSXpTCR lnln −−−=−=π . The

expected present value JEt  of the stream of net revenues sπ  for an infinite time horizon,

given the information available at period t, is

(4) ( ) ( ){ }






 −−−= ∑
∞

=
sssss

ts

s
tt SXcSXpEJE lnlnα ,

where α  is the discount factor and { }sp  is a stochastic sequence of prices. If the regulator

sets the quota tQ , or equivalently the escapement tS , to maximize JEt  subject to the

stock dynamics 2
1 ttt bSaSX −=+ , the first order condition is

(5) ( ) ( ) 02 21 =





















−
−−−− +

tt
tt

t
tt bSaS

cpbSa
S
cpE α .

Expectations are assumed to be formed rationally. tE   then denotes both the mathemati-

cal conditional expectation and the regulator’s subjective expectations as of date t.

                                                
3 This cost function obtains if the unit cost of fishing effort is constant and the catch per unit of effort is
proportional to the size of the stock available to harvest. This is obviously a special case, but widely used in
fisheries economics.
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3 The North Pacific Halibut Fishery

The North Pacific Halibut fishery provides a good case study of regulatory be-

havior: it has a long history of regulation, dating back to the 1930s. The International Pa-

cific Halibut Commission (IPHC) was established in 1923 by a convention between Can-

ada and the United States for the preservation of the halibut, as the first international

agreement providing for the joint management of a marine resource. The first regulations

enacted by the IPHC went into effect in 1932. Since then, harvest quotas have been set by

the IPHC annually. The empirical analysis investigates the regulator’s objectives by esti-

mating equations (1) and (5) using halibut data. The IPHC has collected data extensively

throughout the entire regulatory period, and relatively long time series exist on biomass

estimates, quota targets, annual harvests (catches) and prices, and other economic vari-

ables. Quotas are published by IPHC annually. A logbook program has been in effect

since the beginning of the regulation to collect catch and effort statistics from fishermen,

and information from fish processors has been collected to maintain accurate records of

the commercial catch.

We assembled data from sources published by the IPHC over the 1935-1977 pe-

riod. We constructed a series for a management area referred to as Area 2, which includes

waters off British Columbia and up to Cape Spencer in Southeastern Alaska.4 The period

was truncated in 1977, after which Area 2 was divided into separate Canadian and U.S.

waters, each with new management methods and data collection procedures. We used

biomass estimates from Quinn et al. (1985) as a measure of beginning of the season stock

tX . Quinn et al. derived the biomass estimates using catch-age and catch per unit of ef-

fort (CPUE) data, which were collected from logbook entries over the entire regulatory

program. The estimates were computed ex post, i.e. catch-age and CPUE data for year t

were used to compute an estimate of biomass in exploitable in year t. We assume that

they are unbiased representations of estimates used by the regulatory authority for annual

regulation decisions prior to commencement of harvest. Quotas and harvests were de-

rived from a summary in Hoag et al (1983). Quotas were summarized from the IPHC

regulation pamphlets for each year, and the catches were compiled from records from fish

                                                
4 Homans and Wilen (1997) also relied on these data.
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processors and from logbooks of fishing vessels. Prices were obtained from a summary in

IPHC annual report 1978, Appendix 2. The prices are prices paid to the fishermen, as re-

ported by fish processors. Prices were deflated by a producer price index with base year

1982 (Bureau of Labor Statistics, http://146.142.4.24/gi-bin/surveymos). No timeseries is

available for the unit cost of fishing effort, and we are hence forced to treat the cost c as

an unknown parameter.

The quotas and realized harvests differ, due to delays in closing the fishery,

cheating, and measurement errors, with discrepancies of up to 37 %. To account for the

difference, we computed two escapement measures. The realized escapement, denoted by
R
tS , equals the difference between the initial biomass and the realized harvest tH :

tt
R
t HXS −= . The target escapement T

tS  equals the difference between the initial bio-

mass and the quota: tt
T
t QXS −= . We constructed series of realized escapements and tar-

get escapements from the data on the biomass estimates, annual harvests, and quotas.

Table 1 displays summary statistics for the data. Figure 1 shows the relation be-

tween the initial stock and the previous year’s realized escapement. The relation is con-

sistent with the quadratic Beaverton-Holt specification – it is plausible that the recruit-

ment levels have been on the increasing portion of the recruitment relation throughout the

halibut program.

http://146.142.4.24/gi-bin/surveymos)
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Table 1. Summary Statistics

Variable Mean Standard
Deviation

Min Max

Stock, 1000 pounds 97296 32504 52973 143619

Quota, 1000 pounds 22795 4410 11000 28000

Harvest, 1000 pounds 23728 7219 8820 36240

Realized escapement,
1000 pounds

73568 27596 33130 116190

Target escapement,
1000 pounds

73807 28737 34563 117119

Difference between
quota and harvest, %

-5 13 -37 29

Price, dollars per 1000
pounds (deflated)

860 390 70 1700

4 The Econometric Model

The econometric model consists of the biological stock recruitment relation in

equation (1), and the first order condition to the regulator’s optimization problem in

Figure 1. Relation between stock level and previous 
year's realized escapement
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equation (5). The error term in the stock growth equation encompasses shocks in recruit-

ment. Appending an additive error term, the stock growth equation (1) becomes

(6) 1
2

1 ++ =+− tttt bSaSX η .

In our econometric estimation of the first order condition in (5), we interpret

(7) ( ) ( )







−
−−−−= ++ 211 2

tt
tt

t
tt bSaS

cpbSa
S
cp αε

as the disturbances, arising from mistakes made by the regulator in setting the optimal

escapement. The first order condition to the regulator’s problem equals

(8) [ ] ( ) ( ) 02
211 =






















−
−−−−= ++

tt
tt

t
tttt bSaS

cpbSa
S
cpEE αε .

The parameters to be estimated are the cost parameter c, the discount factor α ,

and the biological growth parameters a and b. Given the sources of variation, there is no

reason to assume that the error terms 1+tη  and 1+tε  are correlated. Nor is there simultaneity

in equations (6) and (8). The regulator’s first order condition (8) determines the target

escapement level, and once the escapement has been realized, recruitment to the stock

occurs following (6). We impose the cross-equation restriction that the growth parameters

a and b are the same in both equations. Assuming that the cross-equation restriction holds

is the only way to identify the parameters c and α in equation (8), which is highly non-

linear in parameters. It is then not possible to test the cross-equation restriction.

There are marked differences between the realized escapements and the target es-

capements. Rather than approximate the realized escapement by the target escapement or

vice versa, we use the realized escapements R
tS  to estimate (6) and the target escape-

ments T
tS  to estimate (8). The regulator chooses a target escapement level that satisfies
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(5) and sets the quota based on this target, while the stock equation (1) states a biological

relationship between the escapement actually realized and the recruitment to the stock.

We estimate equation (6) using ordinary least squares (OLS). The parameter esti-

mates for a and b are inserted into equation (8), which is then estimated using the gener-

alized method of moments (GMM), nonlinear two-stage least squares (NL2SLS), and the

empirical likelihood method (EL).

4.1 Generalized Method of Moments and Two-Stage Least Squares Estimation

The Euler equations (8) imply a set of population orthogonality conditions that de-

pend in a nonlinear way on observed variables and the unknown parameters. A widely

used method for estimating the parameters is constructing nonlinear instrumental vari-

ables estimators using the sample versions of the orthogonality conditions. The procedure

was proposed by Amemiya (1974, 1977), Jorgenson and Laffont (1974), Hansen (1982),

and Hansen and Singleton (1982). Let tz  denote an M dimensional vector of variables

that are in the regulator’s information set at time t and included in the data. In Hansen’s

(1982) notation, the tz  are the instrumental variables. Assume that the  1+tε  and tz  have

finite second moments. The optimization model then implies the population orthogonality

conditions

(9) ( ) ( ) ( )[ ] 0,,,,,2 121 =α=





























−
−−α−− ++ cSppE

bSaS
cpbSa

S
cpE ttttt

tt
tt

t
t zhz ,

which can be estimated by making the sample versions close to zero according to a cer-

tain metric. The generalized method of moments suggested by Hansen and Hansen and

Singleton uses the estimated variance of ( )cSpp tttt ,,,,, 1 α+ zh  as the metric. The nonlin-

ear two-stage least squares estimator suggested by Amemiya uses the identity matrix.

 As instrumental variables in the estimation of (9), we considered tp , T
tS 1− , T

tS 2− ,

tX , 1−tX , R
tS 1−  and R

tS 2− . Table 2 displays the correlation coefficients for these variables

and the dependent variable T
tt SS =  in equation (9). The choice of instruments is prob-

lematic in that the potential instrumental variables are highly correlated with each other,
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with most of the correlation coefficients close to one. We chose the stock tX  and the

price tp  as instruments. The stock is the independent variable most highly correlated

with the dependent variable T
tS . The price has the smallest correlation with the stock.

Table 2. Correlation Matrix for Model Variables
ρ T

tS tp T
tS 1−

T
tS 2− tX 1−tX R

tS 1−
R
tS 2−

T
tS 1.000

tp -0.497 1.000
T
tS 1−

0.983 -0.486 1.000
T
tS 2−

0.936 -0.466 0.983 1.000

tX 0.996 -0.565 0.978 0.931 1.000

1−tX 0.983 -0.543 0.996 0.979 0.985 1.000
R
tS 1−

0.970 -0.458 0.995 0.986 0.964 0.991 1.000
R
tS 2−

0.915 -0.438 0.970 0.995 0.909 0.964 0.977 1.000

Table 3 displays the estimation results. The estimates for a and b are significant at

the 1% level. The GMM and NL2SLS estimates of c and α  are numerically equal. Since

the two methods use a different metric in setting the sample orthogonality conditions

close to zero, the estimated standard errors differ. As expected, the standard deviations

for the GMM estimates are smaller than for NL2SLS. For GMM both c and α  are sig-

nificant at the 1% level. For NL2SLS c is significant at the 1% level but α  only at the

10% level. The signs of all the parameter estimates are as expected, and the magnitudes

are reasonable.

The Durbin-Watson statistics indicate that autocorrelation may be present in both

equations (6) and (9). While autocorrelation requires careful consideration in future work,

we do not to correct for it here. Adjusting the stock equation (6) for first order autocorre-

lation provided no significant improvement in the Durbin-Watson statistic. The positive

test for autocorrelation in (6) may indicate that a more complicated age structured model

better predict the population dynamics. Since our focus is on the regulator’s behavior,

and the limited data set provides restricted information on the population dynamics, we
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choose to retain the simple population model of equation (6).We do not know the form of

the possible autocorrelation in (9). No reliable information would be gained by assuming

some form of autocorrelation. We hence retain the present model.

Table 3. Parameter Estimates from OLS/GMM and NL2SLS Estimation

Method Parameter Estimate Standard error t-statistic

OLS a 1.5395 .077571 19.8460

b 2.5935*10-6 .8345*10-6 3.1080

GMM c 46586*103 6929*103 6.7236

α .38320 .132354 2.8953

NL2SLS c 46586*103 12203*103 3.8175

α .38320 .214653 1.7852
Durbin-Watson statistic for OLS estimation of equation (6)           .2235

Durbin-Watson statistic for NL2SLS estimation of equation (9)    .9278

Durbin-Watson statistic for GMM estimation of equation (9)        .9278

4.2 Empirical Likelihood Estimation

The empirical likelihood approach (EL) suggested by Owen (1988, 1991), Qin

and Lawless (1994), and Mittelhammer, Judge, and Miller (2000) provides another way

to estimate the unknown parameters in the moment equations (9). The moment equations

can be interpreted as representing the expectation of the M dimensional unbiased vector

estimating function

(10) ( ) ( ) ( ) 































−
−−−−= ++ t

tt
tt

t
ttttt bSaS

cpbSa
S
cpcSpp zzh

211 2,,,,, αα .

We can combine the information in the unbiased estimating functions with the concept of

empirical likelihood to define an empirical likelihood function for ( )c,α . Maximizing the

empirical likelihood function yields maximum empirical likelihood (MEL) estimates. The

first-order asymptotic sampling properties of the MEL estimator are similar to those for
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parametric likelihood methods. Since the empirical likelihood method is not widely

known, we next review the technique in some detail. The exposition follows Mittelham-

mer, R. , Judge, G. and Miller, D. J. (2000).

The concept of empirical likelihood  begins with the joint empirical probability

distribution  ∏ =

T

1t tν   that is supported on the sample data. The parameter tv  denotes the

probability of observing the tth sample outcome, { }tttt Spp z,,, 1+ . To define the value of

the empirical likelihood function for ( )c,α , the tv  are chosen to maximize ∏ =

T

1t tν , sub-

ject to the constraints defined by the moment conditions (9). Since the tv 's represent a

probability distribution, the maximization problem is subject to the additional constraints

1
1

=∑
=

T

t
tv  and tvt    ∀> 0 . The maximization procedure assigns the maximum probability

possible to the sample outcome actually observed, subject to the information represented

by the moment equations. The moment equations link the data, the population distribu-

tion, and the parameters.

Using the empirical probabilities tv , the moment equations (9) can be represented

empirically as the ( )1×M  vector equation

(11)

( )

( ) ( ) 0,=





























−
−−α−−=

α

+
=

+
=

∑

∑

t
tt

tt
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cpbSa

S
cpv
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,,,,,

with the observations ranging from 1 to T. Using a logarithmic transformation of ∏ =

T

1t tν

and scaling by T/1 , the constrained maximization problem can then be defined as

(12)  
( )( )

( ) ( ) . 1 and 0,,,,, s.t. ln1max

,;,ln1   

1 111 






 ==≡ ∑ ∑∑ = =+=

+

T

t

T

t tttttt

T

t tv

EL

vcSppvv
T

cL
T

α

α

zh

ZS,pp, 1
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The Lagrange function associated with the constrained maximization problem can be rep-

resented as

(13)  ( ) ( ) ( ) ( )






 ′−−≡ ∑∑∑ = +==

T

t ttttt

T

t t

T

t t cSppvvv
T

L
1 111

,,,,, 1-ln1,,   αηη zhλλv .

To solve for ( )c,α , we need to recover a specific functional form for the log-

empirical likelihood in (13) in terms of ( )c,α . We first solve for the optimal η ,v  and λ

in the Lagrange form of the problem in (13), and then substitute the optimal values for v

back into the objective function in (12). This yields the concentrated or profile empirical

likelihood function in terms of ( )c,α .

The first order conditions with respect to the s'tv  are

(14)  ( ) ( ) .      ,0,,,,,-11,,   
1

1 tczSpph
vTv

L M

m
mttttmm

tt

∀=−=
∂

∂
∑

=
+ αληληv

Multiplying both sides of (14) by tν , summing over t, and using (11) yields

(15) ( ) 01 ,,  
1

=−=
∂

∂
∑ =

ηλη T
Tv

LvT

t
t

t

v .

Equation (15) implies 1=η . Solving for the tν  from the first order conditions

0/ =∂∂ tvL  yields the optimal weights tν  as a function of α , c and λ :

(16) ( ) ( )
1

1
1 1,,,,,,,

−

=
+ 















 += ∑
M

m
mttttmmt czSpphTc αλαν λ .

Substituting (16) into the empirical moment condition (11) defines the Lagrange multi-

pliers λ  as a function of α  and c. The multipliers λ  have to satisfy the empirical mo-

ment conditions
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(17)
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From (17), the multipliers λ  are defined as a solution to an implicit function of ( )c,α ,

(18) ( ) ( ) ( )
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cSppT
c tttt

T

t tttt
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,,,,,λ1

11arg, 1
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α
α

α zh
zh

λ .

Substituting ( )c,αλ  into (16)  defines the optimal empirical probabilities evaluated at

( )c,α  as

(19)  ( )( ) ( ) ( )
1

1
1 1,,,,,,,,,

−

=
+ 















 += ∑
M

m
mttttmmt czSpphcTcc ααλαλαν .

Finally, substitution of the optimal empirical probabilities into the objective function

( )∑ =

T

t tv
1
ln  in (13) yields the expression for the log-empirical likelihood function evalu-

ated at ( )c,α :

(20)  ( )( ) ( ) ( )∑
=

++ 










 +′−=

T

t
ttttttttEL cSppcTSppcL

1
11 1,,,,,,ln,,,,,ln ααα zhλz .

The maximum empirical likelihood (MEL) estimator of ( )c,α  is defined by choosing the

value of ( )c,α  that maximizes the log-empirical likelihood function (20). The MEL esti-

mator can be found using numerical optimization techniques.

Qin and Lawless (1994) and Mittelhammer et al. (2000) note two principal ways

in which the empirical likelihood solution may be computed. First, the optimal parame-

ters ( )c,α   and the Lagrange multipliers λ  may be simultaneously selected to maximize
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the empirical likelihood function. This problem is defined by (13) after substituting (16)

for the tv ’s :

(21) ( ) ( )( )[ ]∑ = + +′−≡ T

t tttt cSppT
T

L
1 1 1,,,,,ln1,,   αλη zhλv .

The solution must satisfy the constraints 0>tv , or ( ) 01,,,,,
1

1 >






 +∑
=

+

M

m
mttttmm czSpphT αλ .

Second, an initial estimate of the Lagrange multipliers 1λ could be computed using (18)

and an initial starting value ( )0,cα  for the parameter vector. A numerical gradient-search

maximization algorithm could then be used to sequentially iterate to the optimal values of

( )c,α  and λ  that maximize the empirical likelihood function in (20).

Qin and Lawless (1994) show that the MEL estimator is consistent and asymp-

totically normal under general regularity conditions. The present example satisfies the

conditions of the twice continuous differentiability of ( )cSpp tttt ,,,,, 1 αzh +  with respect to

( )c,α  and the boundedness of h  and its first and second derivatives, both in the neigh-

borhood of the true parameter vector ( )0,cα , and the requirement that the row rank of

( ) ( ) ( )[ ]
0,1 ,/,,,,, ctttt ccSppE ααα ∂∂ + zh  equal the number of parameters to be estimated. The

covariance matrix ∑ of the limiting normal distribution can be consistently estimated by

(22)   ( )
( ) ( ) ( ) ( )
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where the tν̂ ’s are the MEL estimates of the empirical probability distribution νννν , com-

puted from (19) using ELEL ĉ,α̂  and ( )ELELEL ĉ,ˆˆ αλλ = .
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We computed the MEL estimates by simultaneously selecting the ( )c,α  and λ

that maximize (21). We used the NSolve procedure in Mathematica 3.0 to solve the first

order conditions for maximizing (21) with respect to ( )c,α  and λ . The numerical proce-

dure requires starting values to begin the iteration. We used the GMM/NL2SLS estimates

( )GMMc,α and 0=λ . Table 4 presents the results.

Table 4. Parameter Estimates from OLS/MEL Estimation

Method Parameter Estimate Standard error t-statistic

OLS a 1.5395 .077571 19.8460

b 2.5935*10-6 .8345*10-6 3.1080

MEL c 45365*103 11885*103

α .40023 .245728

λλλλ 0

The MEL estimates for α  and c differ slightly from the GMM and NL2SLS esti-

mates, but the magnitudes are the same. The standard deviation of the MEL estimator for

α  is larger than the GMM and NL2SLS standard deviations. The standard deviation of

the MEL estimator for c is greater than the GMM but smaller than the NL2SLS estimate.

The Lagrange multiplier λλλλ equals zero to a numerical approximation, and the moment

constraints hence are not binding. Each sample observation then has equal empirical

probability, with tν  equal to 1−T .

5 Welfare Implications

The results imply a discount factor of 38.0=α  to 40.0=α , or a discount rate of

150% to 163%. The implied discount rate is markedly higher than a level commonly con-

sidered reasonable in natural resource management. The regulator is taking future reve-

nues into account to some extent, rather than simply maximizing current net revenue, but

future revenues are discounted heavily. We computed the welfare costs of following a

sub-optimal policy, using 10% as the social rate of discount. We solved for the steady
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state at the average price. The resulting socially optimal escapement level would be

914110  thousand pounds. Assuming that all the additional fish would stay in Area 2, so-

cially optimal management would yield annual profits of $13.5 million. At the estimated

discount rate of 150% (MEL), the regulator’s optimal escapement level is 66 281 thou-

sand pounds, and the annual profits $6.2 million. At the discount rate of 163%

(GMM/NL2SLS), the regulator’s optimal escapement is 62 157 thousand pounds, and the

annual profits $6 million. The profits at the estimated discount rate are markedly below

those obtained using the social rate of discount, indicating that the regulator’s use of a

high discount rate results in a substantial welfare loss. The annual profits could be dou-

bled if more fish were allowed to escape the fishery, producing higher stock levels and

thus reducing costs of harvest. Over the period 1954-1963 the realized escapement ex-

ceeded 000100  , which suggests that Area 2 could in fact support a larger stock.

6 Discussion

One explanation for the regulator’s high discount rate is incomplete control of future

stocks. For example, fleets from outside the authority of the commission members may

have access to the fishery. Indeed, Japanese fleets targeted the halibut fishery prior to

1952. In 1952, Japan agreed to abstain from fishing halibut along the coast of North

America under the Convention between Canada, Japan, and the United States that estab-

lished the North Pacific Fisheries Commission (INPFC) (IPHC Technical Report No.

16).5 Incidental catch taken by fishermen targeting other species is also outside the com-

mission’s authority. Although regulations require that incidentally caught halibut be re-

turned to the sea, many of the fish die from injuries. Unfortunately, no acceptable esti-

mates are available for incidental catch prior to 1962. Migrations of halibut do not seem

to provide a reason for heavy discounting: the direction of migration is mainly from Area

3 to Area 2 (Hoag et al. 1983).6

                                                
5 In 1962 the INPFC allowed Japanese harvest in the Bering Sea. The area falls outside regulatory Area 2
investigated here.
6 The low value of the discount factor may also indicate that an alternative model would more accurately
describe the behavior of the regulator. One possible hypothesis we might entertain to describe the motiva-
tions of a regulatory authority would be that of rent seeking behavior.
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A number of questions require further study and elaboration. We assumed that the

discount factor is constant over time. It would be useful to allow the discount factor to

change over time and study how environmental fluctuations and changes in the economic

environment or the state of the fishing industry affect the regulator's behavior. Periods of

slow economic growth or high unemployment may result in the regulator putting more

weight to current profits. The exclusion of Japanese vessels in 1952 may have increased

the weight given to stock conservation and future profits. It would be interesting to in-

vestigate differences in the regulator’s behavior prior to 1952 and after 1952. Environ-

mental shocks or pressure from environmental groups may also result in more conserva-

tionist policy.

Another limitation of this study is that we treat the unit cost of fishing as a parameter.

Since no data are available for the measure, estimating the cost was the only way to re-

cover the discount factor. The form of autocorrelation in the Euler equation and adjusting

the model for autocorrelation also require additional research.
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