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1 Introduction

Beginning with Gordon (1954) economists have pointed out that open access to fisheries results in dissipation of economic rents, hypothesized about optimal fisheries management by a sole owner, and studied how harvest levels should be set to maximize economic yield.
 The declaration of 200-mile zones of extended fisheries jurisdiction in 1976 made explicit fisheries management reality in that most important fisheries were brought under the authority of adjacent coastal nations. Economic research has proposed regulations that would steer fisheries toward the rent maximizing ideal. While economists have been influential in incorporating socioeconomic goals into fisheries management, much of real world fisheries policy has been shaped by biological goals and short-term political considerations. The question then arises of how real world regulations comply with the economists’ ideal of rent maximization. 

We examine regulatory objectives in the North Pacific Halibut fishery, one of the fisheries with the longest history of regulation. 
 The International Pacific Halibut Commission (IPHC) has regulated the halibut fishery since the early 1930's. The IPHC states that its objective is to attain the optimum sustainable yield, but does not specify what is considered optimum. The regulator's objective might be to maximize the sustainable biological yield, the current economic rents, or the expected present discounted value of the flow of rents. We do not know the regulator's objective function. However, we seek to measure how the regulator's behavior complies with the ideal of rent maximization. We assume that the regulator solves a stochastic dynamic optimization problem to maximize the expected present discounted value of rents. We derive the stochastic Euler equations that define the solution to the regulator's problem. From the Euler equations, we estimate the discount factor that is consistent with our assumptions and the regulator's observed behavior. The estimated discount factor provides an index of regulatory behavior. A zero discount factor implies that the regulator maximizes current net revenue. A discount factor equal to one makes no distinction between current and future net revenue, implying the objective of maximum sustainable yield. The results show the extent to which the regulator’s objective deviates from discounted rent maximization. The results can be used to compute the welfare costs of following a suboptimal management policy. 

Since Hansen and Singleton's (1982) contribution, the generalized method of moments has become the mainstay method in estimating stochastic Euler equations. The data based empirical likelihood method suggested by Owen (1988, 1991), Qin and Lawless (1994), and Mittelhammer, Judge, and Miller (2000) is a new method that readily lends itself to Euler equation estimation. We compare the results from estimating a stochastic dynamic model using the traditional generalized method of moments and nonlinear two-stage least squares procedures, and the empirical likelihood method.

The study's objectives parallel those of Fulton and Karp (1989) and Fernandez (1996). Fulton and Karp study the objectives of a public firm in the uranium industry. They estimate a linear control rule and state equations in an optimal control model in order to determine how the firm balances different objectives. Fernandez examines the objectives of a public waste water treatment plant, using maximum entropy to estimate a dynamic model. In the linear-quadratic setting of Fulton and Karp and Fernandez, the maximum entropy method avoids the restrictions needed by two-stage least squares and other traditional methods. The empirical likelihood method provides the same advantage without forcing the economic model into an entropy framework.

The paper is organized as follows. Section 2 states the regulator’s optimization problem, determines the optimal harvest level, and develops hypotheses about the regulator’s behavior. Section 3 describes data for the North Pacific Halibut fishery. Section 4 presents the empirical analysis. Section 5 examines the welfare implications of the regulatory program, and section 6 concludes.

2 The Bioeconomic Model

We use the bioeconomic model of a seasonal fishery developed  by Clark (1971) and employed by Clark (1972), Clark (1973), Spence and Starrett (1975), Levhari, Michener and Mirman (1981), Hannesson (1997), and others. The biological model is deterministic. Let 
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denote the size of the fish stock at the beginning of the fishing season in period t. The regulator sets a harvest quota 
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 prior to commencement of harvest, after having observed the stock 
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. Harvesting then takes place, and once the quota has been reached, the fishery is closed for the season. The size of the stock left behind after harvesting is referred to as the escapement level 
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. The growth of the fish stock is a function of the escapement 
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where a and b are biological growth parameters.

At a given price 
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The 
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 are stochastic. The unit cost of additional harvest at any stock level x is 
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The period t net revenue to the fishery is 
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. The expected present value 
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 for an infinite time horizon, given the information available at period t, is 
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where 
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 is the discount factor and 
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 is a stochastic sequence of prices. If the regulator sets the quota 
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Expectations are assumed to be formed rationally. 
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  then denotes both the mathematical conditional expectation and the regulator’s subjective expectations as of date t. 

3 The North Pacific Halibut Fishery

The North Pacific Halibut fishery provides a good case study of regulatory behavior: it has a long history of regulation, dating back to the 1930s. The International Pacific Halibut Commission (IPHC) was established in 1923 by a convention between Canada and the United States for the preservation of the halibut, as the first international agreement providing for the joint management of a marine resource. The first regulations enacted by the IPHC went into effect in 1932. Since then, harvest quotas have been set by the IPHC annually. The empirical analysis investigates the regulator’s objectives by estimating equations (1) and (5) using halibut data. The IPHC has collected data extensively throughout the entire regulatory period, and relatively long time series exist on biomass estimates, quota targets, annual harvests (catches) and prices, and other economic variables. Quotas are published by IPHC annually. A logbook program has been in effect since the beginning of the regulation to collect catch and effort statistics from fishermen, and information from fish processors has been collected to maintain accurate records of the commercial catch. 

We assembled data from sources published by the IPHC over the 1935-1977 period. We constructed a series for a management area referred to as Area 2, which includes waters off British Columbia and up to Cape Spencer in Southeastern Alaska.
 The period was truncated in 1977, after which Area 2 was divided into separate Canadian and U.S. waters, each with new management methods and data collection procedures. We used biomass estimates from Quinn et al. (1985) as a measure of beginning of the season stock 
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. Quinn et al. derived the biomass estimates using catch-age and catch per unit of effort (CPUE) data, which were collected from logbook entries over the entire regulatory program. The estimates were computed ex post, i.e. catch-age and CPUE data for year t were used to compute an estimate of biomass in exploitable in year t. We assume that they are unbiased representations of estimates used by the regulatory authority for annual regulation decisions prior to commencement of harvest. Quotas and harvests were derived from a summary in Hoag et al (1983). Quotas were summarized from the IPHC regulation pamphlets for each year, and the catches were compiled from records from fish processors and from logbooks of fishing vessels. Prices were obtained from a summary in IPHC annual report 1978, Appendix 2. The prices are prices paid to the fishermen, as reported by fish process
ors. Prices were deflated by a producer price index with base year 1982 (Bureau of Labor Statistics, http://146.142.4.24/gi-bin/surveymos). No timeseries is available for the unit cost of fishing effort, and we are hence forced to treat the cost c as an unknown parameter. 

The quotas and realized harvests differ, due to delays in closing the fishery, cheating, and measurement errors, with discrepancies of up to 37 %. To account for the difference, we computed two escapement measures. The realized escapement, denoted by 
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. We constructed series of realized escapements and target escapements from the data on the biomass estimates, annual harvests, and quotas.

Table 1 displays summary statistics for the data. Figure 1 shows the relation between the initial stock and the previous year’s realized escapement. The relation is consistent with the quadratic Beaverton-Holt specification – it is plausible that the recruitment levels have been on the increasing portion of the recruitment relation throughout the halibut program.

Table 1. Summary Statistics






Variable
Mean
Standard 

Deviation
Min
Max


Stock, 1000 pounds 
97296
32504
52973
143619


Quota, 1000 pounds
22795
4410
11000
28000


Harvest, 1000 pounds
23728
7219
8820
36240


Realized escapement, 1000 pounds
73568
27596
33130
116190


Target escapement,

1000 pounds
73807
28737
34563
117119


Difference between quota and harvest, %
-5
13
-37
29


Price, dollars per 1000 pounds (deflated)
860
390
70
1700
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4 The Econometric Model

The econometric model consists of the biological stock recruitment relation in equation (1), and the first order condition to the regulator’s optimization problem in equation (5). The error term in the stock growth equation encompasses shocks in recruitment. Appending an additive error term, the stock growth equation (1) becomes

(6) 
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In our econometric estimation of the first order condition in (5), we interpret 

(7)
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as the disturbances, arising from mistakes made by the regulator in setting the optimal escapement. The first order condition to the regulator’s problem equals

(8)
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The parameters to be estimated are the cost parameter c, the discount factor 
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, and the biological growth parameters a and b. Given the sources of variation, there is no reason to assume that the error terms 
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 are correlated. Nor is there simultaneity in equations (6) and (8). The regulator’s first order condition (8) determines the target escapement level, and once the escapement has been realized, recruitment to the stock occurs following (6). We impose the cross-equation restriction that the growth parameters a and b are the same in both equations. Assuming that the cross-equation restriction holds is the only way to identify the parameters c and 
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in equation (8), which is highly nonlinear in parameters. It is then not possible to test the cross-equation restriction. 


There are marked differences between the realized escapements and the target escapements. Rather than approximate the realized escapement by the target escapement or vice versa, we use the realized escapements 
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 to estimate (6) and the target escapements 
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 to estimate (8). The regulator chooses a target escapement level that satisfies (5) and sets the quota based on this target, while the stock equation (1) states a biological relationship between the escapement actually realized and the recruitment to the stock.


We estimate equation (6) using ordinary least squares (OLS). The parameter estimates for a and b are inserted into equation (8), which is then estimated using the generalized method of moments (GMM), nonlinear two-stage least squares (NL2SLS), and the empirical likelihood method (EL).
 

4.1 Generalized Method of Moments and Two-Stage Least Squares Estimation

The Euler equations (8) imply a set of population orthogonality conditions that depend in a nonlinear way on observed variables and the unknown parameters. A widely used method for estimating the parameters is constructing nonlinear instrumental variables estimators using the sample versions of the orthogonality conditions. The procedure was proposed by Amemiya (1974, 1977), Jorgenson and Laffont (1974), Hansen (1982), and Hansen and Singleton (1982). Let 
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 denote an M dimensional vector of variables that are in the regulator’s information set at time t and included in the data. In Hansen’s (1982) notation, the 
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 are the instrumental variables. Assume that the  
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 have finite second moments. The optimization model then implies the population orthogonality conditions

(9)
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which can be estimated by making the sample versions close to zero according to a certain metric. The generalized method of moments suggested by Hansen and Hansen and Singleton uses the estimated variance of 
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 as the metric. The nonlinear two-stage least squares estimator suggested by Amemiya uses the identity matrix. 


 As instrumental variables in the estimation of (9), we considered 
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. Table 2 displays the correlation coefficients for these variables and the dependent variable 
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 in equation (9). The choice of instruments is problematic in that the potential instrumental variables are highly correlated with each other, with most of the correlation coefficients close to one. We chose the stock 
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 and the price 
[image: image65.wmf]t

p

 as instruments. The stock is the independent variable most highly correlated with the dependent variable 
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Table 2. Correlation Matrix for Model Variables
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-0.438
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Table 3 displays the estimation results. The estimates for a and b are significant at the 1% level. The GMM and NL2SLS estimates of c and 
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 are numerically equal. Since the two methods use a different metric in setting the sample orthogonality conditions close to zero, the estimated standard errors differ. As expected, the standard deviations for the GMM estimates are smaller than for NL2SLS. For GMM both c and 
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 are significant at the 1% level. 
For NL2SLS c is significant at the 1% level but 
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 only at the 10% level. The signs of all the parameter estimates are as expected, and the magnitudes are reasonable. 

The Durbin-Watson statistics indicate that autocorrelation may be present in both equations (6) and (9). While autocorrelation requires careful consideration in future work, we do not to correct for it here. Adjusting the stock equation (6) for first order autocorrelation provided no significant improvement in the Durbin-Watson statistic. The positive test for autocorrelation in (6) may indicate that a more complicated age structured model better predict the population dynamics. Since our focus is on the regulator’s behavior, and the limited data set provides restricted information on the population dynamics, we choose to retain the simple population model of equation (6).We do not know the form of the possible autocorrelation in (9). No reliable information would be gained by assuming some form of autocorrelation. We hence retain the present model. 

Table 3. Parameter Estimates from OLS/GMM and NL2SLS Estimation

Method
Parameter
Estimate
Standard error
t-statistic

OLS
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1.5395
.077571
19.8460
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2.5935*10-6
.8345*10-6
3.1080

GMM
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46586*10​​3    
6929*103
6.7236
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.38320      
.132354
2.8953

NL2SLS
c
46586*103
12203*103      
3.8175



[image: image91.wmf]a


.38320
.214653       
1.7852

Durbin-Watson statistic for OLS estimation of equation (6)           .2235

Durbin-Watson statistic for NL2SLS estimation of equation (9)    .9278

Durbin-Watson statistic for GMM estimation of equation (9)        .9278

4.2 Empirical Likelihood Estimation

The empirical likelihood approach (EL) suggested by Owen (1988, 1991), Qin and Lawless (1994), and Mittelhammer, Judge, and Miller (2000) provides another way to estimate the unknown parameters in the moment equations (9). The moment equations can be interpreted as representing the expectation of the M dimensional unbiased vector estimating function

(10) 
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We can combine the information in the unbiased estimating functions with the concept of empirical likelihood to define an empirical likelihood function for 
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. Maximizing the empirical likelihood function yields maximum empirical likelihood (MEL) estimates. The first-order asymptotic sampling properties of the MEL estimator are similar to those for parametric likelihood methods. Since the empirical likelihood method is not widely known, we next review the technique in some detail. The exposition follows Mittelhammer, R. , Judge, G. and Miller, D. J. (2000).

The concept of empirical likelihood  begins with the joint empirical probability distribution  
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. The maximization procedure assigns the maximum probability possible to the sample outcome actually observed, subject to the information represented by the moment equations. The moment equations link the data, the population distribution, and the parameters. 

Using the empirical probabilities 
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with the observations ranging from 1 to T. Using a logarithmic transformation of 
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The Lagrange function associated with the constrained maximization problem can be represented as 

(13)  
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To solve for 
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Multiplying both sides of (14) by 
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Equation (15) implies 
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Substituting (16) into the empirical moment condition (11) defines the Lagrange multipliers 
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 as a function of 
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 and c. The multipliers 
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 have to satisfy the empirical moment conditions
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From (17), the multipliers 
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 are defined as a solution to an implicit function of 
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Substituting 
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Finally, substitution of the optimal empirical probabilities into the objective function 
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The maximum empirical likelihood (MEL) estimator of 
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 that maximizes the log-empirical likelihood function (20). The MEL estimator can be found using numerical optimization techniques. 

Qin and Lawless (1994) and Mittelhammer et al. (2000) note two principal ways in which the empirical likelihood solution may be computed. First, the optimal parameters 
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The solution must satisfy the constraints 
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Qin and Lawless (1994) show that the MEL estimator is consistent and asymptotically normal under general regularity conditions. The present example satisfies the conditions of the twice continuous differentiability of 
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 equal the number of parameters to be estimated. The covariance matrix 
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where the 
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We computed the MEL estimates by simultaneously selecting the 
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 that maximize (21). We used the NSolve procedure in Mathematica 3.0 to solve the first order conditions for maximizing (21) with respect to 
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Table 4. Parameter Estimates from OLS/MEL Estimation

Method
Parameter
Estimate
Standard error
t-statistic

OLS
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1.5395
.077571
19.8460
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2.5935*10-6
.8345*10-6
3.1080

MEL
c
45365*103
11885*103     
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.40023
.245728
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The MEL estimates for 
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 and c differ slightly from the GMM and NL2SLS estimates, but the magnitudes are the same. The standard deviation of the MEL estimator for 
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 is larger than the GMM and NL2SLS standard deviations. The standard deviation of the MEL estimator for c is greater than the GMM but smaller than the NL2SLS estimate. The Lagrange multiplier ( equals zero to a numerical approximation, and the moment constraints hence are not binding. Each sample observation then has equal empirical probability, with 
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5 Welfare Implications 

The results imply a discount factor of 
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 to 
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, or a discount rate of 150% to 163%. The implied discount rate is markedly higher than a level commonly considered reasonable in natural resource management. The regulator is taking future revenues into account to some extent, rather than simply maximizing current net revenue, but future revenues are discounted heavily. 

We computed the welfare costs of following a sub-optimal policy, using 10% as the social rate of discount. We solved for the steady state at the average price. The resulting socially optimal escapement level would be 
[image: image179.wmf]914
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 thousand pounds. Assuming that all the additional fish would stay in Area 2, socially optimal management would yield annual profits of $13.5 million. At the estimated discount rate of 150% (MEL), the regulator’s optimal escapement level is 66 281 thousand pounds, and the annual profits $6.2 million. At the discount rate of 163% (GMM/NL2SLS), the regulator’s optimal escapement is 62 157 thousand pounds, and the annual profits $6 million. The profits at the estimated discount rate are markedly below those obtained using the social rate of discount, indicating that the regulator’s use of a high discount rate results in a substantial welfare loss. The annual profits could be doubled if more fish were allowed to escape the fishery, producing higher stock levels and thus reducing costs of harvest. Over the period 1954-1963 the realized escapement exceeded 
[image: image180.wmf]000
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, which suggests that Area 2 could in fact support a larger stock.

6 Discussion

One explanation for the regulator’s high discount rate is incomplete control of future stocks. For example, fleets from outside the authority of the commission members may have access to the fishery. Indeed, Japanese fleets targeted the halibut fishery prior to 1952
. In 1952, Japan agreed to abstain from fishing halibut along the coast of North America under the Convention between Canada, Japan, and the United States that established the North Pacific Fisheries Commission (INPFC) (IPHC Technical Report No. 16).
 Incidental catch taken by fishermen targeting other species is also outside the commission’s authority. Although regulations require that incidentally caught halibut be returned to the sea, many of the fish die from injuries. Unfortunately, no acceptable estimates are available for incidental catch prior to 1962. Migrations of halibut do not seem to provide a reason for heavy discounting: the direction of migration is mainly from Area 3 to Area 2 (Hoag et al. 1983).
 

A number of questions require further study and elaboration. We assumed that the discount factor is constant over time. It would be useful to allow the discount factor to change over time and study how environmental fluctuations and changes in the economic environment or the state of the fishing industry affect the regulator's behavior. Periods of slow economic growth or high unemployment may result in the regulator putting more weight to current profits. The exclusion of Japanese vessels in 1952 may have increased the weight given to stock conservation and future profits. It would be interesting to investigate differences in the regulator’s behavior prior to 1952 and after 1952. Environmental shocks or pressure from environmental groups may also result in more conservationist policy. 

Another limitation of this study is that we treat the unit cost of fishing as a parameter. Since no data are available for the measure, estimating the cost was the only way to recover the discount factor. The form of autocorrelation in the Euler equation and adjusting the model for autocorrelation also require additional research.  
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� Other examples include Scott (1955), Turvey and Wiseman (1957), and Crutchfield and Zellner (1962). 


� Homans and Wilen (1997) have previously studied regulation in the North Pacific Halibut fishery. They assume that a goal-oriented regulator chooses harvest levels according to a safe stock concept.





� This cost function obtains if the unit cost of fishing effort is constant and the catch per unit of effort is proportional to the size of the stock available to harvest. This is obviously a special case, but widely used in fisheries economics.


� Homans and Wilen (1997) also relied on these data. 


� In 1962 the INPFC allowed Japanese harvest in the Bering Sea. The area falls outside regulatory Area 2 investigated here.


� The low value of the discount factor may also indicate that an alternative model would more accurately describe the behavior of the regulator. One possible hypothesis we might entertain to describe the motivations of a regulatory authority would be that of rent seeking behavior. 
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halibut

		DATE		PRICEUNDEFL		STOCK		QUOTA		CATCH		SQUOTA		SREAL		PRICEMIST		PRICE		SQUOTA2		SREAL2

		1935		0.07		64362		21700		22067		42662		42295		0.0050724638		0.5072463768		1820046244		1788867025

		1936		0.08		61591		21700		22605		39891		38986		0.0057553957		0.5755395683		1591291881		1519908196

		1937		0.08		58702		21700		23359		37002		35343		0.0053691275		0.5369127517		1369148004		1249127649

		1938		0.07		57263		22700		23391		34563		33872		0.0051851852		0.5185185185		1194600969		1147312384

		1939		0.07		57429		22700		24299		34729		33130		0.0052631579		0.5263157895		1206103441		1097596900

		1940		0.09		59485		22700		25578		36785		33907		0.0066666667		0.6666666667		1353136225		1149684649

		1941		0.10		64354		22700		23941		41654		40413		0.0066225166		0.6622516556		1735055716		1633210569

		1942		0.15		71598		22700		23144		48898		48454		0.0088235294		0.8823529412		2391014404		2347790116

		1943		0.19		80632		23000		24933		57632		55699		0.0106741573		1.0674157303		3321447424		3102378601

		1944		0.15		91098		23500		26023		67598		65075		0.01		0.8379888268		4569489604		4234755625

		1945		0.15		101872		24500		23353		77372		78519		0.0082417582		0.8241758242		5986426384		6165233361

		1946		0.17		111159		24500		28594		86659		82565		0.0081730769		0.8173076923		7509782281		6816979225

		1947		0.17		117672		24500		27330		93172		90342		0.006640625		0.6640625		8681021584		8161676964

		1948		0.17		121381		25500		27568		95881		93813		0.0061371841		0.6137184116		9193166161		8800878969

		1949		0.17		123020		25500		26027		97520		96993		0.0064638783		0.6463878327		9510150400		9407642049

		1950		0.23		123732		25500		26620		98232		97112		0.0084249084		0.8424908425		9649525824		9430740544

		1951		0.17		125152		25500		30309		99652		94843		0.0055921053		0.5592105263		9930521104		8995194649

		1952		0.19		128969		25500		30488		103469		98481		0.0064189189		0.6418918919		10705833961		9698507361

		1953		0.15		135516		25500		32501		110016		103015		0.0051369863		0.5136986301		12103520256		10612090225

		1954		0.17		141475		26500		36240		114975		105235		0.0058020478		0.5802047782		13219250625		11074405225

		1955		0.14		143619		26500		27429		117119		116190		0.004778157		0.4778156997		13716860161		13500116100

		1956		0.22		142291		26500		34772		115791		107519		0.0072607261		0.7260726073		13407555681		11560335361

		1957		0.17		138317		26500		30238		111817		108079		0.0054487179		0.5448717949		12503041489		11681070241

		1958		0.21		134214		26500		29998		107714		104216		0.0066455696		0.664556962		11602305796		10860974656

		1959		0.19		132376		26500		30401		105876		101975		0.0059936909		0.5993690852		11209727376		10398900625

		1960		0.16		132168		26500		31520		105668		100648		0.0050473186		0.5047318612		11165726224		10130019904

		1961		0.21		132342		28000		28637		104342		103705		0.0066455696		0.664556962		10887252964		10754727025

		1962		0.30		131148		28000		28443		103148		102705		0.0094637224		0.9463722397		10639509904		10548317025

		1963		0.21		126851		28000		26001		98851		100850		0.0066455696		0.664556962		9771520201		10170722500

		1964		0.23		119148		25000		19465		94148		99683		0.007278481		0.7278481013		8863845904		9936700489

		1965		0.32		108879		23000		24154		85879		84725		0.0099071207		0.9907120743		7375202641		7178325625

		1966		0.34		97443		23000		23178		74443		74265		0.0102102102		1.021021021		5541760249		5515290225

		1967		0.23		86694		23000		19719		63694		66975		0.0068862275		0.6886227545		4056925636		4485650625

		1968		0.23		78247		23000		1634		55247		76613		0.0067251462		0.6725146199		3052231009		5869551769

		1969		0.38		72529		21000		22377		51529		50152		0.0106741573		1.0674157303		2655237841		2515223104

		1970		0.37		68863		20000		19885		48863		48978		0.0100271003		1.0027100271		2387592769		2398844484

		1971		0.32		65999		20000		16773		45999		49226		0.0083989501		0.8398950131		2115908001		2423199076

		1972		0.64		62997		15000		16283		47997		46714		0.016080402		1.608040201		2303712009		2182197796

		1973		0.74		59857		13000		12929		46857		46928		0.0164444444		1.6444444444		2195578449		2202237184

		1974		0.70		57139		13000		10744		44139		46395		0.0130841121		1.308411215		1948251321		2152496025

		1975		0.89		55349		13000		13830		42349		41519		0.015239726		1.5239726027		1793437801		1723827361

		1976		1.26		54330		13000		13048		41330		41282		0.0206219313		2.062193126		1708168900		1704203524

		1977		1.31		53542		13000		8820		40542		44722		0.0201848998		2.0184899846		1643653764		2000057284

		1978		1.70		52973												2.4320457797

								Table 1. Summary Statistics

								Variable		Mean		Standard Deviation

								Stock, 1000 pounds		97296		32504

								Quota, 1000 pounds		22795		4410

								Catch, 1000 pounds		23728		7219

								Realized escapement, 1000 pounds		73568		27596

								Target escapement, 1000 pounds		74501		29070

								Price, dollars per pound (deflated)		0.86		0.39



laukkane:
Sum of biomass estimates for areas 2A, 2B, and 2C, Table 2, Quinn, T.J, Deriso, R.B, and Hoag, S.H, IPHC Scientific Report No. 72

laukkane:
Table 12, Hoag, S.H, Myhre, R.J, St-Pierre, G, McCaughran, D.A. 1983. IPHC Scientific Report 67

laukkane:
Table 12, Hoag, S.H, Myhre, R.J, St-Pierre, G, McCaughran, D.A. 1983. IPHC Scientific Report 67
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Stock level, 1000 pounds

Figure 1. Relation of stock level to previous year's realized escapement
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