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Abstract

Clark and Kirkwood [2] derive the optimal policy for harvesting �sh when stocks
are unknown in the special case where the density of present stocks is uniform.
This result is important since it embodies the state of the art in the stochastic re-
source management literature. The objective of this paper is twofold. First, cer-
tain important properties of this result are developed. The optimal management
of a �shery with stock uncertainty calls for non-monotonic and non-intuitive
expected escapement. Clark and Kirkwood attribute this to the exclusion of ex-
istence value from their maximization exercise. The following exercise incorpo-
rates existence value into the manager's maximization problem and shows that
this leads to, in expectation, lower catch quotas. It is also shown that incorporat-
ing existence value into the optimization program only increases the probability
of obtaining a non-monotonic result for certain stock levels. For other stocks, it's
inclusion has no e�ect whatsoever and the optimal level of escapement remains
negatively related to both expected recruitment and the degree of uncertainty.



1 Introduction

Fishery collapse is widely seen as an increasingly common phenomenon. Among
other �sheries, concern has been raised in the context of Georges Bank �shery,
the Grand Bank �shery o� Newfoundland, the Northwest Atlantic �shery and
several others in as diverse spots on the planet as the Indian Ocean, o� the
coast of Peru and the Mediterranean and the Black seas. Environmentalists
and marine biologists have cited several causes for the phenomenon, including
poaching, reduced recruitment levels in the face of environmental variability
and a lack of political will to impose quotas that will ensure sustainability. As
Alan F. Sinclair and Steven A. Murawski write, "Environmental change likely
a�ected stock production, especially in northern waters, and may be in
uencing
stock recovery, but no environmental factor alone can explain either the general
decline in ground�sh productivity since the 1950s or the precipitous decline in
the 1990s. Species interactions such as predation and competition were negligi-
ble contributors to these declines. Almost without exception, �shing mortality
rates have exceeded sustainable levels. Early warning signs of stress on ground-
�sh populations included truncated age structures, altered growth rates, earlier
sexual maturation, and increased variability in catches as �sheries became ever
more dependent on the strength of incoming year-classes. Stock rebuilding may
require a decade or more of harvest rates at or very near zero." [1]

Many scientists attribute widespread �sheries collapse to the increased un-
certainty in marine environments, a phenomenon also noted in the quote above.
There is increasing evidence that �sheries will be subject to greater variabil-
ity in the near future. For example, the latest IPCC report states that global
warming will result in increased variability of precipitation; more frequent, and
more intense precipitation events, and perhaps more severe droughts. Further,
a shift in the precipitation mix, to more rain and less snow, coupled with ear-
lier runo� of snowmelt, may amplify the e�ect of the increase in variability of
precipitation, by increasing the variability, over the course of a year, in runo�
to streams and reservoirs [4].

This paper focuses on the implications of imperfect information for the man-
agement of �sheries. Even without the threat of increased variability, �shery
planning is wrought with uncertainty. This may stem from imperfect knowledge
of �sh stocks, uncertainty about future growth, recruitment and the carrying
capacity of reservoir or from imperfect observation of �sh catch on the part
of the planner. Thus, it is important that catch quotas announced by �shery
planners are based on the cognizance of limited and imperfect information.

2 Background

The simplest economic model in the �sheries literature is based on full knowledge
of �shery parameters and involves no future uncertainty. This model, presented
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in Conrad and Clark [3], provides a simple optimal harvesting decision rule: if
the �shery is 'small' (implying it cannot a�ect the market price of �sh through
output variation), the optimal harvest is given by a "most rapid approach path
(MRAP)". Under this rule, the regulator computes the optimal stock of �sh.
If the present stock happens to be higher than the optimal level, the regulator
lets the harvest be the di�erence between actual stock and desired stock. If the
present stock is less than optimal, �shing is disallowed in the present period and
stock is allowed to build up. Thus, the movement toward the optimal stock level
is quickest - hence the name MRAP. This policy implies that once �sh stocks
reach the target level, future harvest and escapement will remain constant, such
that the stock remains at the optimal steady-state level.

2.1 Imperfect Knowledge of Future Recruitment

Clearly, the deterministic model is unrealistic. Economists have developed es-
sentially two kinds of models that relate to optimal �shery policy under un-
certainty. Reed [7] assumes that the regulator knows the present stock with
accuracy but is faced with uncertain recruitment (presumably due to an uncer-
tain environment) and hence uncertain future stocks. He shows that the optimal
policy in this case is constant escapement: a �xed threshold number of �sh is
allowed to 'escape' every period.

This simple constant-escapement rule vanishes in the formulation of Clark and
Kirkwood.

2.2 Imperfect Information on Current Stocks

Clark and Kirkwood [2] develop a variant to Reed's model. In their model, the
regulator only knows the previous period's escapement level but current stocks
are unknown due to uncertain recruitment. The implication of this model is that
optimal (planned) escapement is a non-linear function of expected recruitment.1

In other words, no simple rule can be formulated to describe optimal harvest or
escapement based on past escapement or expected recruitment. The following
section derives the optimal policy and explores its properties.

3 Optimal Policy Under Imperfect Stock Infor-

mation

It is assumed that there is only one species of �sh in a managed �shery. The
price of each unit of �sh is one and there is no cost of harvesting. It is also
assumed that there is no utility or value from the �sh stock perse and that the
level of escapement can be measured accurately each period. Thus, the manager

1Planned escapement is simply the di�erence between expected recruitment and planned
harvest.
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does not know the level of recruitment at the beginning of the period but has
full information on the level of escapement. The model is as follows:

xt+1 = ztG(st)
st = xt � ht
ht = min(qt; xt)

(1)

where z is a random shock with mean 1, s is escapement, G(:) is the stock-
recruitment function, x is current stock, h is the catch or harvest and q is the
quota announced by the planner. The objective of the planner is to maximize
the expected discounted value of future harvests:

max
qt�0

Ex

(
1X
0

�tht

)
(2)

The dynamic programming equation of this problem is as follows.

Jt(st�1) = max
q�0

Ex fmin(qt; xt) + �Jt+1(xt �min(qt; xt))jst�1g (3)

Since this problem is hard to solve analytically for a general density function,
let us consider the case where z is uniformly distributed.

f(z) =

�
1=(2") for 1� " � z � 1 + "
0 elsewhere

3.1 Derivation of Optimal Policy

Given the density of z, the expectation part of the RHS of (3) can be written
as2

1=(2"g)

Z ghi

glo

h+ �J(x� h)dx

or

V (q; xjs) � 1=(2"g)

Z ghi

glo

min(q; x) + �J(x�min(q; x))dx (4)

where g(= G(s)) is the mean of current stock x, and glo(= (1 � ")g) and
ghi(= (1 + ")g) are its lower and upper bounds respectively. The planner's
problem is to maximize the above expression by choosing the �shing quota q.
It is assumed that V is concave, and under certain conditions (see section A.1
of the appendix) this implies that J is concave.

To solve the problem, the domain of x can be partitioned as [0 glo] and [glo
ghi], each of which can be analyzed separately. This division is based on the ob-
servation that if the quota is chosen from the former interval, it will be smaller
than or equal to the recruitment (or stock) with probability 1.

2The time subscripts have been dropped for expositional ease.
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3.1.1 Choosing the Quota in the Safe Range

The problem in the interval [0 glo]reduces to

1=(2"g)

Z ghi

glo

q + �J(x� q)dx

Using Leibniz's rule to take the derivative of this expression,

1=(2"g)

Z ghi

glo

1� �J 0(x� q)dx

which is
1=(2"g) f(ghi� glo)� �[J(ghi� q)� J(glo� q)]g (5)

Given that the optimal quota lies in this partition, there are three possibilities:

0 glo ghi
Announced Quota

Fis
he

ry 
Va

lue

Case a

0 glo ghi
Announced Quota

Fis
he

ry 
Va

lue
Case b

0 glo ghi
Announced Quota

Fis
he

ry 
Va

lue

Case c

a. The value function reaches its maximum at a quota q less than or equal to
zero. In this case, (5) is non-positive in the neighbourhood of q� = 0 which
implies

2"g=� � J(ghi)� J(glo) (6)

b. The value function reaches its maximum at glo. In this case, (5) = 0 in the
neighbourhood q� = glo which implies

2"g=� = J(ghi� glo) (7)

c. The value function reaches its maximum at a quota q � (0 glo). In this case,

J(ghi� q�)� J(glo� q�) = (ghi� glo)=� = 2"g=� (8)

holds.
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3.1.2 Choosing the Quota in the Unsafe Range

If q lies in the sub-domain [glo ghi], then the RHS of (3) is

1=(2"g)

(Z q

glo

xdx +

Z ghi

q

q + �J(x � q)dx

)

Using Leibniz's rule again to take the derivative of the above,

1=(2"g)

(Z ghi

q

1� �J 0(x� q)dx

)

which is equal to
1=(2"g) f(ghi� q)� �J(ghi� q)g (9)

Again, there are three possibilities.

0 glo ghi
Announced Quota

Fis
he

ry 
Va

lue

Case d

0 glo ghi
Announced Quota

Fis
he

ry 
Va

lue

Case e

0 glo ghi
Announced Quota

Fis
he

ry 
Va

lue

Case f

d. The optimal quota q� is equal to glo. This implies that in the neighbourhood
of glo, (9) is zero

2"g=� = J(ghi� glo)

which, as expected, is identical to (7).
e. The optimal quota q� is equal to ghi. This implies that in the neighbourhood
of ghi, (9) is non-negative which, in turn, implies

J 0(0) � 1=�

f. The optimal quota q� lies in (glo ghi). In this case,

J(ghi� q�) = (ghi� q�)=� (10)
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holds exactly. Summarizing the search algorithm for the optimal quota q�: 3

q� =

8>>>><
>>>>:

0 if 2"g=� � J(ghi)� J(glo)
solution to (8) if J(ghi)� J(glo) < 2"g=� < J(ghi� glo)
glo if J(ghi� glo) = 2"g=�
solution to (10) if J(ghi� glo) < 2"g=� and �J 0(0) > 1
ghi if J(ghi� glo) < 2"g=� and �J 0(0) � 1

(11)

According to the algorithm above, if future stocks are not discounted or are
discounted at an in�nitesimally small rate (i.e. � is high), the optimal catch
quota should zero. At the other extreme, if the future marginal value of the
�shery is smaller than the gross discount rate 1+r even at very low stock levels,
it is economically optimum to harvest the entire stock.

0 glo ghi
Expected Escapement

Fu
tu

re
 V

alu
e,

 J

Figure 3

Graphically, if the slope of the dashed line in Figure 3 is less than 1 + r, it is
optimum to harvest the entire stock. When neither of these extreme conditions
is true, the manager should locate 2"g=� relative to J(ghi)�J(glo) and J(ghi�
glo) to announce the optimal quota.

3.2 Numerical Computation of the Optimal Policy

Note that in the algorithm above, the optimal quota is conditioned on the level
of escapement in the previous period as well as the value function. Since the
value function is unknown, how does one �gure out the optimal quota for a
known escapement? The trick is to employ an iterative process to search for
both the optimal policy as well as the value function. The iteration can be
described as follows:

� Make an arbitrary guess about the value function.

3Section A.2 of the appendix shows that J(ghi) � J(glo) < J(ghi � glo) when J(:) is
concave.
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� For each level of escapement, use the algorithm above to �gure out the
optimal quota.

� Substitute the optimal quota in the dynamic programming equation to
arrive at a new estimate of the value function.

� If the new value function is 'close' to the original one, the iterative process
ends; else, use the new value function and repeat the second and third
steps.

� Iterate until convergence. Given the properties of the value function, the
contraction mapping theorem guarantees convergence (see section A.3 of
the appendix for a statement of this theorem).

4 Properties of the Optimal Policy

Given the roadmap provided by (11), the properties of the optimal quota q� and
correspondingly, of optimal expected escapement e� � g � q� can be explored.

4.1 The Safe Range

In this section it is established that the optimal expected escapement is not
monotonic in both expected recruitment and the level of uncertainty. The nec-
essary and suÆcient condition for optimal expected escapement to be monoton-
ically rising in these two parameters are also derived. Finally, it is shown that
optimal expected escapement is monotonically decreasing in the discount rate.

4.1.1 The Optimal Quota and Expected Recruitment

We need to compute sgn f(d(e�)=dgg over(0 glo) and (glo ghi) where e� = g�q�

is optimal planned escapement. Totally di�erentiating (8) with respect to g and
q� and using the implicit function theorem,

J 0(+)(1 + ")dg � J 0(+)dq� � J 0(+)(1� ")dg + J 0(�)dq� = 2"=�dg

where (+) and (�) refer to (ghi� q�) and (glo� q�) respectively. Rearranging
terms

2"dg � � fJ 0(+)(1 + ")� J 0(+)(�1)dq� + J 0(�)(1� ")dg + J 0(�)(�1)dq�g = 0

Collecting terms,

dq�=dg = 1 +
"

� (J 0(�)� J 0(+))
(2� �J 0(+)� �J 0(�))

or that

dq�=dg = 1 +
2"

J 0(�)� J 0(+)

�
1

�
�
J 0(+) + J 0(�)

2

�
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This implies

de�=dg =
�2"

J 0(�)� J 0(+)

�
1

�
�
J 0(+) + J 0(�)

2

�
The denominator is positive by virtue of concavity of J . However, the sign of
the term in the parenthesis is ambiguous. If that term is negative, one can
assert that optimal expected escapement is increasing in expected recruitment.
In other words,

J 0(+) + J 0(�)

2
>

1

�
= 1 + r

is both necessary and suÆcient to claim de�=dg > 0.

4.1.2 The Optimal Quota and the Degree of Variability

Totally di�erentiating (8) with respect to " and q�,

2gd"� � fJ 0(+)gd"� J 0(+)dq� + J 0(�)gd"+ J 0(�)dq�g = 0

which implies

dq�=d" =
g

� (J 0(�)� J 0(+))
f2� �J 0(+)� �J 0(�)g

or

dq�=d" =
2g

J 0(�)� J 0(+)

�
1

�
�
J 0(+) + J 0(�)

2

�
Again, the denominator is positive by concavity of J , but the term in the paren-
thesis is ambiguous. The ambiguity disappears if, as before,it is assumed that

J 0(+) + J 0(�)

2
>

1

�
= 1 + r

which makes dq�=d" negative and de�=d" positive (since de�=d" = �dq�=d").

4.1.3 The Optimal Quota and the Discount Rate

Totally di�erentiating (8) with respect to q� and �,

�(J(+)� J(�))d� � �(J 0(+)(�1)dq� � J 0(�)(�1)dq�) = 0

which implies

dq�=d� = �
J(+)� J(�)

�(J 0(�)� J 0(+))

The numerator of the RHS is positive (since J is increasing) and the denomi-
nator is also positive (since J is concave). Therefore, the LHS is negative. By
implication, de�=d� > 0. Since � is inversely related to the discount rate r, the
above inequality implies that the optimal expected escapement is decreasing in
the discount rate.
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4.2 The Unsafe Range

This section explores the properties of the optimal program in the unsafe range.

4.2.1 The Optimal Quota and Expected Recruitment

Computing the derivative of q� with respect to g for (glo ghi)

((1 + ")dg � dq�)� �J 0(+)((1 + ")dg � dq�) = 0

Totally di�erentiating (10)

((1 + ")dg � dq�)� �J 0(+)((1 + ")dg � dq�) = 0

which implies
((1 + ")dg � dq�)(1� �J 0(+)) = 0 (12)

Since (12) holds across the entire sub-domain (glo ghi),

(1 + ")dg � dq� = 0

which implies
dq�=dg = (1 + ")

Thus,
de�=dg = �" < 0

Thus when the optimal quota is between glo and ghi, optimal expected escape-
ment is decreasing in expected recruitment.

4.2.2 The Optimal Quota and the Degree of Variability

Totally di�erentiating (10) with respect to " and q�,

gd"� dq� + � fJ 0(+)gd"� J 0(+)dq�g = 0

This implies
(gd"� dq�)(1 + �J 0(+)) = 0

or that
dq�=d" = g

Therefore
de�=d" = �g < 0

The above result shows that in the unsafe range the optimal expected escape-
ment is decreasing in the level of uncertainty: the higher the uncertainty, the
smaller the optimal expected escapement.
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4.2.3 The Optimal Quota and the Discount Rate

Lastly, the sign of dq�=d� in the range (glo ghi) needs to be computed. Totally
di�erentiating (10) with respect to q� and �,

�dq� � J(+)d�� �J 0(+)(�1)dq� = 0

Rearranging terms,

dq�=d� = �
J(+)

1� �J 0(+)

To sign the above, one can di�erentiate V twice with respect to q in the unsafe
range.

Vqq = 1=2"g[�1 + �J 0(+)] < 0

by concavity of V (:). This implies dq�=d� < 0. Therefore, optimal expected
escapement is decreasing in the discount rate.

4.3 Summary of Properties

As the results of this section show, optimal expected escapement is not mono-
tonic in expected recruitment and the level of uncertainty in the safe range.
These properties, as well as the others derived above, can be summarized as
follows.

Safe Range Unsafe Range
Expected Recruitment ? -
Level of Uncertainty ? -
Discount Rate - -

However, the condition

J 0(+) + J 0(�)

2
>

1

�
= 1 + r

is necessary and suÆcient to resolve the ambiguity. Also, if this condition is
assumed, the results are consistent with one's intuition. How may one inter-
pret the above condition graphically? Since q can be in�nitesimally small, the
condition

J 0(ghi) + J 0(glo)

2
>

1

�
= 1 + r

is suÆcient to guarantee monotonicity.
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Figure 4
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Graphically, this means that the average of the slopes at glo and ghi of the
J(:) function must be more than the gross discount rate. In other words, if the
�shery is suÆciently productive in terms of its marginal future value at stock
levels of glo and ghi, intuitive results follow and monotonicity is assured.

In the unsafe range, the comparative statics results with respect to both ex-
pected recruitment and the level of uncertainty are counter-intuitive. These
may be justi�ed as follows. When either of these parameters is high, the poten-
tial future loss in terms of stock lost due to a bad shock is correspondingly high.
Therefore in such a situation, it makes sense to harvest a disproportionately
greater amount of the stock in the present period. In their paper, Clark and
Kirkwood surmise that this non-intuitive result is caused by the exclusion of
existence value. In the next section it is shown that adding existence value to
the �shery manager's problem increases the probability of monotonicity (and
intuitive results) in the safe range, but has no e�ect at all in the unsafe range.

5 Incorporating Existence Value

It is assumed that the existence of �sh stock every period has a positive preser-
vation value given by a function E(:) where E(0) = 0, E0(:) > 0 and E00(:) < 0.

5.1 Optimal Quota in the Safe Range

With the inclusion of the function E(:), the maximization problem in the safe
range becomes:

1=(2"g)

Z ghi

glo

q + �E(x� q) + �J(x � q)dx
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Using Leibniz's rule to take the derivative of this expression,

1=(2"g)

Z ghi

glo

1� �E0(x� q)� �J 0(x� q)dx

or

Vq = 1=(2"g) f(ghi� glo)� �[E(ghi� q)�E(glo� q)]� �[J(ghi� q)� J(glo� q)]g

Let q�� solve Vq = 0. By 8,

Vq(q
�) = ��=(2"g):(E(ghi� q)�E(glo� q)) < 0

since E0(:) > 0. Also, Vqq < 0 by the concavity of V. Thus q�� < q�. In other
words, the optimal quota is smaller when existence value is positive.

5.1.1 E�ect of Existence Value on Comparative Statics

De�ning e�� � g � q��, one can use the implicit function theorem on the �rst
order condition implied by Vq = 0 to get the following results.

de��=dg =
�2"

J 0(�)� J 0(+)| {z }+E0(�)�E0(+)| {z }
8<
: 1

�
�

J 0(+) + J 0(�)| {z }+E0(+) +E0(�)| {z }
2

9=
;

de��=d" =
�2g

J 0(�)� J 0(+)| {z }+E0(�)� E0(+)| {z }
8<
: 1

�
�

J 0(+) + J 0(�)| {z }+E0(+) +E0(�)| {z }
2

9=
;

The necessary and suÆcient condition needed for the above two expressions to
be positive is

J 0(+) + J 0(�)

2
+
E0(+) +E0(�)

2
> 1 + r

Since E0(:) > 0, the addition of the last two terms on the LHS increases the
likelihood of monotonicity but does not guarantee it. Also,

de��=d� =

J(+)� J(�)| {z }+E(+)�E(�)| {z }
�(J 0(�)� J 0(+)| {z }+E0(�)�E0(+)| {z })

Since all the underbraced terms are positive by the properties of J(:) and E(:),
optimal expected escapement increases with the discount factor, �.

5.2 Optimal Quota in the Unsafe Range

In the unsafe range, the problem of the �shery manager is to maximize

1=(2"g)

(Z q

glo

xdx+

Z ghi

q

q + �E(x� q) + �J(x � q)dx

)
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Using Leibniz's rule again to take the derivative of the above,

1=(2"g)

(Z ghi

q

1� �E0(x� q)� �J 0(x� q)dx

)

or that
Vq = 1=(2"g) f(ghi� q)� �E(ghi� q)� �J(ghi� q)g

Let q�� solve Vq = 0. By 10,

Vq(q
�) = ��=(2"g):E(ghi� q) < 0

Again, Vqq < 0 by the concavity of V. Thus q�� < q�.

5.2.1 E�ect of Existence Value on Comparative Statics

Again, de�ning e�� � g � q��, and using the implicit function theorem on the
�rst order condition implied by Vq = 0,

de��=dg = �" < 0

and
de��=d" = �g < 0

These results show that the inclusion of existence value has no impact on the
comparative static results obtained earlier. Even if �sh stock is valued in itself,
the optimal expected escapement is decreasing in both expected recruitment
and the level of uncertainty. Finally,

de��=d� =
J(+) +E(+)

1� �J 0(+)� �E0(+)
> 0

which implies that if future stocks are discounted at higher rates, it is optimal
to leave fewer �sh in the present period.

6 Concluding Remarks

In this paper the properties of the optimal policy for the special case where the
density of present stocks is uniform is explored. The results show that for certain
model parameters, these properties are not intuitive. The necessary and suÆ-
cient conditions for the intuitive result in the safe range have also been derived.
However, the comparative statics results are unambiguously non-intuitive in
the safe range except with respect to the discount rate. Incorporating existence
value into the manager's maximization problem leads to, in expectation, lower
catch quotas. The results imply that incorporating existence value into the op-
timization program only increases the probability of obtaining a non-monotonic
result in the safe range; in the unsafe range, the addition of existence value has
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no e�ect whatsoever and the optimal level of escapement remains negatively
related to both expected recruitment and the degree of uncertainty.

In order to derive the results, the above model makes a number of simpli-
fying assumptions. Like Reed's model, it is characterized by a single source of
stochasticity. Real world �sheries, on the other hand, are subject to multiple
shocks. It seems natural, therefore, to incorporate at least some of the sources
of randomness in an economic model and solve for its optimum. Second, the
results above are consistent only with uniformly distributed shocks. This was
done for analytical convenience. It may be of interest to derive the optimal
policy and study its properties for shocks stemming from other distributions,
especially those from normal and log normal densities.
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A Appendix

A.1 Concavity of J

It is useful to investigate whether concavity of V (:)implies concavity of J(:).
First assume that the quota q is in the "safe" range. De�ne

M � q + �=(2"g)

Z ghi

glo

J(x� q)dx

This implies

Mq = 1� �=(2"g)

Z ghi

glo

J 0(x� q)dx

or
Mq = 1� �=(2"g)(J(ghi� q)� J(glo� q))

Di�erentiating M w.r.t. q once again,

Mqq = �=(2"g)(J 0(ghi� q)� J 0(glo� q)) < 0

since M is assumed to be concave in q. This implies

J 0(ghi� q)� J 0(glo� q) < 0

or that J(.) is concave in q since ghi is greater than glo.

Now assume that the quota is in the "unsafe" range. De�ne

M � 1=(2"g)[

Z q

glo

xdx +

Z ghi

q

q + �J(x � q)dx]

This implies
Mq = 1=(2"g)[(ghi� q)� �J(ghi� q)]

Di�erentiating M w.r.t. q twice,

Mqqq = ��J 00(ghi� q)

For J(:) to be concave, the third derivative of M with respect to q is needed to
be positive.

A.2 Another Property of J

In this section, another property of J is explored viz. the relationship between
J(ghi)� J(glo) and J(ghi� glo). By concavity of J ,

8t > 0 :

Z ghi�glo

0

J 0(s+ t)ds <

Z ghi�glo

0

J 0(s)ds
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Substituting the variable of integration s+ t by z,Z ghi

glo

J 0(z)dz <

Z ghi�glo

0

J 0(s)ds

This implies
J(ghi)� J(glo) < J(ghi� glo)� J(0)

Since J(0) equals zero by de�nition,

J(ghi)� J(glo) < J(ghi� glo)

A.3 The Contraction Mapping theorem

The following statement is adapted from [5].

Definition: A map T : Y ! Z on ordered spaces Y and Z is monotone if
and only if y1 � y2 implies Ty1 � Ty2.

Definition: A map T : Y ! Y on a metric space Y is a contraction with
modulus � < 1 if and only if k Ty1 � Ty2 k� � k y1 � y2 k.

Contraction Mapping theorem: If X is compact, � < 1, and � is bounded
above and below, then the map

V (x0) � max
u�U(x)

Ef�(x0; u0)g+Ef�V (xtjx0; u0)g

is monotone in V , and is a contraction mapping with modulus � in the space of
bounded functions and has a unique �xed point.
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