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Abstract

We develop an optimal control model for the recovery of a representative freshwater lake from acidifi-
cation. Our objective function is the sum of the disutility from an acidified lake and the cost of emissions
abatement by firms. Using emissions as the control variable, the social regulator minimizes the objective
function subject to state equations that describe the impact of emissions reductions on the state variables,
pH and alkalinity of lake water. We estimate the state equations using a panel data set which monitors
the recovery of 43 acidified lakes located in the region surrounding Sudbury, Ontario, Canada over a
24-year period. The results indicate a general upwards trend in both pH and alkalinity, with a decrease
in emissions corresponding to an increase in both variables. However, we also find the magnitude of our
estimates change as we introduce additional controls, and different assumptions for the specification of
acid deposition. This is one of the challenges that must be addressed before our results can be used to
solve the control problem for an optimal path of emissions reductions.

1 Introduction

Acid rain, ozone depletion and climate change have been termed the three environmental crises of the twenti-

eth century. While concern over climate change has continued to increase since then, little discussion remains

of acid rain and ozone depletion. This is due in large part to the successes of the Montreal Protocol for

chlorofluorocarbons (CFCs), and the Convention on Long-Range Transboundary Air Pollution for various

pollutants including sulphur dioxide (SO2), nitrogen oxides (NOx) and Volatile Organic Compounds (VOCs).

These international agreements created a cooperative effort among countries implementing domestic regula-

tions to control emissions of pollutants. While the problems of ozone depletion and acid rain are no longer

intensifying, damage from excessive pollution in the past remains widespread. This damage, and the desire

for recovery, are the primary focus of current regulations.
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This paper studies the emissions reductions influencing the recovery of freshwater lakes from acidification

in Northern Ontario, Canada. Terrestrial and aquatic acidification in this area is primarily attributable

to nickel mining operations centered in the City of Sudbury. At its peak in 1960, total sulphur dioxide

emissions from mining operations in Sudbury exceeded 2.56 million tonnes. This represents more than 4%

of estimates of total global anthropogenic sulphur dioxide emissions at the time [7, 15]. Estimates indicate

over 7,000 lakes located within a 17,000 km2 area of Sudbury have been acidified to pH < 6.0, the point at

which significant biological damage starts to occur [14]. Since the 1960s, a series of regulations introducing

intensifying emission controls have induced reductions in SO2 emissions of over 90%, and substantial water

quality improvements have been observed.

This paper sets up a dynamic programming problem to determine how to optimally implement emissions

reductions intended to achieve the recovery of a representative lake in the Sudbury area. A regulator

minimizes a social welfare function, defined as the sum of the disutility from lake acidification and the cost

of abatement by firms, subject to state equations describing how lake water quality evolves over time. Our

objective is to use data on water quality and emissions reductions to estimate the parameters of the state

equations. We find water quality is increasing over time, and that decreases in acid depositions will have a

positive effect on water quality.

This paper concludes with the estimation of the parameters for the state equations. The next step is to

use these estimated parameters to solve the dynamic programming problem for the optimal path of emissions

reductions. This introduces a number of further challenges that go beyond the scope of this work, although

we provide a brief discussion of them here.

Most significant of the challenges is that we must first parameterize the social welfare function. In past

work, this has been done through either formal estimation or simple assumption of the parameter values. For

example, in the derivation of the optimal policy for recovery of lakes from eutrophication, Carpenter et al

[3] estimate the parameters of the utility function using information on the amount of money lake users are

willing to accept to tolerate a given state of the lake, or the amount of money lake users are willing to pay to

remove an increment of pollution. They estimate the cost function in a similar way, using information on the

amount of money emitters are willing to pay for the pollution they release. In a soil acidification problem,
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Kaitala et el [12] estimate the parameters of the disutility function using two methods; calculation of the

lost market value from decreases in annual forest growth, and an indirect, revealed preference approach in

which they assume current reductions in sulphur emissions result from rational choices and therefore reveal

the implicit marginal cost of forest deterioration. With the abatement cost function, they assume certain

parameters values, and estimate the remainder using a linear least squares regression of the annual costs of

abatement on yearly abatement levels.

The second challenge is that we formulate our control problem for the recovery of a representative lake.

Actual emissions reductions, however, will have an impact on thousands of heterogeneous lakes, and the

optimal emissions path must reflect this. Introduction of individual state equations to separately describe

the changes in water quality for any significant number of lakes will make the solution of the control problem

intractable. Therefore, a reasonable approach is to assume that all lakes in the area are homogeneous, identify

a recovery goal that is representative of an average lake in the region, and appropriately parameterize the

disutility function so that it is representative of the disutility from widespread acidification. While the

homogeneity of lakes is a significant assumption, it is consistent with the previous literature on acidification

which assumes homogeneity in the acidification of soil throughout individual countries ([12],[20],[21]).

The final challenge is in identifying the appropriate parameter estimates for the state equations. We find

the magnitude of the coefficients change as we add additional explanatory variables to the regression model.

A reasonable first approach in this case is to solve the control problem using different sets of the parameter

estimates and determine whether there is a significant difference in the optimal path of emissions reductions

in each case. If there is a large difference then this suggests additional work should be done on defining

the state equations, and understanding the significance of leaving out of the equations certain sources of

variation that may impact both the amount of acid deposition in a lake and its rate of recovery.

The remainder of this paper proceeds as follows. Section 2 provides an overview of the economic literature

on dynamic ecological models and the scientific literature on acidification dynamics. Section 3 presents the

theoretical model for the dynamic programming problem, and the state equations to be estimated. Section

4 describes the data, and Section 5 presents the estimation strategy and results. Finally, Section 6 offers

some brief concluding remarks.
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2 Literature Review

2.1 The Economics of Dynamic Ecological Systems

Integrated Assessment Models (IAMs) are dynamic models used in environmental economics to capture the

interaction between economic objectives and constraints, and dynamic environmental systems. As ecologists

recognize, the complex dynamics of environmental systems substantially affect the states of the world in which

the economic system operates [1]. IAMs have therefore become an important tool for linking environmental

and economic systems.

Past application of IAMs to acidification dynamics focus on the acidification of terrestrial ecosystems.

The first major work was by Kaitala et al [12] who consider the optimal regulatory policies of Finland and

the Soviet Union within a game-theoretic framework. The objective of both countries is to maximize the

net benefits of emissions abatement, which Kaitala et al define as the value of forest growth minus the costs

of abatement, subject to an environmental state equation. The environmental state equation describes how

soil quality changes over time. It is a function of current soil quality, and current sulphur depositions which

Kaitala et al estimate as a linear function of emissions in each region using a sulphur transportation model.

Parameters for the equations are either estimated, or drawn from previously published work. With the

appropriate identification of the equation parameters, Kaitala et al solve the maximization problem for the

optimal cooperative and noncooperative emission rates in Finland and Russia.

Schmieman and van Ierland [20] develop an optimal control model to identify cost effective European

abatement policies for the combined reduction of SO2 and NOx. The objective of each country is to minimize

the cost of abatement, subject to an environmental state equation and a minimum standard for soil quality.

The environmental state equation is based on Kaitala et al, and uses a generalized linear transportation model

for estimation of current sulphur depositions which allows for emissions from more than two countries. They

solve the optimal control model for a single country and find the optimal path of emissions reductions is

higher than those required under the current European protocol scenario.

Schmieman et al [21] expand upon previous work by considering the interaction between the problems

of acidification and tropospheric ozone pollution. They generalize the previous optimal control problem

to include damages from both problems as a part of the objective function, and introduce an additional
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environmental state equation describing the change in ozone levels over time. The theoretical model is used

to calculate efficient abatement strategies for SO2, NOx, and Volatile Organic Compounds (VOCs).

Past applications of IAMs to lake dynamics focus primarily on the problem of eutrophication. Eutroph-

ication occurs when there is excess phosphorous and nitrogen deposition in a lake, typically as a result

of runoff from fertilizers used in agriculture. A eutrophic lake can cause significant economic consequences

attributable to a decrease in the recreational value of the lake, a decrease in the value of fisheries, and a dete-

rioration of water quality [18], and may be either reversible, hysteretic or irreversible1. Acidified lakes cause

similar economic consequences and display similar recovery patterns. Therefore, models of eutrophication

are useful in understanding how models of lake acidification can be developed.

Carpenter et al [3] provide a general model of eutrophication. They set up an optimal control model

where a regulator maximizes the net benefits from polluting activities and ecosystem services, subject to

an environmental state equation which describes how phosphorus levels in the lake evolve over time. They

estimate the state equation by an observation error procedure, using data from a single lake, and the control

model is solved for the optimal phosphorus input rates under various assumptions regarding certainty over

the reversibility of the lake, and the value of the discount rate. While the model is based on deterministic lake

dynamics, an important observation of Carpenter et al is that in a more realistic situation where sources of

variability exist, reductions in phosphorus input levels should be below the optimal rates the model describes.

They note this result extends to other situations where pollution causes nonlinear changes in an ecosystem

state, such as acid deposition.

Nævdal [18] focuses on the varying reversibility of lakes and the threshold effects of eutrophication. He

sets up an optimal control problem similar to those above, and solves the problem for lakes on either side

of the threshold value which determines whether a lake is currently in a state of eutrophy. He finds the

optimal path for the reduction of nutrients into the lake is dependent on whether the lake is eutrophying in

the initial time period, the number of times it is optimal for the lake to cross the threshold, and whether a

eutrophying lake is reversible.

1A reversible lake is one in which eutrophication can be reversed by the reduction of pollution input controls alone. A
hysteretic lake is one that can be reversed from its eutrophic state, but requires a perturbation to the lower phosphorous steady
state using interventions such as aluminum sulphate treatment or biomanipulation. An irreversible lake is one in which no
feasible reduction of pollution input controls or chemical intervention can bring the lake out of its eutrophic state [3].
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Hein [10] develops a eutrophication model with threshold effects and two steady states, one corresponding

to a eutrophic lake and a second corresponding to an oligotrophic lake. He uses an explicit ecological-economic

model in which lake dynamics are modeled by a set of equations obtained through regression analysis of long-

term water quality data for a shallow lake ecosystem. He combines this with information on the supply of

ecosystem services and the costs of different control measures to determine the optimal control policy. The

existence of two steady state has a significant impact on the cost-effectiveness of different policy options,

essentially creating two points of maximum efficiency, each corresponding to one of the steady states.

This paper draws upon a number of the above studies in developing an economic-ecological model of

lake acidification. We use the acidification models to understand the dynamics of acid deposition, and the

eutrophication models to understand the non-linearities of lake response to changes in chemical depositions,

and the process of recovery from a polluted state. While we use previous work as a basis for developing

our model, this paper makes a number of contributions to the literature. First, this paper models the

dynamics of lake acidification, and sets up an optimal control framework for evaluating the implementation

of emissions reductions for the recovery of acidified lakes. In addition, while we develop the theoretical

model for a representative lake, we estimate the state equations using a panel data set which tracks the

water quality of 43 lakes over a 25-year period. Finally, whereas previous work on acidification focuses on

preventative measures for the deterioration of soil quality, we develop a model which emphasizes recovery

from acidification, with the ultimate goal of returning a lake to its natural state.

2.2 Acidification Dynamics

The primary pollutants responsible for acidification are SO2 and NOx
2. These pollutants are derived

from a number of sources, with the largest contributors being power stations, industrial plants, and vehicle

emissions. Acidification of ecosystems is a result of excessive wet and dry depositions of acid. Wet depositions

occur when SO2 and NOx reach the atmosphere, where they react with the moisture and undergo oxidation,

resulting in the formation of sulphuric and nitric acids. These acids exist primarily in the clouds and are

transported to the ground through rain or snow. Dry depositions, alternatively, occur in a dry atmosphere

2The science in this section is based on the discussion of acidification in Chapter 5 of Mason [16] and Chapter 1 of Charles
[4]
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Figure 1: Acidification process of lakes

through a series of complex photochemical reactions in which highly reactive oxidizing agents such as ozone

produce sulphuric and nitric acids. Acids from these reactions are transported to the ground in gaseous or

particulate form. Wet deposition is relatively easy to quantify, while quantification of dry deposition is more

difficult since gases and particulates are more widespread − they enter surface and groundwater basins, are

absorbed by vegetation, and are dissolved by precipitation.

In addition to the wet and dry depositions from the atmosphere, freshwater is affected by acidic inputs

through indirect atmospheric depositions via run-off in the catchment, and from the generation of acidity

within the catchment. Given these two additional sources, acidification of freshwater lakes is most likely

to occur in areas with thin soil where there are insufficient base cations freely available to neutralize the

deposition of acid to the soil. Similarly, land use also influences the rate of acidification, with acid deposition

generally increasing in forested areas.

The process of acidification can be divided into three stages, as shown in Figure 1 (adapted from Mason

[16]). It begins when the deposition of sulphate and nitrate ions, which have a negative charge, increases.

The lake water responds by an increase in the positive charge, H+, which measures acidity3. However, this

can be matched by a decrease in one of the other negative charges in the water. This is what occurs in the

3pH is defined as the negative logarithm of the concentration of H+ ions in the water, pH = − log
[

H+
]

. As the concentration

of H+ ions in the lake water increases, the water becomes acidified, and pH falls.
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first stage of Figure 1 when the alkalinity of the water, which has a negative charge, is positive. In this stage,

the positive alkalinity acts as a buffer against increases in acid deposition and the concentration of H+ ions4.

The end result is a decrease in the negative charge (alkalinity) and no change in the positive charge (H+),

so that pH remains at its natural level, and communities of aquatic life remain stable. Some lakes with a

high buffering capacity will never move beyond this stage. However, more generally, a lake will move into

the second stage where the alkalinity buffer is lost, and continued acid deposition results in increases in H+,

large decreases in pH, and the beginning of damages to the biological ecosystem. In the third and final stage,

the loss of alkalinity is complete and the pH stabilizes at some low level, typically below 5. In this state the

lake is acidic and there are typically increasing levels of metals with positive charges, particularly aluminum.

This results in the extermination of fish populations and a decrease in the diversity of other aquatic life.

There are two methods for reversing the acidification of freshwater lakes. The first is a reduction

in emissions, which is typically accomplished by a switch to cleaner production technologies, such as the

installation of scrubbers at emitting sources. There has been a significant reduction in acidifying emissions

since the 1980s, however, this has yet to lead to recovery of all lakes. While sulphuric and nitric acids

in precipitation have declined, a large amount of acid remains deposited in soils and wetlands. Therefore,

while direct deposition of acidic inputs is decreasing, depositions via run-off in the catchment and from the

generation of acidity within the catchment remain. A second method for reversing acidification is the liming

of waters. In liming either pulverized limestone, hydrated lime or quicklime is added to the water to neutralize

the acid. This method of recovery has more immediate results, but its effectiveness depends on the retention

time of water in the lakes. Lakes with short retention times must be relimed either annually or biannually,

and those with longer retention times will generally re-acidify 5 to 10 years after liming. While liming is

effective in restoring water chemistry, ecological recovery is not guaranteed, and it is typically an expensive

alternative with localized results. Since acidification is a widespread problem, the general consensus is that

the causes and not the symptoms of acidification must be addressed, and reductions in emissions should be

the main tool used in reversing acidification.

4The major component of alkalinity in most surface waters is bicarbonate, HCO−

3
. When alkalinity is positive, bicarbonate

is positive, and will combine with the hydrogen ion to form aqueous carbon dioxide and water: HCO−

3
+ H+

→ CO2 + H2O,
so that the increased acid deposition has no effect on the acidity of the lake water.
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3 Theoretical Model of Lake Recovery

We develop an optimal control model for the recovery of a representative lake in the Sudbury area from

acidification. Following Nævdal [18], we assume there is a regulator who is concerned about the state of the

lake, and define preferences such that any deviation from the lake’s “natural state” causes increasing disutility.

We define the state of the lake by the observed pH levels, and assume the natural state is exogenously defined

to represent the necessary conditions for biological recovery from acidification. Freshwater lakes in their

natural state will typically vary in the biological populations they support, although most will have a pH

between 6.0 and 8.0. A convenient definition for the natural state of a lake is a return to its predisturbance

state. However, this may not be an accurate definition since recovery will typically take several decades

during which time the lake in a healthy state may naturally evolve due to either internal chemical processes

or external factors such as climate change. Therefore, a more accurate definition for the natural state is the

reference data approach that defines recovery as a return to a state that is typical of the least-disturbed

lakes in the area [9]. In a given period, the disutility from the degree of acidification is thus given by:

U(Pt) =
A

2

(

Pt − P̄
)2

(1)

where Pt is the observed pH of the lake in period t, P̄ is the pH of the lake in its natural state, and A is

a positive parameter. We assume P0 < P̄ , i.e., the starting point for all lakes is in a state of acidification.

Since the utility function provides a measure of disutility it is convex, and at the starting point (t = 0),

U ′(Pt) < 0, U ′′(Pt) > 0, so the degree of disutility is decreasing as Pt increases.

The regulator must balance the desire for returning a lake to its natural state with the costs of doing so.

We consider only the cost of abatement undertaken by local firms emitting SO2
5,6. Following Kaitala et al

[12], we assume the cost function defines the minimum cost envelope of the entire range of sulphur abatement

options for firm j in a given time period. In any given period, however, we observe actual emissions by a firm,

and not abatement. Therefore, we define the abatement cost function by the following quadratic equation:

Cj(Ej
t ) = ψ

j
1

(

Ēj −E
j
t

)

+ ψ
j
2

(

Ēj −E
j
t

)2

+ ψ
j
3 (2)

5We define local firms as those that are subject to regulation.
6From this point forward, we consider only the effects of changes in SO2 emissions on the acidification and recovery of lakes.

We ignore the effects of NOx since the local firms under consideration are all industrial plants where the primary pollutant is
SO2 and emissions of NOx are minimal.
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where Ēj are the SO2 emissions of firm j in the absence of regulation, Ej
t are the observed emissions of firm

j in period t given regulation, and ψ
j
1, ψ

j
2, ψ

j
3 are positive parameters. Actual abatement is therefore given

by
(

Ēj −E
j
t

)

. The cost function is convex in emissions, and we require that abatement be non-negative

in all periods (Ēj − E
j
t ≥ 0) so abatement costs are increasing as actual emissions decrease, C ′(Ej

t ) < 0,

C ′′(Ej
t ) > 0.

Following the previous literature on acidification ([12], [20], [21]), we assume there is a linear relationship

between SO2 emissions and acid deposition at a lake site. Acid deposition will be affected by several

stochastic factors beyond actual SO2 emissions, most notably the amount of precipitation a lake receives

and the buffering capacity of the land surrounding the lake. Precipitation is exogenous to the model, and

monitoring buffering capacity for the land over time requires the introduction of an additional state equation.

For simplicity, we disregard these factors and assume the acid deposition equation is a linear transformation

of all current emissions impacting the environmental state of the lake. The equation for acid depositions is

thus given by:

Dt =
∑

m

cmEm
t (3)

where cm is a lake specific weighting factor relating emissions from firm m to acid depositions at the lake, m

is the total number of firms with emissions impacting the lakes, m ≥ j, and (m− j) is the number of firms

not under control of the regulator. We further assume the acid deposition equation is deterministic and the

regulator knows the emissions of the (m − j) firms not subject to regulation7. With this assumption, the

regulator can accurately predict how changes in the emissions of regulated firms will impact the environmental

state of the lake.

The regulator’s control variable is emissions of local firms, Ej
t . Following the previous literature, we

assume the regulator specifies an emissions cap for each firm in every period, and that observed emissions

of firms are exactly equal to their regulated amount. The regulator can therefore precisely determine acid

depositions from local firms at the lake site in each period. These acid depositions will impact water quality

7A more complicated model is found in Kaitala et al [12] who sets up the optimal control problem within a game theoretic
framework. He solves the problem for the cooperative solution, where regulators jointly maximize their social welfare functions,
and the non-cooperative solution, where regulators consider only the acidificationdynamics in their region given a fixed emissions
strategy of their opponent. In Kaitala’s framework, our model corresponds to the derivation of a non-cooperative solution to
the optimal control problem.
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at the lake site, which we measure by the state variables pH, Pt, and alkalinity, Lt.

The state equations for alkalinity and pH describe changes in the environmental state of the lake.

Starting from a state of acidification, the desired chemical response to a reduction in acid depositions is an

increase in alkalinity and pH. If the lake water follows this desired response path, then alkalinity and pH

will increase together until the lake returns to its natural state. As alkalinity increases, the effect of changes

in acid deposition on pH will begin to decrease. This is the mechanism through which the pH of the water

stabilizes to the level corresponding to its natural state. In this state, the lake is able to resist reasonable

changes in acid deposition since the restored alkalinity provides a buffering capacity which allows the water

to neutralize itself. However, if the acid deposition exceeds some critical threshold then the lake will move

out of its natural state and again begin to decline into an acidified state.

The chemical recovery of a lake is a dynamic process, and is dependent on the lake’s chemical history.

Therefore, we include the lagged value of pH in its state equation. With the inclusion of lagged pH we capture

the entire history of the effects of acid deposition on pH. Any measured influence of acid deposition in the

current period is therefore conditioned on this history, and will represent only the effect of new information

[8]. The next term in the state equation for pH is the lagged value of acid deposition, which captures the

direct effect of acid deposition from the previous period on the current period’s pH. We also include an

interaction term between the lagged values of alkalinity and pH . This term captures the non-linearity of

pH response to changes in emissions. In particular, we expect the coefficient on depositions to be negative,

and the coefficient on the interaction term to be positive so that as alkalinity increases, the effect of further

changes in acid depositions on pH goes to zero. Finally, we include an error term with mean zero and

variance σ2. This term accounts for the stochastic factors impacting changes in pH each period. The state

equation for pH is therefore given by:

Pt+1 = β0 + β1Pt + β2

(

∑

m

cmEm
t

)

+ β3Lt

(

∑

m

cmEm
t

)

+ εt+1 (4)

We define the state equation for alkalinity analogously to the state equation for pH. In this case we do

not include the last interaction term since the level of pH does not effect how alkalinity responds to changes
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in acid deposition. Therefore, the state equation for alkalinity is given by:

Lt+1 = γ0 + γ1Lt + γ2

(

∑

m

cmEm
t

)

+ νt+1 (5)

Combining the above equations, we get the following discrete time optimal control problem:

min
E

j

t

∞
∑

t=0

δt





A

2

(

Pt − P̄
)2

+
∑

j

(

ψj
1

(

Ēj − Ej
t

)

+ ψj
2

(

Ēj − Ej
t

)2

+ ψj
3

)



 (6)

s.t. Pt+1 = β0 + β1Pt + β2

(

∑

m

cmEm
t

)

+ β3Lt

(

∑

m

cmEm
t

)

(7)

Lt+1 = γ0 + γ1Lt + γ2

(

∑

m

cmEm
t

)

(8)

E
j
t ≥ 0 ∀ j (9)

where δ is the appropriate discount factor.

The discrete time dynamic programming equation corresponding to (6) is:

J(Pt, Lt) = max
E

j

t

−





A

2

(

Pt − P̄
)2

+
∑

j

(

ψ
j
1

(

Ēj −E
j
t

)

+ ψ
j
2

(

Ēj −E
j
t

)2

+ ψ
j
3

)



+ δJ(Pt+1, Lt+1) (10)

s.t. Equations (7), (8), (9)

For simplicity in notation, from this point forward we express the utility function as U(Pt), the cost

function as C(Ej
t ), the state equation for pH as f(Pt, Lt, E

m
t ), and the state equation for alkalinity as

g(Pt, Lt, E
m
t ). With this formulation of the problem, we cannot exclude the possibility that the non-

negativity constraint on emissions will be binding in certain states. Therefore, along the optimal solution

path, emissions in each period must be chosen so that the following Euler equilibrium conditions are satisfied:

−CE
j

t

(t) + δ [JP (t+ 1)fEj(t) + JL(t + 1)gEj(t)] = µ
j
t (11)

JP (t) = −UP (t) + δ [JP (t+ 1)fP (t)] (12)

JL(t) = δ [JP (t+ 1)fL(t) + JL(t+ 1)gL(t)] (13)

E
j
t ≥ 0, µ

j
t ≥ 0, E

j
t · µj

t = 0 (14)

where µj
t measures the current and expected future reward from a marginal decrease in emissions by firm

j in period t [17]. The conditions along the optimal path require that in every period, each local firm

reduces its emissions until either the long-run marginal reward from further decreasing emissions, or emissions
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themselves, are zero. In addition to satisfying the above Euler conditions, the steady state to the problem

must also satisfy the following state stationarity conditions:

P ∗ = f(P ∗, L∗, Ej∗) (15)

L∗ = g(P ∗, L∗, Ej∗) (16)

So in the steady state, pH, alkalinity and regulated emissions are all constant from one period to the next.

4 Data Summary

The data used in this paper are from the Sudbury Environmental Study (SES) Extensive Monitoring Pro-

gramme. The SES Programme is conducted by the Ontario Ministry of the Environment, through the

Freshwater Ecology Unit at Laurentian University in Sudbury, Ontario. It began as a chemistry survey of

209 lakes from 1974−1976. This survey revealed significant acidification, and loss and depression of fish

populations in a 5,300 km2 area around Sudbury, which included 650 km2 of lake surface area [5]. A second

chemistry survey of 250 lakes was subsequently conducted from 1981−1983. In 1983, 44 lakes which had

an observed pH of less than 5.5 in at least one of the previous surveys were chosen for continued monitor-

ing. These lakes have been sampled once per year, during the summer stratified period, from 1981−2006.

This paper uses annual observations of pH and alkalinity recorded from 1981−2004 for 43 of these lakes8 .

Summary statistics for these data are provided in Table 1, and Figure 2 shows the location of the lakes in

relation to Sudbury9.

Lake water samples are taken either from a location near the lake centre, or near the centre of a main

basin on a very large lake. From 1981 to 1994 lake water samples were collected as non-volume weighted

tygon tube composites through the two, upper stratified layers of the lake. If the lake was too shallow for

thermal stratification then the sample was collected to 1 metre above the lake bottom. Beginning in 1995,

sampling methods changed to the use of a four-litre plastic jug immersed by hand to completely below the

8For the majority of years in the sample, the laboratory value of alkalinity is reported as the total inflection point. The total
inflection point is routinely measured by titration of the water with strong acid or base until the inflection point is reached. At
this point, the acid neutralizing capacity of the water is zero. A positive alkalinity indicates a net strong base in the water, and
a negative alkalinity indicates a net strong acid. The exception to measuring by total inflection point is 1995 and 1996 where
the laboratory value of alkalinity is the fixed-endpoint alkalinity value. For these years, we use inflection point alkalinity values
calculated by the Freshwater Ecology Unit, and reported in their 2006 data report [13].

9The map of the location of lakes is provided by the Freshwater Ecology Unit. Note that Whitson Lake, immediately

North-East of Sudbury, is the 44th lake in the SES study for which we do not have data.
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Figure 2: Location of SES Study Lakes in relation to Sudbury. The area

within the dotted lines identifies the zone of lakes affected by Sudbury

emissions.

lake surface. In its 2006 data report [13], the Freshwater Ecology Unit conducts an analysis of the difference

between water samples collected using the collected tube composite and surface grab sampling methods 10.

Of 22 chemical variables, they find significant differences in results for 8 of the variables, including pH,

which is significantly lower in tube composite samples. Since we are interested in determining how emissions

reductions influence the increase of pH over time, we recognize this change in sampling methods may cause

an upwards bias in our results 11.

Due to outliers in the measured chemical values, and some years in which alkalinity and pH were not

measured, there are 10 lakes for which one or both of the observations on pH and alkalinity are missing for

a single year. We choose to drop these years from the data set, thereby creating an unbalanced panel. Since

10The analysis of water samples is conducted using data from 15 Ontario Ministry of Environment long-term monitoring
lakes in Northeastern Ontario where the two collection methods were simultaneously used on sampling dates in the summer
stratified period. Comparisons between results from the mean grab and mean tube composite samples were conducted using
paired t-tests.

11While the change in sampling methods does create a potential bias, we hope it will be somewhat mitigated by the fact that
the majority of emissions reductions are observed prior to 1995. Total Sudbury emissions are reduced by 66.4% between 1981
and 1995, whereas the reduction between 1995 and 2004 is a more modest 14.6%.
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Table 1: Summary Statistics

Mean Std Dev Min Max N

Water Quality Variables: 1981

pH 4.87 0.35 4.13 5.76 43

Alkalinity -0.91 0.89 -4.40 0.46 42

Water Quality Variables: 2004

pH 5.57 0.52 4.66 6.47 43

Alkalinity 0.29 0.75 -1.06 2.14 43

Environmental Variables: 1981

Current Regulatory Cap (kt of SO2) 1082.23 - - - -

Future Regulatory Cap (kt of SO2) 882 - - - -

Total Emissions (kt of SO2) 837 - - - -

Lake Site Acid Deposition 21.4 20.6 6.54 104.63 43

Environmental Variables: 2004

Current Regulatory Cap (kt of SO2) 365 - - - -

Future Regulatory Cap (kt of SO2) 241 - - - -

Total Emissions (kt of SO2) 240 - - - -

Lake Site Acid Deposition 6.11 5.85 1.88 30.0 43

Lake Characteristics

Distance from Sudbury (km) 59.6 30 8 128 43

Direction from Sudbury (=1 Downwind) 0.58 0.5 0 1 43

Lake Area (hectares) 273.7 305.8 14.54 1316.45 43

Elevation (m) 300.4 73.5 189 486 43

Shoreline Length (km) 19.8 20.8 2.6 89.3 43

Maximum Depth (m) 31.1 17.4 8.0 90.3 40

Mean Depth (m) 9.3 4.8 3.8 24.1 39

Volume (x 104 m3) 3125.3 4032.4 83.0 17,621.0 36

Road Access (=1 Access) 0.35 0.48 0 1 43

No. Observations 1022

our estimation equations are dynamic, in addition to losing the observations from the year in which the

measurements are not taken, we must also drop from our sample the observations from the year immediately

following. This is because for those years we do not have data for the value of the lagged dependent variable

in the state equations. The result is that we drop from our sample 19 periods of observations12.

As noted previously, the acidification of Sudbury area lakes occurred primarily as a result of sulphur

dioxide emissions from nickel mining operations in the Sudbury area. The goal of the SES Programme was

to assess the impacts of emissions reductions from these operations on lake water quality, and to provide

12We drop only 19 observations because for one lake, the data is missing for the first period of observation, which is not
included in our estimation for any of the lakes. Therefore, for this lake, we only drop the observation for the following year.
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ongoing documentation of the recovery of lakes from acidification. Damage from acidification typically begins

to occur when the pH of a lake drops below 6.0. However, an observed pH of 5.5 or less was used to identify

lakes for inclusion in the SES study as this is the approximate threshold at which damage to acid-sensitive

sport fish begins to occur [13]. None of the lakes included in the SES Study were part of the region’s

Experimental Liming Program [23], so observed improvements in lake water quality over the study period

can be strictly attributed to emissions reductions. While not a random sample of all lakes impacted by SO2

emissions, the data are representative of those lakes that suffered significant biological damage, and which

are the primary targets of emissions reductions introduced to aid in the recovery of lakes from acidification.

The two major mining facilities in the Sudbury area are INCO and Falconbridge. Historically, INCO

has been the largest point source of SO2 emissions in North America, with peak emissions in the 1960s of

over 2200 kt of SO2 per year [22]. While substantially smaller than INCO, Falconbridge is still one of the

main pollution sources in Ontario, with peak emissions in the 1960s of around 300 kt per year. The first

environmental regulations introducing caps on the emissions of INCO and Falconbridge came into effect in

the early 1970s. From 1970−1980, INCO’s emissions were reduced by 59% and Falconbridge by 64%. The

major program introduced during the study period, however, was the Countdown Acid Rain Program, which

began in 1985. Relative to 1980 emission levels, it required both INCO and Falconbridge to achieve a 60%

reduction in their emission levels by 1994 [22]. These 1994 emission levels remained the standard through

to the end of 2005. Regulation in 2000, 2002 and 2004 set new caps that came into effect in 2006, and

provides annual emissions limits for both firms through 2015 ([19],[6],[11]). A summary of the current and

future emissions caps faced by INCO and Falconbridge at the start and end of the study period is provided

in Table 1 13.

Currently we only have data on annual sulphur dioxide emissions for INCO and Falconbridge. These data

are available from the Ontario Ministry of the Environment, and were provided by the Freshwater Ecology

13Our theoretical model assumes the regulator sets an annual emissions cap for each firm and that firms’ emissions are exactly
equal to this cap. This does not accurately reflect the regulatory environment in Sudbury where INCO and Falconbridge face
a single, current emissions cap extending between 2 and 10 years, and in most cases, a future emissions cap which they work
towards meeting during this time period. As a result, we often observe actual emissions that are significantly lower than the
current cap. To accurately model this scenario emissions from each firm must be defined as a state variable, where the state
equation describes observed emissions as a function of the regulator’s control variables, the current and future emissions caps.
We choose to follow previous literature in assuming emissions of firms are the control variable for the regulator. This is for
simplicity in solving the optimal control model, and is also due to the endogeneity problem that arises when estimating observed
emissions as a function of the current and future emissions caps.
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Figure 3: Regulated and Actual SO2 Emissions for INCO and Falconbridge, 1981− 2004

Unit. While INCO is much larger than Falconbridge, both firms had comparable emissions reductions of

approximately 73% between 1981 and 2004. We do not have specific information on the annual acid deposition

at each lake site resulting from sulphur dioxide emissions. To estimate depositions, we weight the annual

total emissions from INCO and Falconbridge by the inverse of the lake’s distance from Sudbury. Relating

this estimation method to the equation for depositions, equation 3, we are assuming the local regulated firms

are the only firms with emissions impacting the lakes, j = m14. We also assume cm is the same for both our

local firms, and is equal to the inverse of the distance from each lake to Sudbury. The distance measurement

is provided by the Freshwater Ecology Unit. Summary statistics for actual sulphur dioxide emissions, and

for the estimates of depositions at each lake site, are provided in Table 1. Figure 3 provides a comparison

between actual sulphur dioxide emissions and their regulated amount15.

Data on time-invariant physical characteristics of the lakes are also provided by the Freshwater Ecology

14There are additional firms located in other parts of Ontario, Michigan and the Ohio Valley with SO2 emissions impacting
the lakes around Sudbury. As a result of a number cross-border agreements for the reduction of acid depositions, many of these
firms will have undertaken similar emissions reductions to INCO and Falconbridge during our study period. The exclusion of
these firms’ emissions from our dataset will therefore result in an upwards bias in our estimation of the impact of a decrease in
depositions on pH.

15The downwards spike in emissions observed in 1982 is the result of a prolonged shutdown of the INCO and Falconbridge
smelters from June 1982 until March 1983. This was the combined result of a labor dispute at INCO, high energy prices and
low nickel prices.
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Unit. Characteristics available for all lakes are the direction of the lake from Sudbury (upwind or downwind),

lake area, elevation, shoreline length, and whether there is road access. For a subset of lakes, data is also

available for mean depth, maximum depth, and volume. The lake area and shoreline length was calculated

by the Freshwater Ecology Unit using the mapping software MapInfo, while the other data was collected

from a variety of available sources [13]. Summary statistics for data describing the physical characteristics

of the lakes are provided in Table 1.

5 Estimation & Results

Our objective is to estimate the parameters of the state equations for pH and alkalinity. We begin by assuming

the error components of each state equation are made up of two terms; εit and νit which are iid over i and

t, and αi and ηi, which are random variables that capture unobserved heterogeneity among the lakes. We

further assume strict exogeneity of the error terms, E [εit|αi,xi1, . . . ,xiT] = 0, E [νit|ηi,yi1, . . . ,yiT] = 0

where we let xit and yit be the vectors of right hand side variables in the state equations for pH and alkalinity

respectively. We expect the random variables, αi and ηi, will be correlated with the observed regressors xit

and yit, particularly the lagged values of the dependent variables in each state equation. This is because

certain time invariant characteristics of the lake, such as the types of soil or vegetation found on surrounding

land, may impact both the natural state of the lake, and the rate at which it recovers from acidification.

Therefore, the first model we estimate is a fixed effects model of the following form:

Pit = αi + β0 + β1Pi,t−1 + β2Di,t−1 + β3Li,t−1Di,t−1 + εit (17)

Lit = ηi + γ0 + γ1Li,t−1 + γ2Di,t−1 + νit (18)

Results from the estimation of equations 17 and 18, using the within estimator, are provided in column

(1) of Tables 2 and 3 respectively. The results from the estimation of both equations are mostly as expected.

The coefficients on the lagged dependent variables are positive, significant and less than 1, indicating the

state equations for pH and alkalinity are stable, and there is a general trend of improving water quality over

time. The coefficients on depositions are negative and significant, indicating that current values of pH and

alkalinity are increasing as lagged depositions decrease. Finally, the coefficient on the interaction between
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Table 2: State Equation for pH, Estimation Results

(1) OLS (2) AB (3) AB (4) AB (5) AB (6) AB (7) AB

Pi,t−1 0.6449 0.5798 0.5773 0.5409 0.5974 0.5941 0.5498
(0.0741)*** (0.0708)*** (0.0707)*** (0.0735)*** (0.0715)*** (0.0714)*** (0.0711)***

Di,t−1 -0.0085 -0.0097 -0.0116 -0.0300 -0.0854 -0.1063 -0.4274
(0.0018)*** (0.0034)*** (0.0040)*** (0.0167)* (0.0396)** (0.0431)** (0.3990)

Di,t−1 · Lt−1 -0.0004 -0.0015 -0.0015 -0.0010 -0.0162 -0.0164 -0.0101
(0.0002)* (0.0008)* (0.0008)* (0.0007) (0.0099) (0.0097)* (0.0094)

Di,t−1· Precipitationi,t−1 2.09e-06 2.18e-05
(1.52e-06) (1.07e-05)**

Di,t−1· Lake Areai -0.0000 -0.0014
(0.0000) (0.0013)

Di,t−1· Directioni -0.0171 -0.5264
(0.0096)* (0.2640)**

Di,t−1· Elevationi 0.0001 0.0023
(0.0001)* (0.0017)

Di,t−1· Shoreline Lengthi 0.0007 (0.0136)
(0.0006) (0.0210)

Di,t−1· Road Accessi -0.0127 -0.2833
(0.0058)** (0.1577)*

Constant 1.9665 0.0032 0.0031 0.0066 0.0064 0.0064 0.0058
(0.4228)*** (0.0031) (0.0031) (0.0045) (0.0026)** (0.0026)** (0.0026)**

Year Dummies Yes Yes Yes Yes Yes Yes Yes
Emissions Weighting Factor 1

Disti

1

Disti

1

Disti

1

Disti

1

Dist2
i

1

Dist2
i

1

Dist2
i

Observations 970 920 920 920 920 920 920
Number of Lakes 43 43 43 43 43 43 43

R-squared 0.83

Robust standard errors in parentheses, standard errors for the OLS regression are clustered by watershed
*, **, and *** represent significance at the 10%, 5%; and 1% level respectively

depositions and alkalinity in the state equation is also negative and significant, although only at the 10%

level. This is not the result we expect, since it suggests the greater the alkalinity, the greater will be the

increase in pH attributable to a decrease in depositions. One explanation, however, is that the lakes are

surveyed early in the recovery process, during which time alkalinity can be more responsive than pH to

changes in depositions. In this case, pH only starts responding to changes in deposition after alkalinity has

already been increasing, which is consistent with the negative sign on the interaction between depositions

and alkalinity.

The problem with the above estimation is that due to the lagged dependent variable in both state

equations, the strict exogeneity assumption is violated. Considering first the estimation of the state equation

for pH, the within estimator regresses (Pit− P̄i) on (Pi,t−1− P̄i) and (xit− x̄i). This generates an error term

(εit − ε̄i). By equation 17, Pit is correlated with εit, so Pi,t−1 is correlated with εi,t−1, and therefore Pi,t−1
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Table 3: State Equation for Alkalinity, Estimation Results
(1) OLS (2) AB (3) AB (4) AB (5) AB (6) AB (7) AB

Li,t−1 0.4858 0.4003 0.3858 0.3836 0.3783 0.3578 0.3447
(0.0959)*** (0.1217)*** (0.1158)*** (0.1252)*** (0.1323)*** (0.1241)*** (0.1353)**

Di,t−1 -0.0214 -0.0258 -0.0540 -0.0504 -0.2214 -0.4894 -1.0308
(0.0029)*** (0.0041)*** (0.0065)*** (0.0305)* (0.0542)*** (0.0749)*** (0.5522)*

Di,t−1· Precipitationi,t−1 3.1e-05 2.96e-04
(5.13e-06)*** (3.55e-04)***

Di,t−1· Lake Areai 0.0001 0.0016
(0.0001) (0.0024)

Di,t−1· Directioni 0.0054 0.2831
(0.0206) (0.4913)

Di,t−1· Elevationi 0.0001 0.0041
(0.0001) (0.0022)*

Di,t−1· Shoreline Lengthi -0.0014 -0.0279
(0.0016) (0.0382)

Di,t−1· Road Accessi 0.0005 (0.3009)
(0.0162) (0.3009)

Constant 0.2195 0.0059 0.0038 0.0105 0.0182 0.0187 0.0220
(0.0575)*** (0.0051) (0.0051) (0.0115) (0.0066)*** (0.0063)*** (0.0083)***

Year Dummies Yes Yes Yes Yes Yes Yes Yes
Emissions Weighting Factor 1

Disti

1

Disti

1

Disti

1

Disti

1

Dist2
i

1

Dist2
i

1

Dist2
i

Observations 970 920 920 920 920 920 920
Number of Lakes 43 43 43 43 43 43 43

R-squared 0.75

Robust standard errors in parentheses, standard errors for the OLS regression are clustered by watershed
*, **, and *** represent significance at the 10%, 5%; and 1% level respectively

is also correlated with ε̄i, implying the regressor (Pi,t−1 − P̄i) is correlated with the error term (εit − ε̄i). In

this case, consistency of the parameter estimates requires that T → ∞ since then the effect of εi,t−1 on ε̄i

becomes very small. However, in our dataset T is only equal to 25, so OLS estimation of the model leads to

inconsistent parameter estimates [2]. The same result holds for the state equation for alkalinity.

To obtain consistent estimates of the parameter values, we use the one-step Arellano-Bond estimator,

which is an IV variant of the first-differences estimator. The first differences estimator leads to the following

regression model for the state equations:

(Pit − Pi,t−1) = β1 (Pi,t−1 − Pi,t−2) + β2 (Di,t−1 −Di,t−2) + (19)

β3 (Di,t−1Li,t−1 −Di,t−2Li,t−2) + (εit − εi,t−1)

(Lit − Li,t−1) = γ1 (Li,t−1 − Li,t−2) + γ2 (Di,t−1 −Di,t−2) + (νit − νi,t−1) (20)

As with the within estimator, OLS estimation of these models will be inconsistent because the lagged

dependent variables are correlated with the error terms. However, if the error terms are not serially correlated
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then efficient estimation is possible using additional lags of the dependent variables as instruments [2]. Again

considering the state equation for pH, in any period t, the vector of instruments is defined by

zit = [Pi,t−2, Pi,t−3, . . . , Pi1, (Di,t−1 −Di,t−2), (Li,t−1Di,t−1 − Li,t−2Di,t−2)] (21)

Then the matrix of instruments is given by:

Zi =



















z′i3 0 . . . 0

0 z′i4 0

...
. . . 0

0 . . . 0 z′iT



















(22)

and the one-step Arellano-Bond estimator is defined by:

β̂AB =





(

N
∑

1=1

X̃′

iZi

)(

N
∑

i=1

Z′

iZi

)−1(
N
∑

i=1

Z′

iX̃i

)





−1
(

N
∑

1=1

X̃′

iZi

)(

N
∑

i=1

Z′

iZi

)−1(
N
∑

i=1

Z′

iP̃i

)

(23)

where X̃i is a (T−2) x 3 matrix with tth row ((Pi,t−1 − Pi,t−2), (Di,t−1 −Di,t−2), (Li,t−1Di,t−1 − Li,t−2Di,t−2)),

t = 3, . . . , T and P̃i is a (T −2) x 1 vector with tth row (Pit − Pi,t−1), t = 3, . . . , T [2]. The one-step Arellano-

Bond estimator for the state equation for alkalinity can be derived in an analogous fashion.

The results from the estimations of equations 19 and 20 using the one-step Arellano-Bond estimator are

provided in column (2) of Tables 2 and 3 respectively. In both state equations the coefficient on the lagged

dependent variable decreases, while the absolute value of the coefficient on depositions increases. We therefore

observe that in any period, a decrease in depositions will have a larger impact on lake water recovery than

previously indicated. In the state equation for pH, the coefficient on the interaction term between alkalinity

and depositions remains negative and significant at the 10% level, but its absolute value increases. This

further suggests the early data is capturing a beginning stage in the recovery process during which pH is

not readily responding to emissions reductions. In both estimations we cannot reject the hypothesis that

the average autocovariance in residuals of order 1 is zero, and we reject the hypothesis that the average

autocovariance in residuals of order 2 is zero only in the state equation for alkalinity. This indicates that

although our results are favorable, they must be interpreted with care as there is likely still an endogeneity

problem and therefore some bias in the estimated coefficients.

As discussed when previously deriving our theoretical model, we choose to ignore certain variable factors,

such as precipitation, in order to simplify the estimates of acid deposition, and thereby the solution of the
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optimal control model. We now check the impact of this simplifying assumption by adding to both regression

equations an interaction term for lagged precipitation and depositions. We use data on annual precipitation

which includes total rain and snowfall. Due to the remoteness of many of the lakes, we only have data from

two weather stations, one which is representative of the lakes located South (upwind) of Sudbury, and a

second that is representative of the lakes located North (downwind) of Sudbury. For each lake, we interact

the lagged annual precipitation from the appropriate monitoring site with the estimate of lagged depositions

at that lake. The results from estimating our regressions with this added term are given in column (3) of

Tables 2 and 3. In the estimation of both state equations, the direct effect of precipitation on the impact

of depositions is negligible, with the coefficient on the interaction term virtually equal to zero, although not

significant in the state equation for pH. The inclusion of the additional term, however, does alter the previous

results. In the state equation for pH, the coefficient on lagged pH slightly decreases, while the coefficient on

depositions decreases. We observe the same results in the state equation for alkalinity, although the effects

are larger, with the coefficient on depositions almost doubling with the inclusion of the precipitation term.

Similar to lakes that are recovering from eutrophication, a lake that is recovering from acidification may

be either reversible, hysteretic, or irreversible. In addition, some lakes may be acidified in their natural state,

in which case we would not expect to observe a significant recovery over time. We do not directly observe

which of the study lakes fall into each of these categories, however, there are large differences in the recovery

rates of lakes. The pH of the most improved lake increases by 1.97 between 1981 and 2004, while the pH of the

least improved increases by only 0.14. To better understand these differences, and the impact of specific lake

characteristics on water quality recovery, we add to both regressions interaction terms for lagged depositions

and a set of time invariant lake characteristics16 . In the results presented in column (4) of Tables 2 and

3, we include characteristics available for all lakes − direction from Sudbury, lake area, shoreline length,

elevation, and whether there is road access. In the state equation for alkalinity, addition of these variables

has only a small effect. None are significant, and the impact on estimation of the variables from the original

state equation is almost identical to that from adding the precipitation term. We observe more significant

16With eutrophication of lakes, a significant variable in this context is depth. Often referred to as the shallow lakes problem,
shallow lakes are more likely to be either hysteretic or irreversible as they tend to have higher rates of phosphorous recycling,
making them unresponsive to phosphorous input controls [3]. We are interested in seeing if there are any similar characteristics
of acidified lakes that are significant in determining how and whether they recover from acidification.
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results in the state equation for pH. The coefficient on direction from Sudbury is negative and significant,

indicating that as expected, a decrease in depositions has a greater effect on the pH of lakes that are down

wind of Sudbury. The coefficients on elevation, and whether there is road access are also characteristics that

significantly change the impact of depositions on pH. With inclusion of these extra variables, the coefficient

on estimated depositions more than triples, while the coefficient on the interaction between alkalinity and

weighted emissions is no longer significant. As this coefficient was previously only significant at the 10% level

and we have gotten an unexpected negative sign in all our regression results, this suggests the interaction

between pH, alkalinity and depositions is not well identified in our data. A contributing factor to this is

likely that the recovery of lakes from acidification will often take much longer than 25 years. Therefore, our

time period of observations may be too short to accurately identify the relationship between pH, alkalinity

and depositions as the lake converges to its natural state.

We also estimate the equations using the full set of characteristics available for only a subset of the lakes.

However, we do not report these results here as they are not readily interpretable. In the state equation for

pH, the only significant variable is the coefficient on lagged pH and the interaction between depositions and

road access, while in the state equation for alkalinity the only significant variable is the coefficient on lagged

alkalinity. We suspect the lack of results in this estimation may be due to the reduced sample size since we

use observations for only 36 lakes. To check this, we re-estimate the regressions reported in column (4) of

Tables 2 and 3 using only data from the 36 lakes for which all characteristics are available. We again find

the only significant parameters are the lagged dependent variables, and the interaction of road access with

depositions in the state equation for pH. This suggests the smaller sample size is driving the lack of results

when we include the additional lake characteristics as dependent variables.

As discussed in our data section, we do not have accurate information on annual acid depositions at each

lake site, and therefore do not have a good estimate of cm. We use as a rough estimate the inverse of the lake’s

distance from Sudbury. To see how our results change using an alternative estimate for cm, we re-estimate

our three Arellano-Bond regressions using the inverse of the lake’s squared distance from Sudbury as the

estimate for cm. The results from these regressions are reported in columns (5) through (7) of Tables 2 and

3. They are qualitatively similar to those previously found. The coefficient on the lagged dependent variable
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is positive, significant, and less than one in all three specifications. The coefficient on depositions is negative,

and increases as additional terms are added to the state equations. It is also significant in all estimations

except the final specification of the state equation for pH. The coefficient on the interaction term in the

state equation for pH remains negative, although in this case it is only significant in the specification where

the interaction of lagged depositions and precipitation is included. Finally, we again find the coefficient on

the interaction term of lagged depositions and precipitation is virtually zero, while the coefficients on the

interaction terms of lagged depositions and lake characteristics are generally not significant.

With the alternative estimate of cm we do find a large difference in the estimated marginal effect of a

decrease in emissions on pH and alkalinity. Using the inverse of the distance from Sudbury as the estimate

of cm, for a lake that is located 60 km from Sudbury, the original state equation indicates a 10 kt decrease

in emissions will increase pH by 0.02, and alkalinity by 0.043. With the inverse of the squared distance from

Sudbury as the estimate of cm, however, the estimate of the increase in pH is only 0.0023, and for alkalinity

is 0.0062. On average, for the three specifications of the state equations, using the inverse of distance rather

than distance squared as the estimate of cm increases the estimate of the marginal effect of depositions on

improvements in pH and alkalinity by approximately six times. This suggests that more work must be done

in either identifying a more accurate method for estimating cm, or in testing to see which of our current

estimates is most appropriate.

6 Conclusion

The acidification of freshwater lakes continues to be a significant environmental problem in many areas of

the world. The problem of how to optimally implement emissions reductions that will lead to their recovery

therefore remains a relevant policy question. We develop a framework for an optimal control problem that

seeks to answer this question. A define a social welfare function that is maximized by a social regulator who

must balance the cost of imposing emissions reductions on firms against the social disutility resulting from

the existence of acidified lakes that are unable to support aquatic life. The change in water quality over time

is described by two state equations which measure how the pH and alkalinity of the lake water respond to

emissions reductions by firms. The parameters of the state equations are estimated using the Arellano-Bond
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estimator, and the results are mostly consistent with the theoretical model of lake recovery.

The main contribution of this paper is in the development of a model that considers the acidification

dynamics of freshwater lakes, and the role of emissions reductions in the recovery of lakes from acidification.

As outlined above, however, there remain numerous research questions that we must address before we can

derive a solution to the optimal control model. While we do not attempt to address these questions here,

we do provide a reasonable starting framework for further work.
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