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1. INTRODUCTION

We model a class of games that are naturally described asaggregation games. There is a finite col-

lection of players. Each player is characterized by two parameters: the first is a privately observed

signal, identified with the player’stype; the second is an observable characteristic, such as a voting

record, profession, income or location. Players’ types arecontinuously distributed on a compact

interval; the distribution of types is common knowledge. Players simultaneously observe their sig-

nals, then submit reports to a central authority, who makes adecision which affects all of them.

Reports are rejected unless they lie in a prespecified compact interval. The authority’s decision

rule is fixed and commonly known. The defining property of an aggregation game is that two of its

key components—the center’s decision and players’ utilities—depend on players’ realized types

only through the mean of these realizations. More formally,a player’s strategy in an aggregation

game is to make a report based on his type. The center maps the mean of these reports, paired with

the vector of observable characteristics, to some interval. Each player’s utility depends on his own

observable characteristic, the center’s decision and the mean of players’ privately observed signals.

Our model has at least two alternative interpretations. Thefirst is Bayesian: the center treats play-

ers’ type reports as a sample of signals drawn from a distribution whose unknown mean is payoff

relevant. Under this interpretation, the distribution of player types is the marginal joint distribution

of the sample data. The center’s decision rule depends on themean of players’ announcements,

which it treats as an estimate of the unknown population mean. Each player’s utility depends on

the center’s choice, as well as the (unobservable) mean of all players’ signals, which is a sufficient

statistic for the population mean of the signal distribution. The third argument of a player’s utility

is his own observable characteristic, which is the individual’s subjective bias relative to the best

available estimate of the truth.

In our second, non-statistical interpretation, the centeraggregates information but does not draw

inferences from it. Again, each player’s type is the realization of a random variable, but in this case

each realization is interpreted as the true value of a singlecomponent of some vector. As before,

the center’s decision is based on the mean value of players’ reported types, which is in this case

interpreted as a summary value of a composite assessment. The utility that each player associates

to the vector depends on this summary value, but is also subject to idiosyncratic bias.
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This paper contributes to an extensive literature on information aggregation that goes back to Con-

dorcet (1785). A common theme of this literature, reviewed in Sec. §2, is that individuals send

messages to the center, which are somehow aggregated and mapped to an outcome that affects

everybody. The question is then asked: how well does the aggregation process work? Specifically,

under what circumstances does the resulting outcome coincide with the one that would have been

selected by a aggregate-welfare-maximizing decision maker with full access to the private infor-

mation on which agents base their messages? The institution/aggregation mechanism which has

been examined most thoroughly is majority rule, especiallyin the context of elections. We ex-

amine an alternative mechanism—report averaging. While averaging is arguably more significant

in practice than majority rule as a tool for making decisions, the former has received much less

attention from researchers than the latter.

Increasingly many institutions in modern economies use report averaging to aggregate informa-

tion provided by industry or market participants. This paper studies the incentives facing an agent

participating in such an institution to misreport her information, when she has an interest in the

outcome of the aggregation process. For example, if an agenthas a bias in favor of outcomes

that exceed the one that maximizes aggregate welfare given agents’ aggregate private information,

she then has an incentive to upwardly bias her reports; that is, she can be expected to “rationally

exaggerate” her information. Indeed, there have been widespread concerns about attempts to ma-

nipulate the outcomes of a variety of report-averaging institutions. For economists schooled in

mechanism design, a natural response to these concerns is tofocus on the design of incentive

schemes that would reverse engineer via the revelation principle the mis-reporting process. In

practice, however, mechanistic report-averaging has proved extremely resilient as an aggregating

instrument, in spite of its obvious deficiencies. Indeed, the aggregation institutions we discuss

below are necessarily non-strategic, because the economicactors that utilize their products require

them to be so. In many industries, a single aggregator becomes the scorekeeper upon which all

users rely. The groundrules upon which these aggregators’ existence is premised require them

to provide their patrons and/or their clients with mechanical, transparent service which is passive

rather than strategic. Accordingly, real-world information aggregators have responded to concerns

about manipulation of their processes either by eliminating outlier reports or by attempting to en-

force compliance in various ways, rather than to adopt more sophisticated aggregation tools in
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which the center acts strategically. Since report averaging is clearly a robust institution in modern

economies, our focus in this paper is on the implications of exaggeration when the center acts

non-strategically.

1.1. Empirical examples of information aggregation by averaging. Judged by its financial im-

pact, by far the most significant example of information aggregation by averaging is the process

by which LIBOR is determined.1 MacKenzie (2008) estimates the value of financial contracts

whose interest rates are based on Libor to be approximately $300 trillion. Every weekday, eight

to sixteen leading banks submit estimates to Thomson Reuters of the interest rates at which they

could borrow money from other banks for various durations.2 Reuters discards the lowest and

highest quartiles of the estimates it receives, and declares the average of the remaining estimates

to be the daily Libor rate for that currency/duration. This method of determining Libor rates has

been widely criticized as manipulable. In an influential WSJarticle, Mollenkamp and Whitehouse

(2008) argued that during the recent financial crisis, several banks were reporting borrowing costs

that were significantly lower than their true costs, in orderto appear more financially sound than

they in fact were. Snider and Youle (2010) provides persuasive documentation of exaggeration,

presenting “suggestive evidence that misreporting incentives are partially driven by member bank

portfolio positions” (p. 3). In spite of extensive calls forreform, the institutional underpinnings of

Libor remain basically unchanged.

Our model can be viewed as a stylized representation of the LIBOR rate determination process,

although simplified in one important respect. The players inour model are the contributing banks;

the center is Thomson Reuters; the player’stype is a summary statistic for the bank’s private

information about market conditions relating to interest rate determination; the player’s observable

characteristic is a parameter indicating whether the bank has a bias relative to the industry in favor

of a higher or lower interest rate for a particular duration.Since this indicator of bias will typically

depend on public information such as balance sheet considerations and portfolio positions, it is

natural to model it as commonly known. Our model simplifies the Libor process by assuming

1“Judged by the amount of money directly dependent on it, the British Bankers’ Association’s London Interbank
Offered Rate (LIBOR) matters more than any other set of numbers in the world” (MacKenzie, 2008).
2Banks’ reports are responses to the following question: “Atwhat rate could you borrow funds, were you to do so
by asking for and then accepting inter-bank offers in a reasonable market size just prior to 11 am?” (British Banking
Assoc, n.d.)
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that a contributor’s report will be accepted or rejected with certainty, depending on whether or

not it belongs to an exogenously specified interval; by contrast, the (ex ante) probability that a

particular bank’s actual Libor quote will be accepted is endogenously determined, depending on

the location of theex anteunknown boundaries of the interquartile range. This distinction will be

less significant, the greater is the extent to which banks canpredict the location of these boundaries.

In fact, it appears that they can do so with some accuracy. Snider and Youle (2010) find strong

evidence that Libor quotes are “bunched” at the ex-post boundaries of the inter-quartile range:

moreover, they present evidence that banks with financial incentives to raise (lower) Libor rates

submit quotes near the upper (lower) boundaries of this range.

Many other important indices are computed by averaging the reports provided by interested parties

to a central “scorekeeper.” The Baltic Dry Index (BDI) is considered to be one of the purest

leading indicators of economic activity (Gross, n.d.).3 It is determined by aggregating the responses

by shipping brokers to daily questions about how much it would cost to book various cargoes

of raw materials on various routes. Like Libor, the BDI anchors many financial contracts: for

example, bulk shippers and carriers regularly trade “freight forward contracts” linked to the BDI,

to hedge against movements in spot freight rates (Leach, 2010). Since the index is maintained by

and for professionals in the shipping business, brokers clearly have incentives to manipulate it by

exaggerating their daily responses. In fact, however, the index is generally regarded as extremely

reliable (Hansen, n.d.).

By contrast, the natural gas price index computed by Platts,a source of benchmark price assess-

ments for physical energy markets, was famously distorted between 2001 and 2005 as a result of

exaggerated reports. The Commodity Futures Trading Commision (CFTC) levied fines totaling

$350 million in actions against energy suppliers alleging attempted manipulation of the price of

natural gas. Most of these cases focused on attempted manipulation by falsely reporting natu-

ral gas trading information to energy index firms such as Platts. The affected Platts reports sent

false signals to other market participants that supplies were significantly tighter than expected, and

prices rose dramatically as a consequence (USGAO, 2007; Jickling, 2008). Several Enron exec-

utives were jailed as a result of the CFTC’s investigations,and Platts was obliged to redesign the

3“It represents the cost paid by an end customer to have a shipping company transport raw materials across seas on
the Baltic Exchange, the global marketplace for brokering shipping contracts” (Wikinvest, n.d.).



-5-

data acquisition procedure on which its natural gas price index was based, to rely less on industry

reports, and more on verifiable data.

Under the Agricultural Marketing Act of 1946, the USDA’s Agricultural Marketing Service (AMS)

has been collecting livestock and meat price and related market information on a voluntary ba-

sis. Again, there is evidence of rational exaggeration by information providers. Koontz (1999),

comparing voluntary AMS price reports against transactionprices from objective sources, found

evidence that voluntary reporting was inefficient during times when prices were changing appre-

ciably. In particular, the fed cattle price range reported by USDA did not increase fast enough

with rising prices, nor decline fast enough with declining prices. He concluded that this could be

a result of selective price reporting by both meat packers and feedlots when markets were moving

against them.

In all of the examples discussed above, the number of agents that contribute reports is relatively

small. In other instances, the number of report contributors is much larger. For example, the aver-

age of students’ evaluations of their professors play an increasingly important role in academics’

tenure and promotion decisions. Contingent valuation studies aggregate the opinions of multi-

ple responders in order to assign values to non-market resources such as environmental goods,

and to assess the damage due to contamination, oil spills, etc (Carson, Flores and Meade, 2001).

Increasingly, consumers rely on summary indicators provided by online services such as Yelp,

Trip Advisor, Rate My Professor, etc., which aggregate reviews contributed by multiple patrons of

movies, restaurants, hotels and a host of other goods and services.

1.2. Structure of the paper. The paper is organized as follows. A † sign after the title of a

proposition indicates that its proof is in the appendix. When propositions follow immediately from

arguments in the text, formal proofs are omitted. For concreteness, we will sometimes refer to the

players in our game as “right-wingers” and “left-wingers,”and distinguish between moderates and

extremists. Right-wingers want to distort to the right the average signal that the center receives,

and extremists want to distort more than moderates.

Sec. §2 relates our model to the literature. In §3 we introduce our model in its most general form

and prove that every aggregation game has a pure strategy equilibrium in which players’ strategies

are monotone in their types. This result highlights the pivotal role in our model played by the
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bounds imposed on acceptable reports. In the absence of suchbounds, unless all players have

ex anteidentical characteristics, right- and left-wingers wouldengage in an endlessly escalating

tug-of-war: the former would distort their signals furtherand further to the right, in order to offset

increasingly magnified leftward distortions by the latter.A central result of our paper is that when

players are heterogeneous, all but at most one must be constrained with positive probability by one

of the boundaries, in order to break this diverging cycle. Thus, some degree of information loss is

a necessary condition for equilibrium.4 Sec. §4 demonstrates that incentives to mis-report do not

arise when players haveex anteidentical characteristics. In §5-§7, we focus on small “quadratic”

games. The ultimate goal in these sections is to explore how the information losses due to boundary

constraints depend on fundamental parameters. In order to obtain determinate comparative statics

results, we impose further restrictions: we assume that players’ utilities are “biased quadratic loss

functions.”5 In §5, we develop machinery that will be applied in the comparative statics analysis

in §6 and §7. Every quadratic game has a unique pure strategy equilibrium, in which a player’s

unconstrainedstrategy is an affine function of his type.

Quadratic games are particularly tractable when there is one player whose affine strategy is never

constrained by the announcement bounds. We call this playerthe “anchor” and identify a class

of games called anchored games. In §6, we studyn-player anchored games that are symmetric in

a strong sense: there is a right-wing faction and a preciselysymmetric left-wing faction. Several

of the properties of these games are quite striking. Outcomes, payoffs and aggregate welfare are

all independent of the bounds on the announcement space, provided these bounds contain the type

space and preserve symmetry. To explore in a controlled environment the effect of increasingn, we

clone repeatedly a small set of players until the point at which some players are constrained with

probability one, thus generating a finite sequence of increasingly large games. If the type distribu-

tion is uniform, players’ payoffs initially decline due to increased information losses; eventually,

however, this decline is reversed as the law of large numbersasserts itself and players’ distortions

tend more and more to offset each other. We also investigate the impact of player heterogeneity:

4The role of a compact message space in limiting information transmission has been noted in the literature, in contexts
that differ from ours. See for example, Ottaviani and Squintani (2006).
5We use the term “biased quadratic loss function” to denote a loss functionL(x, x̄,b) = −((x̄+b)−x)2. in which the
target value is the truth ¯x plus a biasb. This specification is standard in the costless informationtransmission literature.
See for example Crawford and Sobel (1982) and Morgan and Stocken (2008), and the references cited in their fn. 10.
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intuitively, payoffs decline as heterogeneity increases.However, if initially the two factions are

sufficiently polarized, payoffs will actually increase when we increase the heterogeneity of each

faction, holding constant the faction means. §7 studies a quite different class of anchored games,

in which the upper bound on the announcement space is so high that it never binds in equilibrium.

Games in this class are anchored by the player with the highest observable characteristic. In spite

of the obvious structural differences, this class of games has properties that are remarkably similar

to those of symmetric games. In §8, we examine the propertiesof our model when the number of

players increases without bound. (The games examined in §8 are much larger than the largest ones

considered in §6.) A recurring theme in the information aggregation literature is that political insti-

tutions such as elections effectively aggregate private information when the number of participants

is very large. Based on this literature, one would expect that since players’ signals are i.i.d. around

an unknown population mean, our model with a large number of players would implement with

probability approaching one an outcome very close to this mean. In fact, however, the outcomes

in our model converges to a constant which is weighted average of the lower and upper bounds

on admissible reports; the weight depends only on the proportion of right-wingers to left-wingers,

and is independent of the population mean. Thus, the relationship between signals and outcomes

becomes more and more tenuous as the relationship between signals and the true state becomes

more and more clearcut. In the limit, the impact of players’ aggregated private information on

outcomes is entirely obliterated. Sec. §9 concludes.

2. RELATED LITERATURE

In assessing the prior literature, it is helpful to classifyit along three dimensions. The first dis-

tinguishes between models of majority rule versus averaging mechanisms; the second between

models in which players’ preferences prior to receiving their private signals are homogeneous or

heterogeneous; the third between choice sets containing either two or a continuum of options. We

discuss a small selection of papers that relate most closelyto our analysis.6

The related literature focuses primarily on the informational efficiency of voting under majority

rule. The classical Condorcet Jury Theorem established conditions under which, when voters

with identical preferences select non-strategically (orsincerely) between two alternatives based on

6Piketty (1999), Gerling et al. (2005) and Dewan and Shepsle (2008) all survey the literature quite extensively.
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their private information, and the majority prevails, thenas the number of voters increases with-

out bound, information is in the limit perfectly aggregated, in the sense that the majority’s choice

coincides with the choice that would be taken if all private information were publicly available.

(Feddersen and Pesendorfer (1997) [FP] later call this property “full information equivalence.”)

Austen-Smith and Banks (1996) [AB] study the relationship between sincerity and rationality.

Under majority rule, rationality dictates that one should decide how to vote conditional on the

presumption that one’s vote is decisive (orpivotal). Conditional on being pivotal, one can make

inferences about the distribution of other players’ realized signals and thus about the true state of

the world. Rationality requires that these inferences be taken into account when deciding how to

vote. AB then show that for three very simple specifications,voting sincerely is, except in very

special circumstances, incompatible with votinginformatively, i.e, in a way that depends nontriv-

ially on one’s private signal. While AB focused on small games, FP explores the implications

of pivotality in large ones. FP’s specification of players’ preferences is quite similar to ours, ex-

cept that their center chooses between two alternatives according to majority rule.7 FP consider

a sequence of games in whichn increases without bound; when players condition on pivotality,

their limit game exhibits full information equivalence. This property is quite robust. For example,

McLennan (1998) considers sequences of games with increasingn in which players have common

preferences; full information equivalence again holds in the limit under very general conditions.

Lohmann (1993) identifies conditions under which the same property holds when players demon-

strate rather than vote.

As we noted in §1, matters are quite different when the centeraverages players’ reports rather

than applies majority rule. A major source of the differenceis that pivotality no longer plays any

role, since the leverage that an individual has on the center’s decision is now independent of the

actions taken by other players. Consequently, players simply condition their actions on their private

signals, just as they do under Condorcet’s sincere voting. One of very few papers that focuses

exclusively on the averaging mechanism is Morgan and Stocken (2008) [MS]. MS’s constituents,

who have varying degrees of bias, are polled about the state of the world. Each one receives a

binary signal about this state, and sends one of two possiblereports. The center aggregates these

reports and chooses a policy accordingly. A right-winger who receives a left-favoring signal is

7A second difference is that our players’ biases are publiclyknown while theirs are private information.
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tempted to mis-report in order to bias the center’s decisionto the right. If n is small enough,

he will be deterred from doing so by the possibility that he might over-shoot, shifting the policy

to the right of his preferred location. Asn increases, the possibility of overshooting diminishes

along with each individual’s leverage over the ultimate policy decision, so that more and more

constituents vote according to their biases rather than their information.

MS demonstrate that even whenn is large, full information equivalence can be restored through

stratified sampling: by eliminating the responses of those identifiable as strongly biased based

on observable criteria, the center in effect limits the sizeof the game, restoring the remaining

centrists’ leverage over the outcome, which induces them torespond based on their realized in-

formation rather than their biases, in order to avoid overshooting. MS and our paper are similar

in many respects. In particular, both highlight the negative impact on information transmission of

the averaging mechanism. The primary difference between MSand our paper is that their players

make a binary choice while our players receive signals and select responses from a continuum of

options. Overshooting is not a deterrent in our model; our players can mis-report to whatever ex-

tent they desire, except when they are constrained by the announcement bounds. More important,

the notion ofrational exaggeration, which is central to our paper, has no meaning when agents

make binary choices.

Gruner and Kiel (2004) [GK] compare the performance of gamesin which the center chooses

either the median or the mean of players’ reported private information. Their median model cor-

responds to majority rule; their mean model corresponds to our averaging mechanism. In contrast

to the papers discussed above, GK’s players choose from a continuum of reports rather than make

a binary choice. In contrast to our model, the biases of GK’s players are proportional to their

private signals; with this non-standard assumption, GK canobtain existence without requiring the

announcement space to be compact. GK’s formal results focusexclusively on the relationship be-

tween the magnitude of players’ biases and the relative performance of the two mechanisms. Their

major conclusion is that the mean mechanism outperforms themedian iff agents’ biases are suffi-

ciently small. Indeed, as in our paper, the mean mechanism achieves the first best when all biases

are zero. While they do not study formally the comparative statics effects ofn, GK do provide

examples showing that with biased players, the performanceof the mean mechanism deteriorates

asn increases from 3 to 7.
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GK’s examples illustrate nicely some of the themes that are central to this paper. The mean dom-

inates the median when players have common interests because the former utilizes all reported

information and agents have no incentive to misreport; by contrast, the median mechanism utilizes

only the reported information that the median player provides, so that perfectly good information

is ignored. When players have significant biases, however, this strength of the mean mechanism is

also its weakness, which is exacerbated asn increases. As noted, an individual’s leverage over the

center’s decision declines withn, requiring more and more exaggeration in order to accomplish a

given shift; in addition, under the mean mechanism, there isthe “tug-of-war” aspect of exaggera-

tion that we discuss above on pp. 5-6.8 Both effects diminish the accuracy of reported information.

Under the median mechanism, on the other hand, the median player has one-to-one leverage: she

does not have to engage in a tug-of-war with other players; nor is her leverage diluted byn. Since

players under this mechanism condition their reports on being pivotal (i.e., on being the median

player), the information they report is much closer to the truth.

Still another framework is presented by Razin (2003), in which an electorate with common prefer-

ences chooses between two candidates. Each voter receives aprivate signal that is correlated with

the ideal policy location. The winning candidate treats themagnitude of his victory as a guide for

setting policy. Because both candidates have ideological biases, while the population is ideologi-

cally neutral, the policy that would be selected if all private information were revealed would be

extreme relative to the electorate’s common bliss point. Depending on the degree to which candi-

dates are polarized, and the responsiveness of their policychoices to election results, there will be a

conflict between voters’ motivation to select the more appropriate candidate, conditional on being

pivotal, and their unconditional motivation to correct forthe winning candidate’s ideological bias.

From our perspective, the primary interest of Razin’s paperis that it melds into one mechanism the

averaging and majority rule mechanisms that we seek to compare.

3. THE MODEL

An aggregation game is an incomplete information simultaneous-move game amongn players,

indexed byr = 1, . . . ,n. For anyxxx∈Rn the symbolµ(xxx) will denote the average ofxxx’s components.

8Ortuno-Ortin (1997) examines the incentives to exaggeratein a model of elections with proportional representation.
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Player characteristics: We assume that each player is characterized by anobservable charac-

teristic and a type. Player r ’s type is θr ∈ R, which is his private information. We assume

that theθr ’s are identically, independently and continuously distributed on the compact interval

Θ ≡ [θ,θ] ⊂ R, with θ > θ. Let h(·) denote the density, andH(·) the c.d.f., of players’ types.

Let ΘΘΘ = Θn denote the space oftype profiles, with generic elementθθθ. Similarly, letΘΘΘ−r = Θn−1

be the space of types for players other thanr, with generic elementθθθθθθθθθ−r . For θθθθθθθθθ−r ∈ ΘΘΘ−r , let

hhh−r(θθθθθθθθθ−r) = ∏i 6=r h(θi). When we integrate w.r.t. either playerr ’s type or all other players’ types,

we will use, respectively, the variantsϑr andϑϑϑ−r of θr andθθθθθθθθθ−r to distinguish dummy variables of

integration.

Playerr ’s observable characteristic is denoted bykr ∈ R and is interpreted asr ’s bias w.r.t. re-

vealed information: a player whose characteristic is positive prefers the center to over-estimate the

mean of players’ types. We refer to the vectorkkk = (kr)
n
r=1 as theobservable characteristic pro-

file. To avoid special cases and/or additional notation:, we impose two restrictions on observable

characteristics: players’ biases cancel each other out in the aggregate and they are distinct.

Assumption A1: (i) ∑i ki = 0; (ii) i 6= r =⇒ ki 6= kr .

Restriction (i) yields a clean expression for welfare while(ii) ensures uniqueness. Part (ii) will be

relaxed in §4 as well as §6.1 and §7.1.

The utility function: Theutility function is a mappingu : T ×ΘΘΘ×R → R, whereT ⊂ R is com-

pact. The scalar first argument ofu can be interpreted as the decision taken by a central authority,

in response to information provided by the players:u(τ,θθθ,k) is the utility to a player with ob-

servable characteristick, when the central authority’s decision isτ and the vector of unobservable

characteristics isθθθ. The essence of an aggregation game is that a player’s type affects his utility

only through its effect on the average of all players’ types.Specifically, we impose

Assumption A2: µ(θθθ) = µ(θ′θ′θ′) =⇒ u(τ,θθθ,k) = u(τ,θ′θ′θ′,k)

In the formal development below, we will, depending on whichis more convenient, write the

second argument ofu either as the vectorθθθ or the scalarµ(θθθ).

Pure strategies: Reports are rejected by the center unless they belong to a prespecified compact

interval, denoted byA = [a
¯
, ā]. Given the structure of our model, a player whose unconstrained
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optimal report exceeds ¯a necessarily weakly prefers to have a report of ¯a accepted than to have

his report rejected. Accordingly, to streamline the exposition, we impose as a restriction that each

player must choose a report inA. Formally, we define apure strategyfor playerr to be a function

sr : Θ → A, wheresr(θr) denotes the announcement of playerr when his type isθr . (Henceforth,

the symbolsr will denote afunction from types toA, while ar will denote a particular value of

sr(θr).) The vectorsss = (s1, ...,sn), called apure strategy profile, is thus a mapping fromΘΘΘ to

A = An. A pure strategysr(·) is said to bemonotoneif it is nondecreasing and strictly increasing

except whensr(·) is at the boundary ofA. Since the spaceA is bounded both above and below, ifsr

is monotone, there exists alow threshold typeθ
˜

r ∈ [θ,θ] and ahigh threshold typẽθr ∈ [θ,θ] such

thatsr equalsa
¯

on [θ,θ
˜

r), is strictly increasing on(θ
˜

r , θ̃r) and equals ¯a on (θ̃r ,θ].9 Formally,

θ
˜

r(sr) =





θ if sr(θ) > a
¯

sup{θ ∈ Θ : sr(θ) = a}̄ if sr(θ) = a
¯

, (1a)

θ̃r(sr) =





θ if sr(θ) < ā

inf {θ ∈ Θ : sr(θ) = ā} if sr(θ) = a
¯

. (1b)

The outcome function: Theoutcome function, t : An×Rn → R+, maps player announcements and

the vector of observable characteristics to actions by the central authority. Our center aggregates

information mechanically rather than strategically. Indeed, we restrict outcome functions to be

complete information socially efficient (CISE), meaning that if players were to truthfully reveal

their types on average, the outcomet would maximize social welfare, defined as the average of

players’ individual utilities. That is, defining thesocial welfare functionas

w(τ,θθθ,kkk) = ∑
i

u(τ,θθθ,ki)/n, (2)

the CISE outcome function ist(θθθ,kkk) = argmaxw(·,θθθ,kkk). We refer to an outcome implemented by

a CISE outcome function as aCISE outcome. It follows from assumption A2 that CISE outcomes

9Either one of the half-open intervals can be empty. For example, if sr(·) > a
¯

on Θ then the interval[θ,θ
˜
r(sr)) is

empty.
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depend on players’ announcements only through their average, i.e.,

µ(aaa) = µ
(
a
′

a
′

a
′) =⇒ t(aaa,kkk) = t(a′a′a′,kkk) (3)

Once again, we will write the first argument oft as either ann-vector or its average, depending on

convenience. Also, sincekkk is typically fixed, we will often omitt ’s second argument.

Player’s expected payoff functions: Player r ’s expected payoff function,Ur , maps his own an-

nouncement and type into his utility, given other players’ strategies. Our expression forUr sup-

pressesr ’s observable characteristic and the outcome function. Formally, given a profile,sss−r , of

strategies for players other thanr, playerr ’s expected payoff functionUr : A×Θ → R+ is

Ur(a,θ;sss−r) =
Z

ΘΘΘ−r

u
(
t
(
(a,sss−r(ϑϑϑ−r)),kkk

)
,(θ,ϑϑϑ−r) ,kr

)
dhhh−r(ϑϑϑ−r). (4)

In what follows, the derivative∂Ur
∂a will play an important role; when confusion can be avoided, we

will abbreviate this expression toU ′
r .

Equilibrium: A monotone pure strategy Nash equilibrium(MPE) for an aggregation game is a

monotone strategy profilesss such that for allr, θ ∈ Θ, anda∈ A, Ur(sr(θ),θ;sss−r) ≥Ur(a,θ;sss−r).

We make the following additional assumptions throughout the paper.

Assumption A3: The density,h(·), of players’ types is bounded.

Assumption A4: The utility functionu is bounded and thrice continuously differentiable. For
eachk andµ(θθθ), u(·,µ(θθθ) ,k) is strictly concave.

Assumption A5: For all (τ,µ(θθθ) ,k), (i) ∂2u(τ,µ(θθθ),k)
∂τ∂µ(θθθ)

> 0, and (ii) ∂2u(τ,µ(θθθ),k)
∂τ∂k > 0.

Assumption A6: For all k andθθθ, u(t(·,kkk),µ(θθθ) ,k) is strictly concave inµ(aaa), the average of
players’ announcements.

Some additional assumptions will be introduced later. Whenever a list of assumptions is not ex-

plicitly included in the statement of a proposition below, this means that A1-A6 are satisfied.

Assumptions A4 and A5(i), together with the fact thatt(·) is CISE, imply that:

t(·,kkk) is strictly increasing and continuously differentiable inµ(aaa). (5)
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Assumption A6 implies that

Ur is strictly concave w.r.t. its first and third arguments. (6)

Assumption A3 is required to ensure that pure-strategy equilibria exist. Assumption A5 states that

players with higher unobservable and/or observable characteristics derive higher marginal utility

from an increase in the central authority’s decision.10 Assumption A6 is not entirely straightfor-

ward. It states that ∂2u
∂(µ(aaa))2 = ∂2u

∂t2

(
∂t

∂µ(aaa)

)2
+ ∂u

∂t
∂2t

∂(µ(aaa))2 is globally negative. However, sinceu is

not monotone int, the second term cannot be signed in general.11 We make this assumption to

simplify the analysis. In particular, sinceU ′
r =

R

ΘΘΘ−r
∂u
∂t

dt
dadhhh−r(ϑϑϑ−r), assumption A6 implies that

for all r, all θ and allsss−r , Ur(·,θ;sss−r) is strictly concave ina. Thus, each player has a unique

optimal response to other players’ strategies.

From (5),t is strictly increasing; it follows, therefore, from (4) andA5(i) that

for all r, all a, all θ and all allsss−r ,
∂2Ur(a,θ;sss−r)

∂a∂θ
> 0. (7)

Inequality (7) states thatUr satisfies Milgrom-Shannon’s condition SCP-IR in(a;θ) (see fn. 10).

In our context, this property implies Athey’s sufficiency condition, SCC, for existence of a pure-

strategy equilibrium, i.e., “the single crossing condition for games of incomplete information”

(Athey, 2001, Definition 3). Athey’s condition requires that Ur satisfies SCP-IR only if other play-

ers play non-increasing strategies. OurUr ’s satisfy SCP-IR regardless of other players’ choices.

Proposition 1 (Existence of an MPE):† Every aggregation game has a monotone pure-strategy
Nash equilibrium,sss, with the property that for each r, sr is continuously differentiable on(θ

˜
r(sss), θ̃r(sss)).

The Kuhn-Tucker conditions definingr ’s optimal strategysr are, for allθ ∈ Θ,

sr(θ) =





a if U ′
r(a,θ;sss−r) = 0 anda∈ [a

¯
, ā]

ā if U ′
r(ā,θ;sss−r) > 0

a
¯

if U ′
r(a¯

,θ;sss−r) < 0

(8)

10 Assumption A5(i) is a strict version of the “single crossingproperty of incremental returns (SCP-IR)” (Milgrom
and Shannon, 1994) in(τ;θ) when the utility function is differentiable (Athey, 2001, Definition 1).
11A sufficient condition to ensure Assumption A6 will hold is that t(·,kkk) is linear.
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The essence of an aggregation game is that heterogeneous players are engaged in a “tug-of-war,”

trying to influence the equilibrium outcome through their announcements. As soon as one player

who prefers a higher outcome attempts to influence the centerby increasing his announcement,

another player who prefers a lower outcome will counter by decreasing hers. In the absence of

bounds on announcements, this tug-of-war would go on endlessly. Thus, a necessary condition for

existence of MPE is that the announcement spaceA be compact. The bounds on announcement

space essentially limit how far players can go in mis-reporting their types. We will observe be-

low that players with different observable characteristics are restricted by the bounds to different

degrees, and certain player-types “do particularly well” in equilibrium. To clarify concepts, we

introduce some definitions. We will say that playerr ’s strategysr(·) is

(1) nondegenerate (resp. degenerate)if the interval(θ
˜

r(sr), θ̃r(sr)) is non-empty (resp. empty).

(2) isconstrained atθ if the announcementsr(θ) equals eithera
¯

or ā,

(3) isup-constrainedif θ
˜

r(sr) = θ andθ̃r(sr) < θ,

(4) isdown-constrainedif θ
˜

r(sr) > θ andθ̃r(sr) = θ,

(5) issingle-constrainedif it is either up-constrained or down-constrained,

(6) isbi-constrainedif θ
˜

r(sr) > θ andθ̃r(sr) < θ.

(7) isalmost-never-constrainedif θ
˜

r(sr) = θ andθ̃r(sr) = θ,

Degenerate(resp.almost-never-constrained) strategies pick boundary (resp. interior) points ofA

with probability 1.12 An MPE in which each player’s strategy is non-degenerate is called an NMPE.

Prop. 1 established that players’ equilibrium strategies are monotonic in types. We next establish

that strategies are also monotone with respect to players’ observable characteristics. That is, ifki >

k j but both players are of the same type,i’s announcement will strictly exceedj ’s, except when both

announcements are at the same boundarya
¯

or ā. Moreover, asn increases, the gap betweeni’s and

j ’s equilibrium announcements increases until one or both players’ strategies become degenerate:

if j ’s (resp.i’s) first order condition is satisfied with equality for some type andn is large enough,

i (resp. j) will announce the upper bound ¯a (resp. lower bounda
¯
) with probability one.

Proposition 2 (Monotonicity w.r.t. observable characteristics):† If sss be an MPE, then for all
ε > 0 and for all i and j such that ki −k j > ε,

12The distinctions made here relate to the concept ofinformativevoting, which recurs throughout the information
transmission literature. (It appears to have been introduced in Austen-Smith and Banks (1996).) Almost-never-
constrained strategies are informative, and degenerate ones are uninformative; the remaining types are somewhere
in between.
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sj(·)
si(·)−∆a

∆a = (si(θ∗)−sj(θ∗))

si(θ∗)

sj(θ∗)

a
¯

ā

θ∗

FIGURE 1. Intuition for Prop. 2

i) θ
˜

i(sss) ≤ θ
˜

j(sss) andθ̃i(sss) ≤ θ̃ j(sss).

ii) si(·) > sj(·) on the interval
(
θ
˜

j(sss), θ̃i(sss)
)
.

Further, there exists N∈ N such that
iii) if n > N and sj is non-degenerate, then si(·) = ā.
iv) if n > N and si is non-degenerate, then sj(·) = a

¯
.

In the discussion of Prop. 2 that follows, we will say that theā (resp.a
¯
) constraint isbindingon

r at θ if the unconstrained optimal response of playerr of typeθ to sss−r strictly exceeds ¯a (resp. is

strictly less thana
¯
). Note significantly that by continuity, the ¯a (resp.a

¯
) constraint isnot binding

on r at θ̃r(sss) (resp. θ
˜

r(sss)). The key to the proof of Prop. 2 is the observation that ifsi andsj

form part of an equilibrium profile, then at any typeθ∗ belonging to the (necessarily nonempty)

setΘ∗ ≡ argmin
(
si(·)−sj(·)

)
,

eithertheā constraint is binding oni or thea
¯

constraint is binding onj (or both). (9)

To verify (9), consider the pair of strategies(si,sj) illustrated in Figure 1, which has the property

that atθ∗ = argmin
(
si(·)− sj(·)

)
, the ā constraint is not binding oni and thea

¯
constraint is not

binding on j. The strategies depicted in the figure cannot form part of an MPE profile. To show

this, we assume thatsj is a best response to(si,sss−i, j), and conclude thatsi cannot be a best response

to (sj ,sss−i, j). Let ∆a = (si(θ∗)−sj(θ∗)) and consider playerj ’s decision. Becauset depends only

on the average announcementµ(sss), and sincesj is by assumptionj ’s best response to (si ,sss−i, j),

it follows thatsj(θ∗)+ ∆a = si(θ∗) must be player-type( j,θ∗)’s best response to (si −∆a,sss−i, j).

But this observation implies thatsi(θ∗) cannot be(i,θ∗)’s best response to (sj ,sss−i, j). To see why,

note that sinceki > k j , it follows from A5(ii) that against thesamestrategies,(i,θ∗)’s optimal
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response must strictly exceed( j,θ∗)’s: in particular,(i,θ∗)’s best response to (si −∆a,sss−i, j) must

strictly exceed( j,θ∗)’s, which issi(θ∗). Next, by definition ofθ∗, sj(·) ≤ si(·)−∆a, so property

(6) implies that(i,θ∗)’s best response to(sj ,sss−i, j) must exceed his best response to(si −∆a,sss−i, j),

which, as we have shown, exceedssi(θ∗). Thus,si cannot be a best response to(sj ,sss−i, j).

The first two parts of Prop. 2 follows almost immediately from(9). If either of the two constraints

mentioned in (9) is satisfied, thensi(θ∗)− sj(θ∗) ≥ 0. Sinceθ∗ minimizes
(
si(·)− sj(·)

)
, the

function is nonnegative on its entire domain. Part i) of the proposition now follows immediately

from the definitions in (1). Moreover, since neither player is constrained on
(
θ
˜

j(sss), θ̃i(sss)
)
, property

(9) implies that
(
θ
˜

j(sss), θ̃i(sss)
)

cannot be part ofΘ∗, implying that on
(
θ
˜

j(sss), θ̃i(sss)
)
, si(·)−sj(·) >

si(θ∗)− sj(θ∗) ≥ 0, establishing the strict inequality in part ii). To motivate the third part of the

proposition, first note that since the domain ofu is compact, all relevant derivative functions ofu

are uniformly continuous, and, if always non-zero, then they are bounded away from zero. Now

suppose that there is a player-type( j,θ) whose first order condition,U ′
j(sj(θ),θ;sss− j) is zero. For

i with ki > k j U ′
i (sj(θ),θ;sss−i) exceedsU ′

j(sj(θ),θ;sss− j) by an amount that is big oh of 1/n.13

SinceU ′
i (·, ·;sss− j) depends oni’s type and announcement only through the mean type and mean

announcement, the effects onU ′
i (·, ·;sss−i) of i’s announcement and hs type are big oh of 1/n2.

SinceA is compact,i’s response is pushed to the upper edge ofA asn increases without bound.

The proof of the fourth part is analogous. An immediate implication of (9) is

Proposition 3 (At most one player is unconstrained):In any MPE, at most one player’s strategy
is almost-never-constrained.

To verify Prop. 3, observe from (9) that ifi is not up-constrained atθ∗ ∈ Θ∗, then j must be down-

constrained. Since by definitionΘ∗ is nonempty, in equilibrium it can never happen that bothsi

andsj are almost-never-constrained. That is, regardless of the width of the announcement spaceA,

an equilibrium cannot exist unless misreporting by all but at most one player increases to the extent

that with positive probability, their announcements are constrained by one of the boundaries. Thus

Prop. 3 highlights the role of the announcement bounds in ensuring the existence of MPE.

We conclude this section with a discussion of the class of strategies on which we will focus for the

remainder of the paper. Lettingι(·) denote the identity map onΘ, playerr ’s strategy is said to be

13A function f (x) is said to be big oh ofg(x) if there existsM ∈ R such that for allx, | f (x)| < M|g(x)|.
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constrained unit affine (CUA)if for someλ ∈ R, sr(·) = min{ā,max{a
¯
, ι(·)+λ}}

unit affineif neither bound on the announcement space is binding, i.e.,if sr(·) = ι(·)+λr

The defining property of a CUA strategy is that the extent ofr ’s mis-representation of his type

is independent of this type, except whenr is constrained by the boundaries ofA. The param-

eter λr indicates the extent of this mis-representation. A CUA strategy is unit affine iff it is

also almost-never-constrained. CUA strategies are a special class of nondegenerate strategies

that play an central role in our analysis. Next, note that theset of degenerate CUA strategies

{sr(·) = min{ā,max{a
¯
, ι(·) + λ}} : λr ≤ a

¯
− θ} are all functionally equivalent: in each case,

sr(·) = a
¯
. Similarly all CUA strategies withλr ≥ ā− θ are equivalent. Hence we can impose

without loss of generality (w.l.o.g.) that

sr(·) = min{ā,max{a
¯
, ι(·)+λ}} is anadmissible CUA strategyiff λr ∈ Λ ≡ [a

¯
−θ, ā−θ]. (10)

Sinceā > a
¯

andθ > θ, the setΛ is nonempty. Observe from (1a) and (1b) that ifsr is CUA, then

θ
˜

r(sr) = min{θ,a
¯
−λr} < max{θ, ā−λr} = θ̃r(sr). (11)

If Θ ⊆ [a
¯
, ā] we say that the announcement space isinclusive. It follows from (11) that

if Θ is inclusive then no CUA strategy is bi-constrained (12)

To see this, note that ifΘ is inclusive andλr ≥ 0 thensr(θ) = θ + λr ≥ a
¯
+ λr ≥ a

¯
; similarly, if

λr ≤ 0 thensr(θ) ≤ ā,

4. AGGREGATION GAMES WITH COMMON PREFERENCES

Assumption A1(ii) specifies that all players have distinct observable characteristics. For this sec-

tion only, we reverse this assumption, and consider games inwhich players’ observable character-

istic are identical. We also assume that the announcement space is inclusive, so that truthful type

revelation is feasible. This analysis will serve as a usefulbenchmark when we consider games

in which players’ observable characteristics are heterogeneous and when the bounds on the an-

nouncement space preclude complete truthful revelation. The analysis highlights the importance
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of unit affine strategies: we will show that inn-player games, there are equilibria—including one

characterized by truthful type revelation—in which players’ strategies are unit affine and satisfy a

strong efficiency criterion. Moreover, in two-player games, equilibrium strategies arenecessarily

unit affine, andall equilibria satisfy this criterion.

We now introduce our notion of efficiency. An actionsr(θ) is a best conceivable responsefor

player-type(r,θ) to sss−r if for all sss′−r and alla∈ A, Ur(sr(θ),θ;sss−r)≥Ur(a,θ;sss′−r). When a player-

type’s action is a best conceivable response to other players’ strategies, this player’s expected

payoff could not be higher, even if he had total control over the strategies played by all other

players! An MPE is now defined to beefficientif every player-type’s action is a best conceivable

response to other players strategies. This is clearly an extremely stringent notion of efficiency.

A strategy profile will be calledzero-sum unit affine (ZSUA)if each player’s strategy is unit affine

and if there is truthful revelation in aggregate. Specifically, let ΛΛΛ = {λλλ ∈ Λn : ∑n
r=1 λr = 0}. A

strategy profile is ZSUA if for someλλλ ∈ ΛΛΛ, sr = θr +λλλr , for eachr.14 Given a profilesss, µ(sss)

is identically equal toµ(θθθ) iff sss is ZSUA; that is, ZSUA profiles truthfully reveal types in the

aggregate and vice versa. A special case is whenλλλ = 0, i.e., each individual agent reveals his type.

The following proposition highlights the intuitive fact that in an aggregation game, incentives for

strategic behavior arise only when there areex antedifferences between agents’ characteristics,

i.e., theirk’s.

Proposition 4 (ZSUA profiles as equilibrium strategies): Consider an inclusive aggregation
game in which kr = k̄ for all r. A sufficient condition for a strategy profile to be an equilibrium is
that it is ZSUA. Further, a ZSUA equilibrium is efficient.

The proof of Prop. 4 is immediate. Considerλλλ = (λr ,λ−r) ∈ΛΛΛ. Necessarily,λr =−∑i 6=r λr . In the

ZSUA strategy profile corresponding toλλλ, player-type(r,θ) reportssr(θ) = θ+λr . Consequently

Ur(sssr(θ),θ;sss−r) =

Z

ΘΘΘ

u(t(sss(ϑϑϑ),kkk),ϑϑϑ, k̄)h(ϑϑϑ)dϑϑϑ =

Z

ΘΘΘ

u(t(ϑϑϑ,kkk),ϑϑϑ, k̄)h(ϑϑϑ)dϑϑϑ

Since players’ observable characteristics are all identical, the social welfare function (defined in

(2)) coincides with each player’s utility function:w(t,θθθ,kkk) = u(t,θθθ, k̄). Since the outcome function

is assumed to be CISE, we havet = argmaxu(·,θθθ, k̄) for everyθθθ ∈ ΘΘΘ, Thus, the ZSUA profile

14Clearly, for any vectorλλλ with λr < (a
¯
−θ) (or λr > ā−θ), sr = θr +λλλr would not be admissible for types in some

neighborhood ofθ (or θ).
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maximizes the expected utility of every player and constitutes an MPE. Further, since each player

obtains the highest possible utility, the equilibrium is also efficient.

When there are only two players with identical observable characteristics, we can go much further.

In this case, the preceding and following propositions establish that a profile is an equilibrium if

and only if it is ZSUA, i.e.,all equilibria are efficient!15

Proposition 5 (MPE are ZSUA):† Consider a two player inclusive aggregation game with ki = k j .
A necessary condition for a strategy profile to be an MPE is that it is ZSUA.

θ θ

ŝi(·) ŝi(·)
si(·)

sj(·) sj(·)ŝi(θ∗i )

sj(θ∗j ) sj(θ∗j )

λ

λ λ
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θ θ

ŝi(θ∗i )+sj(·)

sj(θ∗j )+si(·)

FIGURE 2. Intuition for Prop. 5

Figure 2 provides some intuition. Consider a strategy that is not unit affine, such assj in the left

panel of the figure. Lettingι(·) denote the identity map, the maximum value of(ι(·)−sj(·)) is λ,

which is achieved uniquely atθ∗j .
16 We first establish that a necessary condition forsi to be a best

response tosj is that(si(·)− ι(·)) is everywhere strictly less thanλ. To see this, consider a strategy

such as ˆsi satisfying, for someθ∗i , (ŝi(θ∗i )−θ∗i ) ≥ λ. Given any such strategy fori, the aggregate

strategy ˆsi(θ∗i )+ sj(·)—i.e., the highest curve in the left panel—must lie above theline θ∗i + ι(·)
with probability one. That is, for player-type(i,θ∗i ), the average of players’ announced types

exceeds the average of their actual types with probability one. Sincet(·) is CISE and the social

welfare functionw(·) coincides withi’s and j ’s common utility function, the outcome generated

15An immediate implication of the argument below is that when players’ observable characteristics are identical and
the announcement space coincides withΘ, then theuniqueequilibrium for a two-player aggregation game is that
players truthfully reveal their private information with probability one.
16Uniqueness is not required, but it simplifies the intuitive exposition.
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by (sj , ŝi) must be super-optimal for(i,θ∗i ) with probability one. Conclude thatθ∗i +λ is not a best

response for(i,θ∗i ) againstsj(·); more generally, forsi to be optimal against any not unit affine

sj , it is necessary that(si(·)− ι(·)) < max(ι(·)−sj(·)). Now consider any strategy satisfying this

necessary condition—e.g., the dashed curvesi(·) in the right panel—and observe that the aggregate

strategysj(θ∗j )+si(·) is everywherebelowthe lineθ∗j + ι(·), and hence sub-optimal for( j,θ∗j ). We

have shown, then, that the actionsj(θ∗j ) cannot be a best response for( j,θ∗j ), againstanystrategy

that could possibly be a best response against the arbitrarily chosen, not unit affinesj(·).

5. GAMES WITH QUADRATIC PAYOFF FUNCTIONS

In our introductory discussion in §1, our players reported to the center, who took an action,τ, that

affected all of them. For the remainder of the paper, we abstract from the issue of how the center

uses the information that players provide and assume, simply, that each player incurs a loss that

is quadratic in the difference between that player’s observable characteristic and the gap between

the means of actual and reported information. Formally, we define the utility function for a player

with observable characteristick as the biased quadratic loss function:17

u(τ,µ(θθθ) ,k) = −(k+µ(θθθ)− τ)2 . (13)

With this specification, the CISE property requires the center to average the types that players an-

nounce:τ = t(sss,kkk) = µ(sss). A game with utilities given by (13) will be called aquadratic aggrega-

tion game. It is straightforward to verify that givent, (13) satisfies Assumptions A4-A6. The goal

of a player with observable characteristick > 0 is to induce the center to overestimate the value of

µ(θθθ) by an amount that is as close as possible tok. Specifically, the optimal expected outcome for

a player with observable characteristickr and type parameterθr is Eϑϑϑ−r t = kr +Eϑϑϑ−r µ(〈θr ,ϑϑϑ−r〉).

This quadratic specification is consistent with either of the two interpretations of our model pro-

posed in §1. For the non-statistical interpretation, the relationship is self-evident: players lose util-

ity with the square of the difference between the composite score implied by players’ actual types,

adjusted by the player’s personal bias, and the score that the center would compute by aggregat-

ing players’ announcements. Under the Bayesian interpretation, each player loses utility with the

square of the difference between the posterior mean computed by the center from announcements

and the one implied by actual types, again after adjusting for the player’s bias. Under very general

17As noted in fn. 5, this specification is very widely used.
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conditions, the posterior mean is an affine function of the sample mean.18 If the posterior mean is

defined asb0+b1µ(θθθ), the loss function implied by our Bayesian interpretation is

−
(
k+(b0+b1µ(θθθ))− (b0+b1µ(sss))

)2
= −

(
k+b1(µ(θθθ)−µ(sss))

)2
= −

(
k+b1(µ(θθθ)− τ)

)2
.

By choosing appropriately the units of the vectorkkk, we can setb1 = 1 and recover (13).

While this Bayesian interpretation is suggestive, there isa notable distinction between our qua-

dratic loss function and the canonical Bayesian loss function. To best appreciate the difference,

consider (13) for an unbiased player, i.e., setk = 0. Then the only source of loss is that players

mis-report the signals they receive; our players are modeled as uninterested in the difference be-

tween the mean of their signals and thetruemean of the distribution from which their signals were

drawn. In the classical Bayesian problem, on the other hand,the latter difference is all that matters;

the possibility of mis-reporting does not arise.

In most respects, this distinction is unimportant and our specification captures exactly what we are

interested in, i.e., the information losses that arise because players are strategic and are constrained

by the boundaries.19 In one respect, however, the omitted difference is significant: in a game small

enough to admit non-degenerate strategies, it does not capture the full welfare impact in a Bayesian

setting of increasingn, since it ignores the welfare benefit of increasing the precision with which

the aggregate signal estimates the true mean (i.e., reducing the second term in (14)). As an extreme

example, when all players have the same observable characteristic as in §4, our players attain their

first-best outcomes in every game, regardless ofn; had we defined players’ utility as a standard

Bayesian loss function, the first-best would be approached only asymptotically.

5.1. CUA strategies. The quadratic specification ensures that equilibrium strategies will be CUA

(see p 17). Given the utility (13) and outcome functiont(sss,kkk) = µ(sss), if r were not required to

respect the admissibility bounds (10) onλr , his optimal response tosss−r would be the UA strategy

18Bernardo and Smith (2000, Proposition 5.7 (pp. 275-276)) establishes this for exponential families of distributions.
19 For instance, if theθi ’s were independently drawn from a distribution withE(θi) = θt and players’ utility depended
on the true meanθt rather than the average realized signalµ(θθθ), the expected quadratic loss would be

−E(k+ θt − τ)2 ≡ −Eϑϑϑ(k+µ(ϑϑϑ)− τ+ θt −µ(ϑϑϑ))2 = −Eϑϑϑ(k+µ(ϑϑϑ)− τ)2−Eϑϑϑ(θt −µ(ϑϑϑ))2. (14)

The first part of the loss arises entirely due to misreportingand coincides withu(·) in (13); the second part, which is
precisely the canonical Bayesian loss function, is omittedfrom our model.
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θr +λr , where

λr = nkr +∑
i 6=r

Eϑi (ϑi −si(ϑi)) . (15)

In general, the UA responseθr +λr will not belong toA for all values ofθr , particularly if |kr | is

large. Accordingly,r ’s constrainedoptimal response will be

sr(θr) = min{ā,max{θr +λr ,a}̄}. (16)

To identify an NMPE, we need to compute theλλλ vector which solves the set ofn equations in (15)

subject to the constraint (16). As a first step, we letξr(·) denote playerr ’s deviation from affine,

defined as the difference between the CUA strategysr(·) and the UA strategyι(·)+λr. Givenλr ,

let Eξr denoter ’s expected deviation from affine:

Eξr ≡ Eϑr (sr(ϑr)− (ϑr +λr)) = Eϑr

(
min{ā,max{a

¯
,ϑr +λr}}−ϑr

)
− λr (17)

=
Z θ

˜
r

θ
(θ
˜

r −ϑr)dH(ϑr) +
Z θ

θ̃r

(θ̃r −ϑr)dH(ϑr), (18)

where, from (1a) and (1b),θ
˜

r(λr) = a
¯
− λr and θ̃r(λr) = ā− λr . ThusEξr is a measure of the

impact of the bounds ¯a anda
¯

on r ’s expected announcement. Clearly,

if r is single-constrained andEξr 6= 0, λrEξr < 0. (19)

Since we focus exclusively on CUA strategies in the remainder of the paper, we will sometimes

use the symbolλr as a shorthand for the uniquely defined CUA strategy with parameterλr .

We note in passing two implications of (17) and (18) that we will use later. First, aggregating the

identity in (17) across players and rearranging, we obtain

Eϑϑϑ
(
µ(sss∗(ϑϑϑ)) − µ(ϑϑϑ)

)
= µ(λλλ∗) + µ(Eξξξ) . (20)

Second, differentiating (18) w.r.t.λr and inferring from (11) thatH(θ
˜

r) < H(θ̃r):

dEξr

dλr
= −

(
H(θ

˜
r) + 1 − H(θ̃r)

)
⊂ (−1,0] (21)

and
dEξr

dλr
= 0 iff r is almost never constrained
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Substitutingθi −si(θi) = −(λi +ξi) into (15) and rearranging, it follows that ifλλλ∗ is an MPE,

nkr = ∑
i

λ∗
i + ∑

i 6=r

Eξi(λ∗
i ), for all r with λ∗

r ∈ int(Λ). (15′)

Figure 3 provides some intuition for (15′), for the simple game with two playersi and j and

0 < ki = −k j . The figure is a diagonal cross-section of the three-dimensional graph fromΘ×Θ

to outcomes, that is, the graph depicts the event thati and j observe the same private signals.

Playeri is up-constrained while playerj is down-constrained. The thick kinked line represents
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i’s ideal outcome

Area=|Eξ j(λ j)| = 2ki

θ θ

ā

a
¯

θ̃i

θ
˜

j

FIGURE 3. Intuition for display (15′)

the outcome as a function of type realizations, given the twoplayers’ strategies. The important

property highlighted by the kinked line is that whenθi > θ̃i (andθ j ∈ [θ
˜

j , θ̃ j ]), the realized outcome

is an under-estimate of the realized type, while whenθ j < θ
˜

j (and θi ∈ [θ
˜

i , θ̃i]), it is an over-

estimate; whenθr ∈ [θ
˜

r , θ̃r ], for r = i, j, the outcome accurately reflects the aggregate signal. Now

consider the outcome from playeri’s perspective and for concreteness, supposeθi = 0 and the

horizontal axis representsj ’s type. Playeri’s ex posteideal outcome, as a function ofj ’s type,

is represented by the dashed line above the diagonal: for every value of j ’s type, i’s ex poste

ideal outcome exceeds it byki . When j is unconstrained, his under-report exactly counteracts

i’s over-report, resulting in an outcome that is suboptimal from i’s perspective; however, at low

values ofθ j , the constrainta
¯

binds j ’s under-reporting, resulting in an outcome exceedingi’s ideal
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outcome. Equation (15′) describes how the over- and under-estimates are balanced in equilibrium:

the expected over-estimate of the true average equals twicethe expected under-estimate.

The following, immediate implication of (15′) will prove very useful in what follows. Ifλλλ∗ is an

MPE, then for alli, j with λ∗
i ,λ∗

j ∈ int(Λ),

n(ki −k j) = Eξ j(λ∗
j ) − Eξi(λ∗

i ). (22)

To motivate (22), supposeki > k j and bothi and j are up-constrained. From part ii) of Prop. 2,

ki > k j impliesλi > λ j , so the constraint ¯a binds more tightly oni than onj, i.e.,Eξi < Eξ j .

Proposition 6 (Uniqueness of MPE):† Every quadratic aggregation game has a unique MPE.

5.2. MPE outcomes and payoffs.The quadratic setup allows us to analyze each player’s equi-

librium performance: to what degree the outcome of the game matches his ideal outcome, and

how his payoff depends on player characteristics. We begin by introducing a notion describing

the degree to which each player “gets what he wants” in equilibrium. We define as a benchmark

the complete information personally optimal (CIPO) outcomefor player r: this outcome would

maximizer ’s payoff if he had complete information about the average type. We denote this “ideal”

outcome fromr ’s perspective bŷt(θθθ,kr). From (13),r ’s CIPO outcome is

t̂(θθθ,kr) = µ(θθθ)+kr . (23)

If µ(sss∗) is the equilibrium outcome of the game. then the differenceEϑϑϑ
(
µ(sss∗(ϑϑϑ))

)
− t̂(ϑϑϑ,kr)

)
,

which we label asr ’s expected CIPO deviation, is a measure of the degree to which the equilibrium

outcome differs in expectation from playerr ’s CIPO outcome. Prop. 7 below establishes that in

an NMPE, the expected CIPO deviation is 1/n times the size of the player’s expected deviation

from affine. This result is striking because the latter depends only onr ’s strategic choice, while the

former depends onall players’ choices. Note also from (19) that a single-constrained player who

over- (under-) reports his type can expect a sub- (super-) optimal outcome.

Proposition 7 (The expected CIPO deviation):† If sss∗ = θθθ+λλλ∗ is an MPE profile of a quadratic
aggregation game, andλ∗

r ∈ int(Λ), then r’s expected CIPO deviation is Eξr(λ∗
r )/n.
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Since the expected deviation from affine measures how tightly the announcement bounds restrict

r ’s action in equilibrium, Prop. 7 indicates that a player whose action is more restricted is less

likely to obtain his CIPO outcome in expectation.

After r learns his typeθr , a parallel measure of deviation from his ideal outcome is the interim

expected CIPO deviation, defined as the differenceEϑϑϑ−r

(
µ(〈s∗r (θr),sss

∗
−r(ϑϑϑ−r)〉)− t̂(〈θr ,ϑϑϑ−r〉,kr)

)
,

whereEϑϑϑ−r t̂(〈θr ,ϑϑϑ−r〉,kr) = Eϑϑϑ−r µ(〈θr ,ϑϑϑ−r〉)+kr is r ’s interim expected CIPO outcome. Similar

to Prop. 7, Prop. 8 establishes thatr ’s interim expected CIPO outcome is implemented in equilib-

rium if and only if his strategy is unconstrained atθr :

Proposition 8 (Interim Implementation): † For a player r of typeθr , his interim expected CIPO
deviation equals zero, or his interim expected CIPO outcomeis implemented in equilibrium, if and
only if his strategy s∗r is unconstrained atθr .

The previous discussion indicates that playerr ’s expected deviation from affine i.e., the expected

degree to whichr ’s strategies are restricted by the announcement bounds, isinstrumental in deter-

mining whetherr gets “what he wants.” We next illustrate how the deviation from affine affects

a player’s expected equilibrium payoff. From (13),r ’s expected payoff from a strategy profileλλλ

is −Eϑϑϑ (µ(ϑϑϑ)+kr −µ(sss)))2, i.e., the expectation of the squared difference betweenr ’s CIPO out-

come and the realized outcome. For an arbitrary profileλλλ, the expression for this expectation is

exceedingly messy, reflecting the complexity of the interactions between multiple players’ devia-

tions from affine: in some regions ofΘΘΘ, the distortion resulting from different players’ constraints

offset each other; in others they are mutually reinforcing.In equilibrium, however,all of these

interaction terms disappear, leaving only the first and second moments of players’ deviations from

affine. Specifically, letVξr(λr) denote the (ex ante) variance ofr ’s deviation from affine, i.e.,

Vξr(λr) = Varϑ
(
sr(ϑr)− (ϑr +λr)

)
(24)

Note thatVξr(λr) depends only onr ’s own type realization. We now have:

Proposition 9 (Equilibrium Payoffs):† Letsss∗ = θθθ +λλλ∗ be an MPE profile of a quadratic aggre-
gation game. For each player r withλ∗

r ∈ int(Λ), r’s expected equilibrium payoff is

Eϑϑϑu(µ(sss∗),µ(ϑϑϑ) ,kr) = −Eϑϑϑ
(
µ(ϑϑϑ)+kr −µ(sss∗)

)2
= −

(
µ(VξVξVξ(λλλ∗))/n + (Eξr(λ∗

r )/n)2) . (25)

Prop. 7 and Prop. 9 are complementary. Prop. 7 established that playerr ’s expected CIPO devi-

ation coincides with his expected deviation from affine, deflated byn. But equilibrium expected

payoffs depend onsquareddeviations from affine. Prop. 9 shows that players’ expectedpayoffs
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are equally negatively impacted by the variances of each others’ deviation from affine; the sole fac-

tor distinguishing two players’ expected payoffs is the difference between their squared expected

CIPO deviations.

We next study the aggregate equilibrium payoff of the players. From a normative perspective, there

are two benchmark measures of welfare that we might consider. The more obvious is the average

of players’ equilibrium expected payoffs. We refer to this asaverage private welfare, defined as

APW =
1
n

Eϑϑϑ

(
n

∑
i=1

u(µ(sss),µ(ϑϑϑ) ,ki)

)
. (26)

Alternatively, one could take the view thatsocial welfare should be evaluated from anunbiased

perspective, i.e., from the perspective of a player whose observable characteristic is zero, reflecting

a preference for truthful revelation. Accordingly we defineunbiased social welfareas

USW = Eϑϑϑu(µ(sss),µ(ϑϑϑ),0) = Eϑϑϑ (µ(ϑϑϑ)−µ(sss))2 . (27)

Our assumption that∑i ki = 0 implies that APW and USW differ only by a constant. Specifically:

APW = − 1
n

Eϑϑϑ ∑
i∈I

(µ(ϑϑϑ)+ki −µ(sss))2

= − 1
n

{

∑
i

k2
i + 2∑

i
kiEϑϑϑ (µ(ϑϑϑ)−µ(sss)) + nEϑϑϑ (µ(ϑϑϑ)−µ(sss))2

}

= USW + ∑
i

k2
i /n

From (47) the following result is immediate.

Proposition 10 (Unbiased Social Welfare): If λλλ∗ is an MPE profile of a quadratic aggregation
game, then unbiased social welfare is given by

USW = −
{

µ(Vξξξ(λλλ∗))/n +
(
µ(Eξξξ(λλλ∗))+µ(λλλ∗)

)2}
(28)

5.3. Anchored Games.The discussion so far illustrates the central role the expected deviation

from affine plays in affecting equilibrium payoffs. There isa class of games in which some player

j ’s expected deviation from affine is zero. This property holds if either j ’s strategy is never con-

strained or if the constraints onj associated with the two announcement bounds cancel each other
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out in expectation. We later study games in which such aj always exists: in §6,j is the “middle”

player in a symmetric game; in §7, the “largest” player in a game in whichā never binds. We refer

to such a game as ananchored gameand to playerj as the anchor. An anchored game exhibits

strong properties and is particularly easy to analyze. Since anchoredness is defined in terms of an

equilibrium property—whether or not some player’s expected deviation from affine is zero—we

must first prove that a game in a certain class has a unique MPE that exhibits this property, before

invoking the properties of anchored games identified in Prop. 11 and Prop. 12.

Proposition 11 (Properties of anchored games):Letλλλ∗ be an MPE profile of an anchored qua-
dratic aggregation game and let j be the anchor. For each player r with λ∗

r ∈ int(Λ),
i) r’s expected deviation from affine is n(k j −kr),

ii) r’s expected CIPO deviation is(k j −kr),

Part i) is obtained by combining (22) with the defining property of an anchored game, i.e.,Eξ j(λ∗
j ) =

0. Part ii) then follows from Prop. 7. Strikingly,r ’s expected CIPO deviation depends exclusively

on the gap betweenj ’s observable characteristic andr ’s, while r ’s expected deviation from affine

depends both on this gap andn. To see why the latter is proportional ton, recall thatr ’s objective

is to shift the mean announcement by a magnitudekr that is independent ofn; the greater isn, the

smaller isr ’s contribution to the mean, and hence the more mustr mis-report. Note that the morer

mis-reports, the more likely it is that he will be constrained by the announcement bounds. To study

anchored games, we add assumption A7 to A1-A6. Parts (i) and (ii) simplify our anlysis. Part (iii)

ensures that every anchored game has an NMPE.

Assumption A7: (i) The announcement space is inclusive (cf. p. 18); (ii) thetype distribution is
uniform with density parameterh = 1/(θ−θ); (iii) ||kkk||∞ < (θ−θ)/4n.

The combination of a quadratic loss function (13) and a uniform distribution over types (A7(ii))

is very widely used.20 A7(iii) guarantees that our MPE is non-degenerate: it is needed because

if the k’s are far apart andn is sufficiently large, outlying players, attempting to steer the average

announcement in their favor, will choose strategies that are constrained with probability one by one

of the announcement bounds. To verify that A7(iii) guarantees that this will not happen, it suffices

to check thatEξr(λ∗
r ) = n(k j −kr) is consistent withλ∗

r ∈ int(Λ). Assuming w.l.o.g. thatλ∗
r > 0,

20See Crawford and Sobel (1982), Gilligan and Krehbiel (1989), Krishna and Morgan (2001), Morgan and Stocken
(2008), and many others.
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(18) implies:

Eξr(λ∗
r ) =

Z θ

ā−λ∗
r

(ϑr +λ∗
r − ā)dh(ϑr) = 0.5h

(
λ∗

r +θ− ā
)2

so that λ∗
r +θ− ā =

√
2
h

Eξr =

√
2
h

n(k j −kr) if λ∗
r ∈ int(Λ). (29)

The last equality follows from Prop. 11. Also, from A7(iii),

2n(k j −kr)/h ≤ 4n
h
||kkk||∞ <

4n
h

(θ−θ)/4n = (θ−θ)2

so thatλr =
√

2
hn(k j −kr)− (θ− ā) <

(
(θ−θ)− (θ− ā)

)
= ā−θ, verifying thatλ ∈ int(Λ).

For anchored games satisfying A7, we obtain a closed-form expression for equilibrium payoffs.

Proposition 12 (Equilibrium Payoffs in Anchored Games):† Let j be the anchor in an anchored
quadratic game satisfying A7. Then player r’s expected payoff in an NMPE is

Eϑϑϑu(µ(sss∗),µ(ϑϑϑ) ,kr) = −
{

n

∑
i=1

(k j −ki)
2

(√
8

9nh|k j −ki |
− 1

)
+(kr −k j)

2

}
(30)

≤ −
{

n

∑
i=1

(k j −ki)
2/3+(kr −k j)

2

}
.

Expr. (30) thus establishes an upper bound on expected payoffs that declines withn. As shall see

below, however, this doesnot imply that expected payoffs themselves decline monotonically. In

the following sections, we study how the equilibrium outcome and aggregate welfare are related

to primitives of the game such as the vectorkkk and the bounds ¯a anda
¯
. For an arbitrary quadratic

game, it is impossible to obtain closed-form expressions for these effects. Accordingly, we will

focus on two special classes of anchored games for which closed-form results can be obtained.

6. SYMMETRIC GAMES

In this section we study games which are symmetric in a strongsense. We say that the observable

characteristic vector is symmetric if for every player ¯r with kr̄ > 0, there exists amatched player r

with kr =−kr̄ . There may in addition be one more,middleplayermwith km = 0. In §6.4 below, we

will refer to players whose observable characteristics arepositive (resp. negative) as theright-wing

(resp. left-wing) faction. We say that the announcement space is symmetric if the announcement

boundsa
¯

andā are symmetric about zero, i.e., ifa
¯
= −ā; finally, we say that the type distribution
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is symmetric ifθ = −θ and if θ is symmetrically distributed around its mean zero. We now say

that a game issymmetricif all these conditions are satisfied. We will refer to a game satisfying

A1-A7 as asymmetric quadratic aggregation game(SQAG).

Proposition 13 (NMPE of Symmetric Games):† Every SQAG has a unique NMPE satisfying:
Eξr(λ∗

r ) = −nkr , for all r with λr ∈ int(Λ). Moreover,
i) for each player̄r and matched player r, λ∗

r = −λ∗
r̄ ;

ii) if there is a middle player m, thenλ∗
m = 0.

The middle player, if there is one, is the only player who announces truthfully in equilibrium. Any

other player always mis-announces and his expected deviation from affine is determined entirely

by his observable characteristic andn. Symmetric games with a middle player are also anchored

games (see §5.3). It is clear from Props. 13 and 7, however, that symmetric games without a middle

player exhibit the same properties as those that have one. Tostreamline the exposition, we shall in

the remainder of the section treatall symmetric games as if they were anchored.

It is immediate from Props. 9 and 13 thatr ’s equilibrium expected payoff is entirely determined by

kr and the average of the second moments of all players’ deviations from affine.

Eϑϑϑu(µ(sss∗),µ(ϑϑϑ) ,kr) = −
(
µ(Vξξξ)/n + k2

r

)
= −

{

∑
i

k2
i

(√
8

9nh|ki|
− 1

)
+k2

r

}
. (25′)

The second equality is obtained by substituting zero fork j in (30). (27) and (25′) now yield an

expression for unbiased social welfare:

USW = −∑
i

k2
i

(√
8

9nh|ki|
− 1

)
(31)

Prop. 13 provides us with a powerful tool for analyzing and comparing the welfare properties of

aggregation games with different parameters. The three parameters we study in the remainder of

this section are: the number of players (§6.1); the magnitude of the bound on the announcement

space (§6.2); and the heterogeneity of players’ observablecharacteristics (§6.3). Throughout this

section, whenever we make a statement relating to eitherθ, ā, orkr̄ , we will be implicitly making as

well the matching statement aboutθ, a
¯
, or kr . In particular, when we study the effect of increasing

ā, we will be simultaneously, but implicitly, reducinga
¯

to preserve symmetry.
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6.1. Effects of changing the number of players.Since symmetric games are anchored, at least

some of the impacts of changingn are straightforward: a player’s strategy (although not hispayoff)

depends only onn and his own observable characteristic. From Prop. 11, a player’s expected

deviation from affine is proportional ton, while his expected CIPO deviation is independent of

n: asn increases, each player except the middle one mis-reports toan increasing extent, while in

equilibrium the net expected effect of players’ distortions on the center’s decision is unchanged.

The effects ofn on expected payoffs and welfare are more complex. While in general there is

no closed-form expression forVξr , A7 allows us to obtain determinate results. We will compare

expected payoffs and welfare for a finite sequence of “comparable” games with more and more

players. To make the games comparable, we relax assumption A1(ii) for the remainder of §6.1 and

construct our sequence by cloningm times a base game withqplayers and observable characteristic

vectorκκκ.21 To ensure that A7(iii) is satisfied, we require thatm≤ M = ⌊1/(4qh||κκκ||∞)⌋.22 Now

consider the aggregate welfare USW(m) in them’th game. Since from (31) and (25′), the difference

between USW(m) and playerr ’s expected payoff is independent ofm, the comparative statics

results we obtain for welfare apply also to payoffs. Rewriting (31):

USW(m) = −m
q

∑
i=1

κ2
i

(√
8

9mqh|κi|
− 1

)
=

q

∑
i=1



mκ2
i −

√
8m|κi|3

9qh



 (31′)

If m were a real number rather than an integer, USW would be convexin m, with

dUSW
dm

=
q

∑
i=1

(
κ2

i −
√

2|κi|3
/

(9mqh)

)
(32)

The i’th element of the summation isR 0 as|κi | R 2/(9mqh). Let M′ = max{m≤ M : ||κκκ||∞ <

2/(9mqh)} and M′′ = max{m∈ N : |κi | < 2/(9mqh),∀i}; If hM is sufficiently small,M′ < M

(since 2/9 < 1/4) while if, in addition, maxi |κi| −mini |κi| is sufficiently small,(M′′,M] will be

non-empty. Clearly, USW(·) is strictly decreasing on[1,M′) and strictly increasing on(M′′,M].

21The argument below could be made rigorous without violatingassumption A1(ii): simply clone as we propose, and
then perturb the cloned vector slightly to ensure uniqueness while preserving symmetry. In our view, the loss of rigor
involved in our approach is justified by the gain in parsimony.
22For x∈ R, ⌊x⌋ denotes the greatest integer not exceedingx. For m≤ M, the game withm clones ofκκκ hasn = mq
players. so that||κκκ||∞ ≤ 1/(4mqh) = (θ−θ)/4n, verifying that A7(iii) is satisfied.
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These results reflect the tension between two effects asm increases. The first is that players need

to mis-report more to accomplish the same expected CIPO deviation; this lowers welfare. The

second effect reflects the law of large numbers: asm increases, it becomes increasingly likely that

players’ deviations from the mean of the type distribution will offset each other, and hence their

individual deviations from affine will be mutually offsetting also. Prop. 14 summarizes:

Proposition 14 (Comparative statics w.r.t.n): In the unique NMPE of an SQAG:

i) each original player’s expected deviation from affine is proportional to n.
ii) each original player’s expected CIPO deviation is independent of n

For a finite sequence of games obtained by cloning m times a vector κκκ ∈ Kq;
i) USW and expected payoffs are convex with respect to the number of clones

ii) Suppose||κκκ||∞ < (θ− θ)/4n, i.e., the players are relatively homogenous in
their observable characteristics. Then USW and player expected payoffs ini-
tially decrease, and then may increase, with the number of clones.

To reiterate, these results should be evaluated in the context of the non-statistical interpretation of

our model, rather than the Bayesian one (see p. 1 and p. 22).

6.2. Effects of changing the announcement bounds.From Prop. 13, playerr ’s expected devia-

tion from affine,Eξr(·), is independent of the announcement bound ¯a. If kr 6= 0, expression (18)

then implies that as ¯a changes,λr must adjust so thatEξr(·) remains equal tonkr . Specifically:

Proposition 15 (Effects of changingā):† In the unique NMPE of an SQAG:

dλr

dā
=





0 if r is the middle player

1 if r is up-constrained

−1 if r is down-constrained
(1−H(θ̃r ))−H(θ

˜
r)

H(θ
˜

r)+(1−H(θ̃r))
if r is bi-constrained

(33)

Whenr is bi-constrained, the denominator ofdλr
dā is the probability thatr is constrained by at least

one of the announcement bounds. The numerator is the difference between the probabilities thatr

is up- and down-constrained. Ifr is single-constrained, he increases the degree of his misreporting

at exactly the rate that the bounds are relaxed; he responds more slowly if he is bi-constrained.

We now consider the welfare effect of a marginal change in theannouncement bound. First note

that if the announcement space is inclusive, no player will be bi-constrained in equilibrium. Then

players withk 6= 0 will adjust their announcements to fully compensate for any change in the
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announcement bounds. Hence, players’ utilities, as well asaggregate welfare, will be unaffected

by any change in the bounds. Specifically, recall from Prop. 9thatr ’s expected payoff depends on

the first moment ofr ’s own deviation from affine, as well as the second moments of all players’

deviations. If there is a middle playerj, ξ j = 0 always and thusEξ j andVξ j are unaffected by

changes in ¯a. For any other playerr, since the change inλr fully compensates the change in ¯a, the

deviation from affineξi (or its distribution) remains unchanged, so do its first and second moments.

This independence property no longer holds when at least oneplayer’s equilibrium strategy is bi-

constrained. For some intuition for this difference, Figure 4 considers the impact of relaxing the

announcement bounds, when the only bi-constrained player is the middle player,m. Wheneverm’s

type lies outside the interval[a
¯
, ā], obliging him to mis-report his type, all players are negatively

impacted. The areas of the large triangles at either end of the type spectrum indicate the magni-

tude of the distortion. When the bounds are relaxed to[a
¯
′, ā′], the sizes of these triangles shrink,

reflecting a decline in the variance ofm’s deviation from affine. Ex ante, this change benefits all

players equally, since, from Prop. 9, each player’s payoff is decreasing in thetotal variances of all

players. Prop. 16 provides an expression for the rate at which a bi-constrained player’s variance

declines with a relaxation of the bounds. The more players are initially bi-constrained, the greater

is the collective benefit of a relaxation.

Proposition 16 (Effects of increasing the announcement bound ā):† In the unique NMPE of an
SQAG, as the announcement space expands:

i) if initially the announcement space is inclusive, the equilibrium expected pay-
off of every player remains constant;

ii) if initially some player is bi-constrained, then each player’s equilibrium ex-
pected payoff is equally positively affected, as is unbiased social welfare.
Specifically, letting I∗ denote the set of players who are bi-constrained in
equilibrium, player r’s expected payoff increases by− 1

n2 ∑i∈I∗
dVξi
dā , where

dVξi

dā
=

4

H(θ
˜

i)+(1−H(θ̃i))
×

{
(1−H(θ̃i))

Z θ
˜

i

θ
(ϑi −θ

˜
i)dH(ϑi) − H(θ

˜
i)

Z θ

θ̃i

(ϑi − θ̃i)dH(ϑi)

}
< 0 (34)

Prop. 16 delivers a clear policy message, at least in the context of symmetric games. Recall from

(12) that a necessary condition for a player to be bi-constrained is that the type space is not a
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subset of the announcement space. When, as in the present paper, the type space is known by the

policy-maker who sets the announcement bounds, it is Paretooptimal to select an announcement

space large enough to contain the type space. More generally, of course, the bounds on the type

space will not be known with certainty. In this case, since itis costless to expand the announcement

space, and possibly costly to contract it, the announcementspace should be as large as possible.
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FIGURE 4. Intuition for Prop. 16

6.3. Effects of increasing player heterogeneity.In this subsection we study the impacts on the

equilibrium outcome and on welfare of changes in the vectorkkk of observable characteristics. To-

tally differentiating the identityEξr = −nkr in (50) w.r.t.kr andλr , we obtain

dλr

dkr
=

n

H(θ
˜

r)+(1−H(θ̃r))
> n (35)

where the denominator equals the probability with which player r is constrained by the announce-

ment bounds. Thus, askr increases,λr also increases, and at a faster rate, to maintain the equilib-

rium property thatEξr =−nkr . From Prop. 7 we know that askr increases and thus|Eξr | increases,

the difference between the expected equilibrium outcome and r ’s expected CIPO outcome also in-

creases. Consequentlyr ’s expected payoff decreases. Prop. 17 quantifies this reduction:
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Proposition 17 (Effects of dispersing players’ observablecharacteristics):† In the unique
NMPE of an SQAG, if kr 6= 0, then

dVξr

d|kr |
= 2n2|kr |


 1

H(θ
˜

r)+(1−H(θ̃r))
−1


 > 0 (36)

To see the effect of increasingkr̄ on players’ expected payoffs, we totally derive the right hand

side of (25) w.r.t.kr̄ , noting that to preserve symmetry,dkr
dkr̄

=−1, wherer is r̄ ’s matched player. As

kr̄ increases, ¯r ’s andr’s welfare decline by
(

2
n2

dVξr̄
dkr̄

+2kr̄

)
; for other players, the decline is2

n2
dVξr̄
dkr̄

.

6.4. Effects of increasing inter-faction player heterogeneity. The results in §6.3 are hardly sur-

prising: as players become more heterogeneous, the extent of their mis-reporting increases and

this reduces welfare. The impact of an increase ininter-factionheterogeneity is less obvious. To

explore this issue, we will reduce notation by assuming, in this subsection only:

Assumption A8: (i) [θ,θ] = [−1,1], so thath(·) = 1/2; (ii) there is no middle player, so that each
faction hasn/2 players; (iii)n is divisible by 4.

Let k̄kk
+ ∈ (0,1)n/2 be a strictly increasing vector, denoting the observable characteristics of the

right-wing faction.23. Pick a vectorααα ∈ R
n/4
++ and letdkdkdk = (−ααα,ααα) ∈ Rn/2. We will consider

a family of right-wing profiles of the form{k̄kk+
+ γdkdkdk : γ ≈ 0}. The observable characteristics

of the left-wing faction are implied by symmetry. An increase in the nonnegative scalarγ rep-

resents a faction-mean-preserving spread of each faction’s profile of observable characteristics.

As γ increases in a neighborhood of zero,24 the moderate members of the faction become more

moderate—thedk’s are negative for the firstn/4 faction members, all of whom havek’s be-

low the faction’s median—while the extreme members become more extreme. Prop. 18 below

establishes the following impacts of such a spread: if players’ characteristics are initially quite

homogeneous—specifically, contained in the interval(−1/4n,1/4n)—the spread will reduce both

USW and APW. If the factions are initially quite polarized—specifically, no player’s characteristic

belongs to[−1/4n,1/4n]—the spread will increase USW (though not necessarily APW).

23Recall from p. 29 that playerr belongs to the right-wing (resp. left-wing) faction ifkr > 0 (resp.kr < 0)
24We need to keepγ close to zero to ensure that the perturbed vectork̄kk

+
+ γdkdkdkhas the same properties ask̄kk

+
.
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Proposition 18 (Effect of a faction-mean-preserving spread of observable characteristics):†

Let USW(γ) and APW(γ) denote, respectively, equilibrium unbiased social and aggregate private
welfare for the unique NMPE of the n player SQAG satisfying assumption A8, whose right-wing
faction has the profile of observable characteristicsk̄kk

+
+ γdkdkdk.

i) if max(k̄kk
+
) < 1/4n, then dUSW(γ)

dγ

∣∣∣
γ=0

< 0 and dAPW(γ)
dγ

∣∣∣
γ=0

< 0

ii) if min(k̄kk
+
) > 1/4n, then dUSW(γ)

dγ

∣∣∣
γ=0

> 0

To obtain intuition for this surprising result, we return toFigure 3. Considerr with kr < 0. In-

tuitively, the magnitude ofVξr increases with the magnitude ofr ’s involuntary distortion triangle.

This triangle increases with the square ofr ’s low threshhold type,θ
˜

r . HenceVξr is convex inr ’s

threshhold type. On the other hand, in a symmetric game with auniform distribution over types,

r ’s threshhold type is a concave function ofr ’s expected deviation from affine. The curvature of

the convolution relatingVξr to kr depends on the balance between these two effects.

7. SINGLE BOUNDED GAMES

In many applications, it is natural to assume that the announcement space is bounded at one end but

not the other. The most obvious example is when announcements are restricted to be non-negative

but there is no natural upper bound. (For example, agents might be reporting prices, interest rates

or the variances of some privately observed statistic.) We refer to games satisfying this condition

assingle-bounded aggregation games. Naturally, the upper bound on actions in a single-bounded

game should be infinite. However, to maintain consistency with the framework laid out in §3, we

impose an artificial upper bound that will never bind. Since from (15), no player’s equilibrium

announcement will exceedn
(
max(kkk)+θ−a

¯

)
+a

¯
, we impose in this section w.l.o.g:

Assumption A9: a
¯
= θ = 0, andā = n

(
max(kkk)+θ

)
.

A9 implies that the announcement space of a single-bounded game is inclusive, as well as:

λr ≥ 0 =⇒ Eξr(λr) = 0 (37)

In a single-bounded game, a key role is played by the playerh whose observable characteristic

exceeds that of any other player. Note that since∑i ki = 0, kh is necessarily positive.

Proposition 19 (Single Bounded Games):† Every single-bounded quadratic aggregation game
satisfying A1-A6,A9 has a unique MPEλλλ∗ in which λ∗

h ≥ 0 and Eξh(λ∗
h) = 0. Moreover, for all

r 6= h, λ∗
r ∈ int(Λ) implies Eξr(λ∗

r ) = n(kh−kr) > 0.
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SinceEξh(λ∗
h) = 0, every single-bounded game is anchored, withh as the anchor. While aggre-

gation games satisfying assumption A9 look and feel quite different from the symmetric games

studied in §6, the comparative statics properties we obtainin this section and in §6 are remark-

ably similar, at least for games in which the spread ofkkk is small enough relative ton that an

NMPE exists.25 The similarity of the properties they exhibit is an indicator of the importance of

the dominant role played by the anchor. We begin by characterizing the equilibrium of an arbi-

trary single-bounded game, then discuss its comparative statics properties. To avoid repetition, no

formal results will be presented; we merely relate these properties to the corresponding properties

derived in §6.

SinceEξh = 0, Prop. 7 implies that the equilibrium outcome implementsh’s CIPO outcome in ex-

pectation. Sincea
¯
= θ, Eξr > 0 for r 6= h impliesλr < a

¯
−θ = 0. That is, every other player, even

including one whose observable characteristics is very close toh’s, will under-report to counteract

h’s extreme over-reporting. Indeed, from (15′) and Prop. 11,26 ∑i λi = n(1−n)kh < 0; i.e., when

n> 2,h’s over-reporting is more than compensated by the sum of all other players’ (unconstrained)

under-reporting. Since playerr 6= h is constrained by the lower bounda
¯
, his expected CIPO out-

come differs from the expected equilibrium outcome. From Prop. 19,r ’s expected deviation from

affineEξr = n(kh−kr), is greater the more different isr ’s characteristic fromh’s.

7.1. Effects of changing the number of players.The effects of increasingn in a single-bounded

game are similar in most respects to the effects analyzed in §6.1. As in a symmetric game,r ’s

expected deviation from affine is proportional ton—in this case, ifλλλ∗ is an equilibrium profile

thenEξr(λ∗
r ) = n(kh−kr) > 0—while r ’s expected CIPO deviation,(kh−kr) > 0, is independent

of n. The expression forr ’s expected payoff is identical to the expression between the equality

signs in (25′), except that theki ’s are replaced by(kh− ki)’s. The comparative statics of USW

and expected payoffs w.r.t.n are comparable to those summarized in Prop. 14. The one striking

difference between symmetric and single-bounded games concerns the strategic role played by

25It is straightforward to identify conditions analogous to assumption A7(iii) guaranteeing existence of an NMPE. To
save space, we leave this as an exercise for the reader.
26Using (15′) then Prop. 11, and then assumption A1(i), we obtain:

nkh = ∑
i

λi + ∑
i 6=h

Eξi(λi) = ∑
i

λi + n∑
i 6=h

(kh−ki) = ∑
i

λi + n2kh.
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the anchor player. A symmetric game is anchored by the middleplayerm, whose role is entirely

passive: regardless of who else is playing the game,λ∗
m = 0. A single-bounded game is anchored

by playerh, whose strategyλ∗
h plays a pivotal equilibrating role. Forr 6= h, r ’s expected CIPO

deviation is positive and independent ofn, in spite of the fact that asn increases, each new player

contributes an additional downward bias to the mean report (i.e.,r 6= h =⇒ λ∗
r < 0)! This balancing

act is accomplished single-handedly byh, whose positive bias offsets the sum of all other players’

negative biases. More precisely, from (15′), λh = nkh − ∑i 6=h(Eξi(λi)+λi); since each term in

the summation is negative,λh increases super-proportionally asn increases.

7.2. Effects of changing the announcement bound.Suppose the lower announcement bound,

a
¯
, decreases, holdingθ constant at zero, ensuring that the announcement space remains inclusive.

The effects of this change are identical to those discussed in §6.2: each player’s strategy adjusts to

hold constant the first and second moments of his deviation from affine; the equilibrium outcome

remains unchanged, as do all players’ expected payoffs.

7.3. Effects of increasing player heterogeneity.Once again, the effects here are qualitatively

similar to the effects described in §6.3-6.4. In the presentcontext, we interpret an increase in

heterogeneity as an increase in all components of the gap vector ∆k∆k∆k = (kh−ki)i 6=h. Such a change

unambiguously lowers all players’ expected payoffs and USW. The proof closely parallels the

proof of Prop. 17. Again, it is more interesting to consider the impact of a mean-preserving spread

of ∆k∆k∆k. If we impose assumption A7 and let[θ,θ] = [0,1], the result we obtain is very similar to

Prop. 18: if the largest element of∆k∆k∆k is less than 1/4n, USW declines with a mean-preserving

spread of∆k∆k∆k; if the smallest element is greater than 1/4n, USW increases.

8. LARGE AGGREGATION GAMES

The comparative statics results we present in §6 and §7 aboveapply to games in which the num-

ber of players is sufficiently small relative to the spread||kkk||∞ of observable characteristics that an

NMPE exists. Props. 2 and 3 reveal why for a given value of||kkk||∞, there is an upper bound on

how many players can participate beyond which some players’strategies become degenerate: as

the population expands, the tug-of-war between players with different biases becomes so intense
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that more and more of them are driven to the boundaries of the strategy space, resulting in increas-

ingly degenerate outcomes. Props. 20 and 21 below make this idea precise, first for bi-bounded

games and then for single-bounded ones. In each case, we allow n to increase without bound, and

demonstrate that in the limit, the outcome of the game is independent of players’ realized signals.

The driving force behind these results is rational exaggeration. Each player in our model wants

to distort the average signal that the center receives by an amount that is independent ofn. But

asn increases, a single individual’s leverage over the averagedeclines, so that more exaggeration

is required in order to accomplish a given impact on the aggregate outcome. When the space of

admissible reports is compact andn is sufficiently large, a right-winger, even if his type realization

is close to the center, will be driven to the upper boundary ofthe admissible report space in a

vain attempt to shift the mean announcement to the right. That is, compactness of the space of

admissible announcements bounds the extent that a player can exaggerate: the best a right-winger

can do is to select the highest admissible announcement, regardless of his type. Once this bound is

reached, all connection between the player’s private signal and his announcement is severed. Asn

gets larger, first extremists, then moderates, are pushed tothis corner; increasingly, the boundary

values of the announcement space dominate the determination of the mean signal, and the impact

of private information shrinks to zero. This result contrasts sharply with the recurring theme in

the information aggregation literature, which is that whenthe number of participants is very large,

political institutions such as elections can effectively aggregate private information.

To formalize this argument we return from anchored games to the general specification laid out in

§3. We consider an sequence of games with an increasingly large number of players, but with a

fixed type-spaceΘ ⊂ R, type densityh and announcement space,A. We also fix a setK ⊂ int(A)

from which players’ observable characteristics are drawn.Now for eachn, let kkkn = (kn
r )

n
r=1 ∈ Kn

be a vector of observable characteristics satisfying assumption A1 and letΓn denote then-player

aggregation game satisfying A1-A6 defined bykkk
n. Let νn denote the finite support measure on

K defined bykkkn, i.e., fork ∈ K, νn({k}) =





1/n if k = kn
r , for somen

0 otherwise
. Let sssn be an MPE for

Γn and let tn : Θn → R denote the equilibrium outcome function, i.e., forθθθ ∈ Θn, tn(µ(θθθ)) =

t(sssn(θθθ),kkkn). Passing to a subsequence if necessary, we can assume w.l.o.g. that the sequence{νn}
converges weakly to a measureν∗ onK, and hence thatt∗ = limn tn exists.
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We impose the restriction that thekkkn’s do not “bunch up,” i.e.,

Assumption A10: For any sequence(Un) in K s.t.∀n, diameter(Un) < 1/n, limn→∞ νn(Un) = 0.

Assumption A10 implies that the limit measureν∗ is nonatomic. Although the results below hold

more generally, we streamline the exposition by assuming that players’ payoff functions are biased

quadratic loss functions (see (13)) and that the mean of the signal distributionh is 0. Since by

the Strong Law of Large Numbers, the mean of players’ signalsµ(θθθ) converges almost surely to

Eϑϑ = 0 asn increases, the limit of playerr ’s MPE payoffs is−(kr − t∗(0))2.

The striking property of large aggregation games is that asymptotically, there is no causal link

between the mean of players’ signal and the limit outcome of the game. Specifically, Prop. 20

establishes that asn → ∞, the limit outcomet∗(·) is a constant function,27 mapping all values of

µ(θθθ) to the same convex combination of the lower and upper boundaries,a
¯

andā, of A.

Proposition 20 (Asymptotic information transmission):† If the sequence of observable charac-
teristicskkk

n satisfies assumption A10, then the limit outcome t∗ of the sequence of games(Γn) is
defined by t∗(·) = k∗, where k∗ is defined implicitly by the condition: k∗ = ā−ν∗({k< k∗})(ā−a

¯
).

If the limit game is perfectly symmetric about zero—for example, is the limit of SQAG’s—then

k∗ = 0 andν∗({k < k∗}) = 0.5; in this case, the limit game will, by happenstance, effectively

aggregate private information and the limit solution will maximize the limit of USW. In gen-

eral, however, the solution will be suboptimal, to a degree that depends on the asymmetry of the

distribution of observable characteristics and of the announcement bounds.

Prop. 20 is a straightforward consequence of parts iii) and iv) of Prop. 2, which reflect the fact that

asn increases, players must exaggerate more and more, to exert the same degree of influence over

the average outcome. But there are bounds on how much playerscan exaggerate, and once these

bounds are attained, all connection between players’ announcements and their signals is broken. It

follows that asn increases, the fraction of players whose strategies conveyany information at all

about their signals shrinks to zero. Because the limit distribution over players’ observable char-

acteristics is non-atomic, the aggregation rule assigns vanishingly small weight to the information

that these few players provide.

27As noted, in the limit,µ(θθθ) = 0 with probability one. However,t∗ is definedfor all θ ∈ Θ.
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We now consider single-bounded games. The only changes relative to the bi-bounded specification

above are that we relax the restrictions that the setK is fixed and the mean signal is zero, imposing

instead assumption A9 for eachn, so that in effect, the upper bound on admissible announcements

is removed. Prop. 20 was driven by the restriction that announcements were restricted to a fixed

compact interval. Surprisingly, Prop. 21 delivers a similar result, even though announcements are

bounded only from below. The difference between the two results is that in Prop. 20, the outcome

depended on the distribution of players’ biases. In Prop. 21, the playerh with the largest positive

bias dominates the game for eachn (cf. Prop. 19), obtaining in the limit the highest possible payoff

of zero, implemented by the limit outcome functiont(·) = limnkn
h + Eϑϑ. As usual, we omit the

proof because it is so similar to that of Prop. 20.

Proposition 21 (Limit of equilibria in single-bounded games): Consider a sequence of games
(Γn) satisfying assumption A9. If the sequence of observable characteristicskkkn satisfies assump-
tion A10, then the limit of the sequence of outcomes for(Γn) is t∗(·) = limnkn

h +Eϑϑ.

9. SUMMARY

This paper contributes to the literature on information aggregation. Two features that distinguish

it from the mainstream of this literature is that players’ reports are aggregated by averaging rather

than majority rule, and their strategy set is an interval rather than a binary choice. In this context,

the bounds on the strategy set play a critical role: if a groupof players have distinct preferences,

then all but at most one of them will be constrained by the bounds with positive probability. Our

main general results are: if agents have identical preferences, information is perfectly transmitted,

regardless ofn; if there is any degree of preference heterogeneity, however, private information

is entirely obliterated asn approaches infinity. For games with a small number of players, we

establish a number of comparative statics results for a class of games with quadratic payoffs which

we call anchored games: equilibrium outcomes and players’ payoffs are independent of the size

of the strategy set; asn increases, payoffs and social welfare tend to decline, but not necessarily

monotonically; a mean-preserving increase in the heterogeneity of players’ payoffs reduces payoffs

and welfare, but if the player set is split into two symmetricfactions, then an increase in the

heterogeneity of each faction will under some conditions increase payoffs and welfare.
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APPENDIX: PROOFS

Proof of Proposition 1: To prove the proposition we apply Theorems 1 and 2 of Athey (2001).
The first of these theorems is used to establish existence forfinite-action aggregation games. The
second implies existence for general aggregation games. Toapply Athey’s first theorem, we define
a finite action aggregation gameto be one in which players are restricted to choose actions from
a finite subset ofA. In all other respects, finite action aggregation games are identical to (infinite
action) aggregation games. We now check thatu satisfies Athey’s Assumption A1. Clearly, our
types have joint density w.r.t. Lebesgue measure which is bounded and atomless. Moreover, the
integrability condition in Athey’s A1 is trivially satisfied sinceu is bounded. Moreover, inequality
(7) implies that the SCC holds. Therefore, every finite action aggregation game has an MPE in
which playerr ’s equilibrium strategysr is nondecreasing. By Athey’s Theorem 2, the restricted
game has an MPE, call itsss∗. To show thatsss∗ will also be an equilibrium for the original, unrestricted

game, it suffices to show that for allr, all θ and alla > ā, ∂Ur(a,θ;sss∗−r )
∂a < 0. To establish this, note

thatsss∗−r ≥ sss−r ≥ 0, so that sincet is strictly increasing,a > ā implies

U ′
r(a,θ;sss∗−r) < U ′

r(ā,θ;sss∗−r) ≤ U ′
r(ā,θ;sss−r) ≤ U ′

r(ā,θ;0) ≤ 0

Finally, to establish thatsr is strictly increasing and continuously differentiable on(θ
˜

r(sss),θ], note

thatU ′
r(sr(·), ·;sss−r) = 0 on(θ

˜
r(sss),θ]. From (7), assumption A6 and the implicit function theorem,

we have, for allθ ∈ (θ
˜

r(sss),θ], dsr(θ)
dθ = − ∂2Ur (sr(θ),θ;sss−r)

∂a∂θ

/
∂2Ur(sr(θ),θ;sss−r)

∂a2 > 0. �

Proof of Proposition 2: Let sss be an MPE and assume thatki − k j > ε > 0. Pick θ∗ ∈ Θ∗ =
argmin(si −sj) and letγ = si(θ∗)−sj(θ∗), so thatsi(·)−γ ≥ sj(·). Thus,γ is the minimum amount
by whichsi(·) exceedssj(·); we will establishγ ≥ 0. Note first that

U ′
j(sj(θ∗),θ∗;sss− j) ≡ U ′

j(si(θ∗)− γ,θ∗;〈si,sss−i, j〉) = U ′
j(si(θ∗),θ∗;〈si − γ,sss−i, j〉)

< U ′
i (si(θ∗),θ∗;〈si − γ,sss−i, j〉) ≤ U ′

i (si(θ∗),θ∗;〈sj ,sss−i, j〉) (38)

The first equality merely relabels some terms; the second equality hold because the outcome func-
tion satisfies condition (3). The strict inequality holds because by assumption A5(ii),k j < ki
implies thatU ′

j < U ′
i . The weak inequality holds becauseUi is concave w.r.t.sss−i (display (6)) and

si(·)− γ ≥ sj(·). It now follows from (38) that ifU ′
i (si(θ∗),θ∗;sss−i) ≤ 0, thenU ′

j(sj(θ∗),θ∗;sss− j) <

0, implying thatsj(θ∗) = a
¯
, while if U ′

i (si(θ∗),θ∗;sss−i) > 0, thensi(θ∗) = ā. In either case,
si(θ∗)−sj(θ∗) ≥ 0. Hence, by definition ofθ∗,

0 ≤ si(θ∗)−sj(θ∗) ≤ si(·)−sj(·), (39)

i.e., i’s strategy is never lower thanj ’s strategy. Thussj(θ) > a
¯

impliessi(θ) > a
¯
, implying in turn

θ
˜

i(sss) ≥ θ
˜

j(sss); andsi(θ) < ā impliessj(θ) < ā, implying in turnθ̃ j(sss) ≤ θ̃i(sss), proving part i). To
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prove part ii), note that forθ ∈
(
θ
˜

j(sss), θ̃i(sss)
)
,

U ′
i (si(θ),θ;〈sj ,sss−i, j〉) = 0 = U ′

j(sj(θ),θ;〈si,sss−i, j〉)

≤ U ′
j(sj(θ),θ;〈sj ,sss−i, j〉) < U ′

i (sj(θ),θ;〈sj ,sss−i, j〉) (40)

The equalities hold because neitheri nor j is constrained at typeθ. The weak inequality follows
from property (6) since, from (39),si ≥ sj , and the strict inequality is implied by A5(ii). The
inequality between the first and last expressions of (40), combined with (6), imply thatsi(θ) >

sj(θ), proving part ii). To prove part iii), note first that since∂
2u

∂τ∂k,
∂2u

∂τ∂µ(θθθ) > 0 > ∂2u
∂µ(aaa)2 (assump-

tions A5 and A6), sinceu is bounded and the domain ofu is compact, there existsδ,ωθ,ωa > 0 such

that ∂2u(·,·,·)
∂τ∂k > 2δ, ∂2u(·,·,·)

∂τ∂µ(θθθ) < ωθ and ∂2u(·,·,·)
∂µ(aaa)2 ∈ (−ωa,0), so that for alln, ∂2u(·,·,·)

∂τ∂θ = 1
n2

∂2u(·,·,·)
∂τ∂µ(θθθ) <

ωθ/n2 while ∂2u(·,·,·)
∂a2 = 1

n2
∂2u(·,·,·)
∂µ(aaa)2 ∈ (−ωa/n2,0). Now fix θ̂ ∈

(
θ
˜

j(sss), θ̃ j(sss)
)

so that j ’s first order

condition is satisfied with equality at̂θ. From the strict inequality in (40), the lower bound on
∂2u(·,·,·)

∂τ∂k and the fact that(ki −k j > ε), we can infer that

U ′
i (sj(θ̂), θ̂;〈sj ,sss−i, j〉) > 2εδ/n. (41)

Moreover, using the bounds just identified, we have that forn >
max{(ā−a

¯
)ωa,(θ−θ)ωθ}
εδ ,

U ′
i (sj(θ̂), θ̂;〈sj ,sss−i, j〉) − U ′

i (ā, θ̂;〈sj ,sss−i, j〉) ≡ −
Z ā

sj(θ̂)

dU′
i (α, θ̂;〈sj ,sss−i, j〉)

da
dα

≤ ωa(ā−a
¯
)

n2 < εδ/n (42)

while U ′
i (ā, θ̂;〈sj ,sss−i, j〉) − U ′

i (ā,θ;〈sj ,sss−i, j〉) ≡
Z θ̂

θ

dU′
i (ā,ϑ;〈sj ,sss−i, j〉)

dθ
dϑ

≤ ωθ(θ−θ)

n2 < εδ/n (43)

Inequalities (42) and (43) together imply thatU ′
i (sj(θ̂), θ̂;〈sj ,sss−i, j〉)−U ′

i (ā,θ;〈sj ,sss−i, j〉) < 2εδ/n,
which, together with (41), implies thatU ′

i (ā,θ;〈sj ,sss−i, j〉) > 0. It now follows from (8) and mono-
tonicity of si(·) thatā = si(θ) ≤ si(·), establishing part iii). The proof of iv) is parallel. �

Proof of Proposition 5: We first assume thatsss is admissible and unit affine but not ZSUA, i.e.,

that there existsλλλ ∈ Λ2 such thatsr(·) = ι(·)+λr , with
j

∑
r=i

λr 6= 0. Assume w.l.o.g. thatλi ≥ 0 and

that|a
¯
−θ| > |ā−θ|, implying that−λi ∈ Λ. Fix θ j arbitrarily:

U j(sj(θ j),θ j ;si) =

Z

Θ
u(t(ϑi +λi ,θ j +λ j),(ϑi,θ j), k̄)dh(ϑi)
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which, sincet is CISE

<
Z

Θ
u(t(ϑi,θ j),(ϑi,θ j), k̄)dh(ϑi) = U j(θ j −λi ,θ j ;si)

That is,sj(·) is not a best response againstsi so thatsss is not an equilibrium profile.
Now assume thatsss is continuous but not unit affine. (From Prop. 1, we do not needto consider
discontinuous strategies.) Note also that forf and g continuous,f � g implies that f strictly
exceedsg with positive probability. W.l.o.g., assume that there exists λ > 0 such thatsj(·) �
ι(·)−λ, with sj(θ̄ j) = θ̄ j −λ. We now show that ifsi is a best response tosj , then(si(·)− ι(·))< λ.
Considersi such thatsi(θ̄i) ≥ θ̄i +λ, for someθ̄i , so thatsi(θ̄i)+sj(·) ≥ θ̄i +λ+sj(·) � θ̄i + ι(·).
Fact (5) on p. 13 now impliest(si(θ̄i),sj(·)) ≥ t(θ̄i +λ,sj(·)) � t(θ̄i, ι(·)). SinceUi is concave int
and, for allθ j , u(·,(θ̄i,θ j), k̄) is maximized att(θ̄i,θ j) = µ

(
θ̄i ,θ j

)
:

U ′
i (si(θ̄i), θ̄i;sj) =

Z

Θ

du
da

(t(si(θ̄i),sj(ϑ j)),(θ̄i,ϑ j), k̄)dh(ϑi) ≤
Z

Θ

du
da

(t(θ̄i +λ,sj(ϑ j)),(θ̄i,ϑ j), k̄)dh(ϑi)

<

Z

Θ

du
da

(t(θ̄i,ϑ j),(θ̄i,ϑ j), k̄)dh(ϑi) = 0

This establishes that ifsi is a best response tosj , then(si(·)− ι(·)) < λ. But in this case,sj(θ̄ j)+
si(·)< θ̄ j +ι(·), implying thatt(sj(θ̄ j),si(·)) < t(θ̄ j , ι(·)), so thatU ′

j(sj(θ̄ j), θ̄ j ;si) > 0. Therefore,
sj(·) is not a best response forj againstsi(·) at θ̄ j . �

Proof of Proposition 6: We will prove uniqueness only for non-degenerate equilibrium profiles.
Uniqueness for other profiles is ensured by restriction (10), but we omit the details. Letλλλ∗ be a
NMPE for the aggregation game, and letλλλ be any other profile of strategies such that for some
j, λ j 6= λ∗

j . We will show that ifλλλ satisfies the necessary condition (22), then it fails the other
necessary condition (15′). Suppose w.l.o.g. thatλ j > λ∗

j . From (21),Eξ j(λ j) < Eξ j(λ∗
j ). For all

r 6= j, (22) implies thatEξr(λr) < Eξr(λ∗
r ), and (21) in turn implies thatλr > λ∗

r . To establish that
λλλ cannot satisfy (15′), it suffices to show that

(

∑
i

λi + ∑
i 6= j

Eξi(λi)

)
>

(

∑
i

λ∗
i + ∑

i 6= j

Eξi(λ∗
i )

)
= nkj

or, equivalently

λ j − λ∗
j + ∑

i 6= j

(λi − λ∗
i ) > ∑

i 6= j

(Eξi(λ∗
i ) − Eξi(λi))

This last inequality is indeed satisfied, since by assumption λ j > λ∗
j while (21) implies that for all

i 6= j, λi −λ∗
i > Eξi(λ∗

i )−Eξi(λi). �

Proof of Proposition 7: From (17),Eϑϑϑ
(
µ(sss∗(ϑϑϑ))−µ(ϑϑϑ)

)
equalsµ(λλλ∗)+µ(Eξξξ), which, from

(15′), equalskr +Eξr/n. Hence, from (23),Eϑϑϑ
(
µ(sss∗(ϑϑϑ))− t̂(ϑϑϑ,kr)

)
= Eξr/n. �



Proof of Proposition 8: Rearranging (15), we obtain theinterim expected equilibrium outcome

Eϑϑϑ−r (µ(sss)|θr) =
(

min{ā,max{θr +λr ,a}̄} + nkr + ∑
i 6=r

Eϑϑϑϑi −λr

)
/n

It follows that for (r,θr), the interim expected equilibrium and CIPO outcomes will coincide iff
min{ā,max{θr +λr ,a}̄} = θr +λr , i.e.,(r,θr), is not constrained by the announcement bounds.�

Proof of Proposition 9: Let ξ∗r = ξr(λ∗
r ). Expanding the left hand side of (25), we obtain

Eϑϑϑ(µ(ϑϑϑ)+kr −µ(sss∗(ϑϑϑ)))2 = Eϑϑϑ(µ(sss∗(ϑϑϑ))−µ(ϑϑϑ)−kr)
2

= Eϑϑϑ(µ(sss∗(ϑϑϑ))−µ(ϑϑϑ))2 − 2krEϑϑϑ(µ(sss∗(ϑϑϑ))−µ(ϑϑϑ)) + k2
r

= Eϑϑϑ(µ(sss∗(ϑϑϑ))−µ(ϑϑϑ))2 − 2kr
(
µ
(
Eξξξ∗

)
+µ(λλλ∗)

)
+ k2

r (44)

The last equality follows from (20). Expanding the first termon the right hand side of (44),

Eϑϑϑ (µ(sss∗(ϑϑϑ))−µ(ϑϑϑ))2 = Eϑϑϑ

(
µ
(
sss
∗(ϑϑϑ)− (ϑϑϑ+λλλ∗)︸ ︷︷ ︸

ξ∗ξ∗ξ∗

)
+µ(λλλ∗)

)2

= Eϑϑϑ
(
µ(sss∗(ϑϑϑ)− (ϑϑϑ+λλλ∗))

)2
+ 2µ(λλλ∗)µ

(
Eξξξ∗

)
+ µ(λλλ∗)2 (45)

The first equality merely adds and subtractsµ(λλλ∗) and rearranges terms; the second averages both

sides of the identity in (17). Now expand the first term in (45)to obtain

Eϑϑϑ
(
µ(sss∗(ϑϑϑ)− (ϑϑϑ+λλλ∗))

)2
=

(
∑
i

Eϑi (s
∗
i (ϑi)− (ϑi +λ∗

i ))
2 + ∑∑i 6= jEξ∗i Eξ∗j

)
/n2

=
(
∑
i

Vξ∗i + ∑
i

(Eξ∗i )
2 + ∑∑i 6= jEξ∗i Eξ∗j

)
/n2 =

(
∑
i

Vξ∗i +
[
∑
i

Eξ∗i
]2)

/n2

= µ
(
VξVξVξ∗

)
/n + (µ

(
Eξξξ∗

)
)2 (46)

The first equality is obtained by expandingµ(ϑϑϑ+λλλ∗−sss∗(ϑϑϑ)), the second from the relationship

E(X2) = Var(X)+(EX)2 for a random variableX. Now, substituting (46) back into (45)

Eϑϑϑ (µ(sss∗(ϑϑϑ))−µ(ϑϑϑ))2 = µ
(
VξVξVξ∗

)
/n +

(
µ
(
Eξξξ∗

)
+µ(λλλ∗)

)2
(47)

Finally, substitute (47) back into (44) to obtain

Eϑϑϑ(µ(ϑϑϑ)+kr −µ(sss∗(ϑϑϑ)))2 = µ
(
VξVξVξ∗

)
/n +

(
µ
(
Eξξξ∗

)
+µ(λλλ∗)−kr

)2
= µ

(
VξVξVξ∗

)
/n + (Eξ∗r /n)2

The last equality is obtained by addingEξ∗r /n to both sides of (15′) and substituting forkr . �

Proof of Proposition 12: We first show that under A7, for the variance ofr ’s deviation from

affine isVξr(λr) = Eξ2
r

(√
8

9h|Eξr | − 1
)

. To see this, assuming w.l.o.g. thatλr > 0, and using the
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fact thatλr ∈ int(Λ), we have

Vξr(λr) = −Eξ2
r +

Z θ

ā−λr

(ϑr +λr − ā)2dh(ϑr) = h/3
(

λr +θ− ā
)3

−Eξ2
r (48)

which, from (29),

=
h
3

(
2
h

Eξr

)3/2

− Eξ2
r =

√
8|Eξr |3

9h
− Eξ2

r = Eξ2
r

(√
8

9h|Eξr |
− 1

)
.

Prop. 9 now implies thatr ’s equilibrium expected payoff is−
{

∑i

[
Eξ2

i

(√
8

9h|Eξi | − 1
)]

+(Eξr)
2
}

/n2.

Equation (30) then follows from Prop. 11. The inequality follows since|k j − ki | ≤ 2||kkk||∞ <

(θ−θ)/2n = 1/(2hn). �

Proof of Proposition 13: The existence of a unique MPE was established in Prop. 6. Nonde-
generacy is implied by assumption A7(iii) (see pp. 28-29). Considerλλλ∗ such thatEξr(λ∗

r ) = −nkr
for all r with λr ∈ int(Λ) and parts i) and ii) of the proposition are satisfied. Our symmetry con-
ditions ensure that such a vector exists, i.e., that if ¯r andr are matched players, ifλ∗

r = −λ∗
r̄ , and

Eξr̄(λ∗
r̄ ) = −nkr̄ , it follows from symmetry, (17) and (18) thatEξr(λ∗

r) = −nkr . With the restric-
tions in (16), we only need to verify that (15′) is satisfied byλλλ∗. Since∑i ki = 0 (assumption A1),
we have

−nkr = ∑
i 6=r

nki = −∑
i 6=r

Eξi(λ∗
i ) (49)

Moreover, from parts i) and ii) of the proposition,∑i λ∗
i = 0. Substituting this property and (49)

into the right hand side of (15′), we obtain

∑
i

λ∗
i + ∑

i 6=r

Eξi(λ∗
i ) = nkr ,

verifying that (15′) is indeed satisfied. �

Proof of Proposition 15: From Prop. 13, we have

Eξr ≡
Z θ

˜
r

θ
(−ā− (θr +λr))dH(θr) +

Z θ

θ̃r

(ā− (θr +λr))dH(θr) ≡ −nkr , (50)

where in the first integration we substituted ina
¯

= −ā. Totally differentiating both sides with

respect to ¯a andλr and noting thatθ
˜

r = a
¯
−λr = −ā−λr andθ̃r = ā−λr , we obtain

[
H(θ

˜
r)− (1−H(θ̃r))

]
+

[
(H(θ

˜
r)+(1−H(θ̃r))

]
dλr

dā
= 0.

Hencedλr
dā =

(1−H(θ̃r ))−H(θ
˜

r)

H(θ
˜

r)+(1−H(θ̃r ))
. Whenr is bi-constrained,H(θ

˜
r) andH(θ̃r) are both nonzero, so that

dλr
dā ∈ (0,1). Whenr is up-constrained (resp. down-constrained),H(θ

˜
r) = 0 (resp.H(θ̃r) = 1), so
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that dλr
dā reduces to 1 (resp. -1). Ifr is the middle player,λr = 0 and, since everything is symmetric,

H(θ
˜

r) = 1−H(θ̃r) so thatdλr
dā = 0. �

Proof of Proposition 16: Since part i) of the proposition follows immediately from the dis-
cussion below Prop. 15, we need only prove in detail part ii).Suppose there is a playeri whose
strategy is bi-constrained. (Ifi is not the middle player, his matched player is also bi-constrained.)
We will show that as ¯a increases byda, the variance termVξi decreases, which, from (25′) induces
the same increase of− 1

n2
dVξi
dā da in the expected payoff of each player. Let the distribution func-

tion of playeri’s deviation from affine,ξi , be denoted asFi(·). ObviouslyFi(·) is derived from the
distribution function ofθ, H(·), as well as fromi’s strategy and the announcement bounds. The
random variableξi can be considered as a function of random variableθi:

ξi =





a
¯
− (θi +λi) = θ

˜
i −θi if θi ≤ θ

˜
i

0 if θ
˜

i < θi ≤ θ̃i

ā− (θi +λi) = θ̃i −θi if θi > θ
˜

i

(51)

Given thatθi is distributed according toH(·), the distribution functionFi(·) of ξi can be derived
by combiningH(·) and (51). Specifically, the support ofFi is [θ̃i −θ,θ

˜
i −θ]; the fact thati is

bi-constrained implies that̃θi −θ < 0 andθ
˜

i −θ > 0; The values ofFi are given by

Fi(x) =





Prob(θ̃i −θi ≤ x) = 1−H(θ̃i −x) x∈ [θ̃i −θ,0)

Prob(θi ≥ θ̃i) = 1−H(θ̃i) if x = 0

Prob(θ
˜

i −θi ≤ x) = 1−H(θ
˜

i −x) x∈ (0,θ
˜

i −θ].

(52)

Note in particular thatFi(·) jumps up atx = 0 from 1−H(θ̃i) to 1−H(θ
˜

i). To derive the variance

Vξi , note first that sincei is bi-constrained,λi ∈ int(Λ). We can therefore invoke Prop. 13 to
obtain:

−nki ≡ E(ξi) =
Z θ

˜
i−θ

θ̃i−θ
ξidFi(ξi) = θ

˜
i −θ−

Z θ
˜

i−θ

θ̃i−θ
Fi(ξi)dξi ,

where the last equality is obtained after integrating by parts. Thus,

Z θ
˜

i−θ

θ̃i−θ
Fi(ξi)dξi = θ

˜
i −θ+nki . (53)

The variance ofξi can now be written as

Vξi =
Z θ

˜
i−θ

θ̃i−θ
(ξi −E(ξi))

2dFi(ξi) = (θ
˜

i −θ−E(ξi))
2 −

Z θ
˜

i−θ

θ̃i−θ
Fi(ξi)2(ξi −E(ξi))dξi
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= (θ
˜

i −θ+nki)
2 − 2nki

Z θ
˜

i−θ

θ̃i−θ
Fi(ξi)dξi − 2

Z θ
˜

i−θ

θ̃i−θ
Fi(ξi)ξidξi

= (θ
˜

i −θ)2+2(θ
˜

i −θ)nki +(nki)
2 − 2nki(θ

˜
i −θ+nki) − 2

Z θ
˜

i−θ

θ̃i−θ
Fi(ξi)ξidξi

= (θ
˜

i −θ)2− (nki)
2 − 2

[
Z 0

θ̃i−θ
(1−H(θ̃i −ξi))ξidξi +

Z θ
˜

i−θ

0
(1−H(θ

˜
i −ξi))ξidξi

]
, (54)

where the second equality follows from integration by parts, the third fromE(ξi) = −nki , the
fourth from (53) and the fifth from (52). Now, differentiating (54) with respect to ¯a and noting that
θ
˜

i = a
¯
−λi = −ā−λi andθ̃i = ā−λi , we obtain

dVξi

dā
= 2

{[
1− dλi

dā

]
Z 0

θ̃i−θ
h(θ̃i −ξi)ξidξi −

[
1+

dλi

dā

]
Z θ

˜
i−θ

0
h(θ
˜

i −ξi)ξidξi

}

=
4

H(θ
˜

i)+(1−H(θ̃i))
× (34′)




H(θ
˜

i)
Z θ̃i

θ
(θi − θ̃i)dH(θi) − (1−H(θ̃i))

Z θ

θ
˜

i

(θi −θ
˜

i)dH(θi)




 < 0

The first inequality holds becauseH(θ) = 0 andH(θ) = 1, while
dθ
˜

i

dā ≡ d(a
¯
−λi)
dā = −(1+ dλ

dā) and
dθ̃i
dā ≡ d(ā−λi)

dā = (1− dλ
dā). The second equality is obtained by substituting in the value of dλi/da

¯
using (33), changing the variables of integration fromξi to θi = θ̃i − ξi and toθi = θ

˜
i − ξi in the

two integrations respectively. The term in curly brackets is negative becauseθ < θ
˜

while θ > θ̃. �

Proof of Proposition 17: By symmetry, we can, w.l.o.g., assume thatkr > 0. Similar to the
procedures used to derive (34′), we differentiate the expression forVξr in (54) w.r.t.λr , to obtain

∂Vξr

∂λr
= 2

Z θ
˜

r

θ
(θr −θ

˜
r)dH(θr)+2

Z θ

θ̃r

(θr − θ̃r)dH(θr) = −2Eξr = 2nkr , (55)

where the last equality follows from Prop. 13. Note that ifr is up-constrained, the first term in
expression (55) is zero. SincedVξr

dkr
= ∂Vξr

∂kr
+ ∂Vξr

∂λr

dλr
dkr

, the Proposition is obtained by taking the
derivative of (54) with respect tokr and combining (35) with (55). �

Proof of Proposition 18: Let I+ denote the members of the right-wing faction and letI+
− denote

the moderate members of this faction. Pickr ∈ I+. Let ξr(γ) denoter ’s deviation from affine in
the equilibrium associated with the parameterγ. Sincer is up-bounded, we have

nk̄+
r = −Eξr(0) =

Z θ

θ̃r

(θr − θ̃r)dH(θr) = 0.5
Z 1

θ̃r

(θr − θ̃r)dθ = (1− θ̃r)
2/4
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The first equality follows from Prop. 13 and the third from assumption A8(i). Hencẽθr = 1−
2
√

nk̄+
r . Moreover,H(θ̃r) = 0.5

R θ̃r
−1dθ = 1+θ̃r

2 . Now from (36)

dVξr

dkr

∣∣∣∣
γ=0

= 2n2k̄+
r

(
H(θ̃r)

1−H(θ̃r)

)
= 2n2k̄+

r

(
1+ θ̃r

1− θ̃r

)
= 2n2k̄+

r

(
1−
√

nk̄+
r√

nk̄+
r

)

= 2n(
√

nk̄+
r −nk̄+

r )

Hence d2Vξr

dkr
2

∣∣∣
γ=0

= n
(√

n/
√

k̄+
r −2n

)
≶ 0 ask̄+

r ≷ 1/4n. That is, fork′ > k, dVξr(k′)
dk > dVξr(k)

dk if

k′ < 1/4n and dVξr(k′)
dk < dVξr(k)

dk if k > 1/4n. From Prop. 10, Prop. 13 and symmetry,
USW= −2∑i∈I+ Vξi(γ), so that

dUSW
dγ

∣∣∣∣
γ=0

= −2 ∑
i∈I+

dVξi(γ)
dγ

∣∣∣∣
γ=0

= −2 ∑
i∈I+−

αi

(
dVξi+n/4(γ)

dki+n/4

∣∣∣∣
γ=0

− dVξi(γ)
dki

∣∣∣∣
γ=0

)

Sincek̄+
i+n/4 > k̄+

i , dUSW
dγ

∣∣∣
γ=0

> 0 if min(k̄kk
+
) > 1/4n and dUSW

dγ

∣∣∣
γ=0

< 0 if max(k̄kk
+
) < 1/4n. �

Proof of Proposition 19: We first establishλ∗
h > 0, so that, from (37),Eξh(λ∗

h) = 0 and thush
is the anchor of the game. Suppose instead thatλ∗

h ≤ 0 andλ∗
h ∈ int(Λ). (We can easily rule out the

situation whenλ∗
h = min(Λ) = a

¯
−θ; we omit the details.) Sincekh > kr ∀r 6= h, (22) implies that

Eξh(λ∗
h) < Eξr(λ∗

r ) and thusλ∗
r < λ∗

h ≤ 0. SinceEξr(λr) = 0 whenλr = 0, (21) andλ∗
r < 0 imply

λ∗
r +Eξr(λ∗

r ) < 0. (56)

From (15′) andλ∗
h ∈ int(Λ), λ∗

h = nkh−∑r 6=h(λ∗
r + Eξr(λ∗

r )) > 0, where the inequality is due to
kh > 0 and (56). This contradicts our supposition thatλ∗

h ≤ 0. Property (37) now ensures that
Eξr(λr) = 0, so that single-bounded aggregation games are anchored with anchorh. The second
part of the proposition now follows from Prop. 11. �

Proof of Proposition 20: Let sssn denote the MPE of then’th game and letŪn = {κ ∈ K :
∃r s.t.kn

r = κ andsn
r (·) = ā}. Define Un analogously, witha

¯
replacing ¯a. Finally LetUn = {κ∈ K :

∃r s.t.kn
r = κ andsn

r is non-degenerate}. From parts iii) and iv) of Prop. 2, limndiameter(Un) = 0.
From assumption A10, limnνn(Un) = ν∗(limnUn) = 0. Moreover, sinceK ⊂ int(A), both Ūn

and Un must be nonempty for sufficiently largen, since otherwise, if say Un = /0, thentn(·) ≈
ā > sup(K), which would be superoptimal for all players. Hence, since strategies are monotone
w.r.t. observable characteristics (Prop. 2),k̄inf = lim inf(Ūn) ≥ ksup = limsup(Un). Moreover,
sinceν∗(limnUn) = 0, ∃k∗ s.t. t∗(·) = k∗ = ν∗

(
{k < ksup}

)
a
¯
+ν∗

(
{k > k̄inf}

)
ā. Necessarily,k∗ ∈

[ksup, k̄inf], since if ksup> k∗ there would forn sufficiently large existr with tn(·)≈ k∗ < kn
r ∈Un, so

thatr ’s payoff would increase by shifting froma
¯

to ā, a contradiction sincesssn is an MPE. Finally,
sincek∗ ∈ [ksup, k̄inf] andν∗((ksup, k̄inf)) = 0, t∗(·) = k∗ = ν∗

(
{k < k∗}

)
a
¯
+ν∗

(
{k > k∗}

)
ā. �
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