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Abstract: Agricultural production is subject to supply risk. Expected and realized farm 
outputs and output prices are unknown and unobservable when inputs are chosen. Crop 
and livestock production decisions are linked over time. Producers’ expectations are par-
ticularly difficult to model. This paper presents the necessary and sufficient condition to 
allow input demands to be specified as functions of input prices, technology, quasi-fixed 
inputs, and cost in place of planned/expected outputs. These all are observable when in-
puts are committed to production. Next we derive a flexible, exactly aggregable, eco-
nomically regular econometric model of input demands. This model is consistent with 
any dynamic von Newman – Morgenstern expected utility function. We combine this 
framework with a model of the life-cycle production, investment and savings, and con-
sumption decisions of owner/operators who face output and output price risk, and who 
have opportunities to invest in a conditionally risk free asset, other risky financial assets, 
and farm assets. The econometric framework allows for location specific technological 
change and production processes, cross-equation, interspatial, and intertemporal correla-
tion among the error terms, and structural simultaneity between inputs and outputs, input 
and output prices, investment in durable goods used in agriculture, consumption, savings, 
and wealth. The result is a consistent dynamic structural model of inputs, outputs, sav-
ings, investment, and consumption under risk. Ongoing empirical work applies this 
model at the state-level to crop and livestock production for the years 1960-2004. An ad-
ditional ongoing effort is to update this data set to 2008. 
 
Key Words: Aggregation, consumption, ex ante cost, expected utility, functional form, 

investment, life cycle, rank, risk, savings 
 
JEL Classification:    C3, D2, D8 
 
Please address correspondence to: 

Professor Jeffrey T. LaFrance 
School of Economic Sciences 
101 Hulbert Hall 
PO Box 646210 
Washington State University 
Pullman, WA 99164-6210 
jtlafrance@wsu.edu 

 
1 School of Economic Sciences and Paul Allen School for Global Animal Health, Washington State University 
2 Department of Agricultural and Resource Economics, University of California–Berkeley 
3 Department of Economics, Monash University 
4 Department of Economics, Brigham Young University 
5 Department of Agricultural Economics, Mississippi State University 



  2 

1. Introduction 

Farm and food policies affect crop acres, asset management, intensive and extensive 
margin decisions, and risk management choices in agricultural production. For example, 
in 1991, less than 25% of cropland (82 million acres) was covered by a Federally subsi-
dized crop insurance contract, with $11.2 billion in total liability, $740 million in insur-
ance premiums, premium subsidies of 25% ($190 million) of gross farm premiums, and 
total indemnity payments of $955 million. Relative to premiums paid by farmers ($550 
million), for each $1.00 in premiums paid by the typical insured farmer, $1.75 in indem-
nity payments were received.  

Even with this relatively profitable insurance program, farmer participation rates re-
mained quite low. This outcome is likely due to the race to the bottom problem in a pool-
ing equilibrum (LaFrance, Shimshack, and Wu 2000, 2001, 2002, 2004). However, Con-
gress responded to the appearance of an incomplete insurance market with increased sub-
sidies and many new forms of insurance.  

The 1996 Federal Agricultural Improvement and Reform Act and the amendments to 
the 1938 Federal Crop Insurance Act that are commonly known as the Agricultural Risk 
Protection Act of 2000 mandated higher subsidy rates, the development and marketing of 
new insurance products for virtually every crop and livestock product produced in the 
U.S., and substantial subsidies for crop insurance marketing firms and large private rein-
surance companies. 

This change in farm policy greatly expanded the Federal crop insurance program. In 
2003, the Federal Crop Insurance Corporation (FCIC) provided insurance products for 
more than 100 crops on 217 million acres (2/3 of all cropland). The total insurance liabil-
ity was $40.6 billion, with $3.4 billion in insurance premiums, subsidies of almost 60% 
of gross premiums ($2.0 billion), and total indemnity payments of $3.2 billion. The cur-
rent program includes subsidy payments to private companies marketing Federal crop 
insurance equal to 24.5% of gross premiums for administration and oversight (A&O), and 
to private reinsurance companies equal to 13.6% of gross premiums. Reinsurance com-
panies also have the right to sell up to 50% of their contracts back to the FCIC (that is, to 
the taxpayer) at cost. The FCIC’s Risk Management Agency’s (RMA) book of business 
shows that 20% of the insured farms account for nearly 80% of indemnity payments. This 
suggests substantial adverse selection, as well as moral hazard, since the majority of the 
Federally subsidized crop insurance products calculate premiums based on deviations 
from county-level yield trends. That is to say, FCIC insurance products are based on a 
pooling equilibrium established at the county level, and in some cases larger areas known 
as risk regions.  

The net effect is that for each $1.00 in premiums actually paid by farmers they re-
ceive an average of $2.40 in indemnity payments, insurance marketing firms receive 
$0.40 in A&O subsidies, and reinsurance companies make in the neighborhood of $0.45 
in profit due to the combined direct subsidies on premiums and their reinsurance rights 



  3 

with the FCIC, which allow them to cream, or high grade, the insurance pool. 

In 2004 the RMA issued an RFP to develop subsidized pasture and range insurance 
for 440 million acres of private, public, and Native American pasture and rangeland in 
the country. Many agricultural economists at land grant universities across the country 
actively consult with the RMA and private insurance companies to develop new and ex-
pand existing Federally subsidized crop insurance products.  

Although this is only one example of the ubiquitous nature of Federal intervention in 
U.S. agriculture, there is a large literature on the impacts of subsidized crop insurance on 
variable input use and the intensive margin (Nelson and Loehman 1987, Chambers 1989, 
and Quiggin 1992, Horowitz and Lichtenberg 1994, Smith and Goodwin 1996, and Bab-
cock and Hennessy 1996). The effects of subsidized crop insurance programs on the ex-
tensive margin also has been the subject of considerable analysis (Gardner and Kramer 
1986, Goodwin, Smith and Hammond 1999, Keeton, Skees and Long 1999, and Young, 
Schnepf, Skees, and Lin 1999, and LaFrance, Shimshack, and Wu 2000, 2001, 2002, 
2004), all of which conclude that subsidized crop insurance results in additional of mar-
ginal crop acres. Williams (1988), Turvey (1992), Wu (1999), and Soule, Nimon, and 
Mullarkey (2000) examine the impacts of subsidized crop insurance on choices of crop 
mixes and acreage decisions. Empirical results in this component of the literature suggest 
that economically marginal land also is environmentally marginal. These results all sug-
gest that subsidized crop insurance tends to increase environmental degradation. Even so, 
very little of the previous work in this area uses structural models, or takes into account 
the dynamic nature of agricultural decision making under risk. 

To better understand these and many other longstanding issues in U.S. agricultural 
policy, this paper develops a comprehensive structural econometric model of variable in-
put use, crop mix and acreage choices, investment and asset management decisions, and 
consumption, savings and wealth accumulation in a stochastic dynamic programming 
model of farm-level decision making over time. This model develops and establishes 
clear and intuitively appealing relationships between dynamic life-cycle consumption 
theory, the theory of the competitive firm subject to risk, and modern finance theory. 

We present, discuss, and apply a new class of variable input demand systems in a 
multi-product production setting. All of the models in this class can be estimated with 
observable data, are exactly aggregable, are consistent with economic theory for any von 
Neumann-Morgenstern expected utility function, and can be used to nest and test exact 
aggregation, economic regularity, functional form, and flexibility. Implications of 
monotonicity, concavity in prices, and convexity in outputs and quasi-fixed inputs are 
developed for a specific subset of this class of models. We are currently in the process of 
applying this to 13 variable inputs in U.S. agriculture over the sample period 1960-2004 
using state-level data.  

This variable cost model is then used to help develop a structural model of the dy-
namic decision problems faced by a generic agricultural producer in each state. In this 
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life-cycle model of agricultural decisions under risk, farmers create income and wealth 
through savings, investment in risky financial assets, own-labor choices both on- and off-
farm, and agricultural production and investment activities. This disciplines the economic 
theory of agricultural production over time and under risk, and helps to better identify 
risk preferences and other model parameters. 

2. The Production Model and Two Results 

Four longstanding questions in economics, econometrics, and agricultural economics are 
the choice of functional form, the degree of flexibility, the conditions required for and 
regions of economic regularity, consistency with aggregation from micro- to macro-level 
data, and how best to handle simultaneous equations bias, errors in variables, and latent 
variables in a structural econometric models. In this paper, we attempt to deal with all of 
these issues in a coherent framework for the analysis of a life-cycle model of agricultural 
production, investment, consumption, and savings decisions. 

Analysis of multi-product behavior of firms is common in economics (Färe and Pri-
mont 1995; Just, Zilberman, and Hochman 1988; Shumway 1983, Lopez 1983; Akridge 
and Hertel 1986). A large literature on functional structure and duality guides empirical 
formulations and testing based on concepts of non-jointness and separability (Lau 1972, 
1978; Blackorby, Primont and Russell 1977, 1978; Chambers 1984). Non-joint produc-
tion processes reduce to additivity in costs (Hall 1973; Kohli 1983). Separability in a par-
tition of inputs or outputs often results in separability in a similar partition of prices 
(Blackorby, Primont and Russell 1977; Lau 1978).  

The neoclassical model of conditional demands for variable inputs with joint produc-
tion, quasi-fixed inputs, and production and output price risk is 

 { }( , , ) arg min : ( , , ) 0 ,F= ≤x w y z w x x y zT  (1) 

where xn
+∈ ⊆x \X  is an nx–vector of variable inputs, xn

+∈ ⊆w \W  is an nx–vector of 

variable input prices, yn
+∈ ⊆y \Y  is an ny–vector of planned outputs, kn

+∈ ⊆z \Z  is an 
nz–vector of quasi-fixed inputs.1 :F × × → \X Y Z  is the joint production transforma-
tion function, which is the boundary of a closed and convex production possibilities set 
that is characterized by free disposal in inputs and outputs. Let the variable cost function 
be denoted by ( , , ) ( , , ).c ≡w y z w x w y zT  We assume throughout that the production proc-
ess is subject to supply shocks of the general form 

                                                           
1 In this section, we use yn

+∈y \  to denote the ny–vector of planned/expected outputs to simplify notation. 
In later sections, we modify this notation to ,=Y a yi  where a is the ny–vector of acres planted to crops, y  
now is the ny–vector of expected yields, and i  is the Hadamard product. We also define z explicitly below. 
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 [ ]( , , ), ( , , ) | , , .E= + =y y h y z ε h y z ε x y z 0  (2) 

In either a static or a dynamic setting, it is a simple matter to show that (1) is implied by 
(2) and the expected utility hypothesis for all von Newman-Morgenstern preferences 
(Pope and Chavas 1994; Ball, et al., 2010).  

Planned output is a vector of latent, unobservable variables in production with supply 
risk. Hence, to estimate the demand system in (1) directly, one must either identify and 
estimate the expectations formation process or address the errors in variables problem 
associated with using y in place of y  in the demand equations (Pope and Chavas 1994). 
One branch of the literature advocates specifying an ex ante cost function where planned 
output is replaced by cost, which is observable when the variable inputs are committed to 
the production process (Pope and Chavas 1994; Pope and Just 1998; Chambers and 
Quiggin 2000; Chavas 2008; Ball, et al. 2010; LaFrance and Pope 2010). In a joint pro-
duction process, this requires making assumptions such that the input demands are func-
tions of input prices, the levels of quasi-fixed inputs, and the variable cost of production, 

 ( , , ) ( , , ( , , )).c=x w y z x w z w y z�  (3) 

This approach makes particular sense in agriculture where outputs and output prices are 
observed ex post. The main result of LaFrance and Pope (2010) on this question is as fol-
lows (a proof of this result is presented in Appendix A of this paper). 

Proposition 1: The following functional structures are equivalent: 

 ( , , ) ( , ( , , ), );c≡x w y z x w w y z z�  (4) 

 ( , , ) ( , , ( , ));c c θ≡w y z w z y z�  (5) 

 ( , , ) ( , , ( , )).F F θ≡x y z x z y z�  (6) 

In other words, outputs must be weakly separable from the variable input prices in the 
variable cost function. This, in turn, is equivalent to outputs being weakly separable from 
the variable inputs in the joint production transformation function. 

This is a tight result – separability is both necessary and sufficient for the variable in-
puts to be estimable in ex ante form. Hereafter, we will call any such demand model an 
ex ante joint production system. 

A second common issue in the empirical analysis of agricultural supply decisions is 
that some level of aggregation is virtually unavoidable. Micro-level data needed to study 
input use, acreage allocations, and asset management choices at the farm level does not 
exist. Aggregation from micro-level decision makers to macro-level data has been studied 
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extensively in consumer theory.2 This has received less attention in production economics 
(Chambers and Pope 1991, 1994; Ball et, al., 2010; LaFrance and Pope 2008, 2010).  

Recently, LaFrance and Pope (2009) obtained the indirect preferences for all exactly 
aggregable, full rank systems of consumer demand equations. Their result extends di-
rectly to production in the following way. Let {1,2,3,4}K ∈  and define the smooth real-
valued function, :ω × →\ \ \ , by 

 ( ) 2

0

, if 1, 2,  or 3 and ( ) 0,
( ( ), )

( ) ( , ) ,  if 3, 4,  and ( ) 0,

K K s

s s ds K s
η

θ λ
ω η θ

θ λ ω θ λ

′= = =⎧
⎪= ⎨

′⎡ ⎤+ + = ≠⎪ ⎣ ⎦⎩ ∫
ww  (7) 

subject to (0, )ω θ θ=  and 2(0, ) (0)sω θ λ θ∂ ∂ = + , where :η → \W  and :λ →\ \  are 
smooth, real-valued functions, and η  is 0° homogeneous. A class of full rank and exactly 
aggregable ex ante production systems can be characterized as follows.3 

Proposition 2: Let :π ++→ \W , ,π ∞∈C  be strictly positive valued, increasing, 
concave,  and 1° homogeneous; let : ,η +→ \W  ,η ∞∈C   be positive valued and 
0° homogeneous; let , { , , },a b a bα β γ δ ι, , : → = + ∈^ \W  , ,α β γ δ ∞, , ∈C   be 0° 
homogeneous and satisfy 1αδ βγ− ≡ , 1ι = − ; and let :f ++ →\ ^ , ,f ∞∈C  
and 0.f ′ ≠  Then the variable cost function for any full rank, exactly aggregable, 
ex ante joint production system is a special case of 

 ( , , ) ( ) ( ( ), ( , )) ( ) .
( ) ( ) ( ( ), ( , )) ( )

cf α ω η θ β
π γ ω η θ δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

w y z w w y z w
w w w y z w

 (8) 

LaFrance and Pope (2009) present a complete proof of necessity in the case of con-
sumer choice theory. Their proof applies to the current problem with only minor changes 

                                                           
2 An important subset of the literature on this topic includes: Gorman (1953, 1961, 1981); Muellbauer 
(1975, 1976); Howe, Pollak and Wales (1979); Deaton and Muellbauer (1980); Jorgenson, Lau and Stoker 
(1980, 1982); Russell (1983, 1996); Jorgenson and Slesnick (1984, 1987); Lewbel (1987, 1988; 1989, 
1990, 1991, 2003); Jorgenson (1990); Diewert and Wales (1987, 1988); Blundell (1988);; van Daal and 
Merkies (1989); Jerison (1993); Russell and Farris (1993, 1998); and Banks, Blundell, and Lewbel (1997), 
LaFrance, Beatty, Pope and Agnew (2002), LaFrance (2004), LaFrance, Beatty and Pope (2006), and La-
France and Pope (2009). The focus in the literature has been interior solutions and smooth demand equa-
tions. We remain faithful to this approach throughout the present paper. 
3 This result is consistent with exact aggregation as defined by Gorman (1981). One part of our ongoing 
work is to extend this class to Lau’s (1982) definition of exact aggregation, generalizing the left-hand-side 
of (8) to ( )( , , ) ,f c πw y z z , wherein cost and quasi-fixed inputs vary across individual economic agents. 
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in notation. Sufficiency is shown here by considering the structure of the input demands 
generated by (8). This is accomplished simply enough by differentiating with respect to w 
and applying Shephard’s lemma. To make the notation as compact as possible, let a bold 
subscript w denote a vector of partial derivatives with respect to the variable input prices 
and suppress the arguments of the functions { , , , , , }α β γ δ η π  to yield (after a large 
amount of straightforward but tedious algebra, which is presented in Appendix B): 

 

2 2

2
2 2

1( )

2( )

( ) .

c
f

f
f

f
f

π π αβ βα α λ β η
π

αδ δα γβ βγ αγλ βδ η

γδ δγ γ λ δ η

⎧
⎡ ⎤= + − + +⎨⎣ ⎦ ′⎩

⎡ ⎤− − + − + +⎣ ⎦ ′

⎫
⎡ ⎤+ − + + ⎬⎣ ⎦ ′ ⎭

w
w w w

w w w w w

w w w

x

 (9) 

Thus, (8) generates input demands that have the finitely additive and multiplicatively 
separable structure of any full rank, exactly aggregable system (Gorman 1981; Lau 1982; 
Lewbel 1989). Note that there are potentially up to four linearly independent variable cost 
terms on the right with four associated linearly independent vectors of input price func-
tions. Hence, any system generated by (8) will have rank up to, but no greater than four, 
the highest possible rank (Lewbel 1987, 1990, 1991; LaFrance and Pope 2009).  

A third issue when estimating a system of variable input demand equations such as 
(9) is the fact that quasi-fixed inputs, planned outputs, variable input prices, and total 
variable cost all are jointly determined with the input demands. Consistent estimation un-
der these conditions is addressed in the empirical application below. 

3. The Econometric Cost Model, Data, and Estimates 

Previous work at both state and national levels of aggregation with our data set strongly 
suggests that full rank 3 seriously over-parameterizes the structural model for this data. 
As a result, we restrict attention here to a rank two model. In this part of the paper, we 
develop a spatial and temporal econometric model of the conditional demands for 13 
variable inputs in U.S. agriculture at the state level: pesticides and herbicides; fertilizer; 
fuel and natural gas; electricity; purchased feed; purchased seed; purchased livestock; 
machinery repairs; building repairs; custom machinery services; veterinary services; 
other materials; and labor. The specification of the variable cost function normalized by 
the farm wage rate is, 

 
10 1 20 2( , , , , )

2 1 ( , , , ),

t t t t t t t t t t

t t t t t t t

c A K A K

A K

α α

θ

= + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ + + ×

w a Y w w

w Bw w a Y

α α

γ

� � �

� � �

T T

T T

 (10) 
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where ,[ ]t t t tA K=z a T  tA  is farmland, tK  is the value of farm capital, 1 2[ ]
yt t t n ta a a=a " T  

is the ny–vector of acres planted to crops, 0 ,t t tA a= + aι T  with 0ta  denoting farmland that 
is not devoted to crop production, 1 1[ ]

y yt t t n t n ta y a y=Y " T  is the ny–vector of planned crop 
production, with each element defined as the product of acres planted to the crop times 
the expected yield per acre, and 1 1[ , , ]

x x xt t n t n t n tw w w w−=w� " T  is the ( 1)xn − –vector of 
variable input prices except the farm wage normalized by .

xn tw  

We treat the th
xn  input, labor, asymmetrically with respect to the other inputs both in 

the structural and stochastic parts of the econometric model. To conserve and simplify 
notation from this point forward, we drop the ~ over the first nx–1 input prices, absorb the 
normalization by 

xnw  into the notation for variable cost and the nx–1 first input prices, 
and define 1.xN n= −  

We assume constant returns to scale, so that ( , , , )t t t tA Kθ a Y  is 1° homogeneous. De-

fine 1 10 1( ) ,t tα α= +w wα T  2 20 2( ) ,t tα α= +w wα T  and ( ) 2 1t t t tβ = + +w w Bw wγT T . The 
necessary and sufficient conditions for the variable cost function to be increasing and 
concave in the variable input prices throughout an open set containing the data points are 
as follows (see Appendix C for a complete derivation of the cost function and θ ): 

Monotonicity in w: 

1 2

1 2
1 2

( , , , , ) ( )
( )

( ) ( ) ( ) ;
2 1

t t t t t
t t t

t

t t t t t
t t t

t t t

c A K A K

c A KA K

θ
β

α α

∂
= + + +

∂

⎡ ⎤− −
= + + + ≥⎢ ⎥+ +⎣ ⎦

w a Y Bw
w w

w w Bw
w Bw w

0

α α γ

α α γ
γT T

 (11) 

Concavity in w: 

 

2

2

1 2

( , , , , ) ( )( )
( ) ( )

( , , , , ) ( ) ( )
2 1

( )( ) ,
( 2 1)

t t t t t

t t

t t t t t t t t t

t t t

t t

t t t

c A K

c A K A K

θ θ
β β

α α

∂
= − + +

∂ ∂

⎡ ⎤− −
= ×⎢ ⎥+ +⎣ ⎦

⎡ ⎤+ +
−⎢ ⎥+ +⎣ ⎦

w a Y B Bw Bw
ww w w

w a Y w w
w Bw w

Bw BwB
w Bw w

γ γ

γ

γ γ
γ

T

T

T T

T

T T

 (12) 
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symmetric, negative semi-definite. Setting = +B LL γγT T , where L is a (lower or upper) 
triangular matrix with nonzero main diagonal elements implies 

 
1 1 1 1

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ +
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B L L LL0

0

γ γ γγ γ

γ γ γ

T T T T

T T T T
 (13) 

is positive definite. It follows that ( )( )
( 2 1)t t t

⎡ ⎤+ +
−⎢ ⎥+ +⎣ ⎦

Bw BwB
w Bw w

γ γ
γ

T

T T
 is positive semri-definite 

and that  

 11 2 1 0 .
1 1

x
t n

t t t t t
−

+

⎡ ⎤ ⎡ ⎤
⎡ ⎤ = + + > ∀ ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B w
w w Bw w w

γ
γ

γ
\T T T

T
 (14) 

Given this, the variable cost function is concave in w if and only if 

 0 1 2 2( , , , , ) ( ,t t t t t t t t t tc A K A Kα α⎡ ⎤ ⎡ ⎤< + + +⎣ ⎦ ⎣ ⎦w a Y w wα α� � �T T  (15) 

(LaFrance, Beatty, and Pope 2006). Hence, we impose = +B LL γγT T  during estimation 
and check the monotonicity conditions (11) at all data points once the model is estimated, 
and find that they are satisfied. We develop the specification for ( , , , )t t t tA Kθ a Y  in the 
section on life-cycle consumption and investment decisions and Appendix C. 

Applying Shephard’s Lemma to (10) and rearranging terms then gives the empirical 
variable input demand equations in normalized expenditures per dollar of capital as  

 1 2
1 2

( ) ( )( ) ( ) ( ) ,
2 1

t t t t t t t
t t t t

t t t t

A c K A K
K

α α⎡ ⎤⎛ ⎞− −
= + + + +⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

w we W Bw u
w Bw w

α α γ
γT T

 (16) 

where [ ]t itw=W diag  is the diagonal matrix with ,i tw  as the ith main diagonal element and 

1, 1, 1, 1,[ ]
x xt t t n t n tw x w x− −=e " T  is the ( 1)xn − -vector of normalized expenditures per dollar 

of capital on all inputs except labor, and we follow standard practice in the empirical 
analysis of demand systems that apply the Generalized Method of Moments (GMM) and 
add a vector of random errors to the right-hand-side to obtain the empirical model.  

To minimize the potential for aggregation bias with our data. We assume state-
specific production technologies for each of the 48 contiguous states in our sample. We 
also intend to test for embodied, output specific technological change, as well as input 
specific technological change. Appendix D contains the derivations of these hypotheses. 
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3.1 General Singular AR(1) Stochastic Processes 

We assume that the errors terms for the 12 equations estimated follow to an unrestricted 
AR(1) process, 

 1 , . . . ( , ), 1, , .t t t t i i d t T−= + =u Ru 0ε ε Σ "  (17) 

It is perhaps worthwhile at this point to full explain the way in which w labor asymmetri-
cally in the stochastic part of the model. Let the n random variables, [ ]t t ntu=u u�T T , satisfy 

nt tu = − u�Tι , where 1n
t

−∈u� \  is an AR(1) stochastic process, 

 

1 ,

( )

( ) [ ] , ,

( ) .

t t t

t t

t t s

t t

E t

E s t

E t

−

±

= +

= ∀

= ∀

= + ∀

u Ru

u

u u R R

�� �

� �

��

� �

0

T

T

T T

ε

ε ε Ω ,

ε

Σ = Σ Ω

 (18) 

Then 

1

2

,

( ) ( ) ,

( ) ( ) ,

nt t t

nt

nt t

u

E u

E u

−= −

= = +

= − = − +

Ru

R R

u R R

��

�

T T

T T

T

T

T

ι − ι ε

ι Σι ι Σ Ω ι

Σι Σ Ω ι

 (19) 

and the full n×n error covariance structure is 

 
2

( )
.

( ) ( )

t t nt t

t nt nt

u
E

u u

⎡ ⎤ −⎡ ⎤
=⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤+ − +
= ⎢ ⎥

− + +⎢ ⎥⎣ ⎦

u u u

u

R R R R

R R R R

� � �

�

T

T TT

T T

T T

T T

Σ Σι

ι Σ ι Σι

Σ Ω Σ Ω ι

ι Σ Ω ι Σ Ω ι

 (20) 

The n×n AR(1) Markov process satisfies 

 1 1

1
.

0
nt t t

nt nt ntu u
− −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ε−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

Ru u
R

�� �0
T

ε

ι
 (21) 

The eigen values of this singular stochastic process satisfy 
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 1 1 1
1 0.

0
n n n

n n
− − −

−

− λ⎡ ⎤
− λ = = −λ − λ =⎢ ⎥

− − −λ⎣ ⎦

R R I
I R I

R R

0 0
T Tι ι

 (22) 

Hence, one eigen is 0 and the remaining eigen values are precisely those for R. Since la-
bor is the nth input, we model it’s time series properties through those for ntu  and the add-
ing up condition. This allows the AR(1) matrix of parameters, R, to be fully flexible – 
i.e., there is no requirement that it is symmetric or otherwise restricted. Using national 
level data, we found this to generate a stationary stochastic process for all variable inputs. 

3.2 The Data and Empirical Framework 

As noted above, we are applying this model to annual aggregate state-level data on 13 
variable inputs in U.S. agriculture (pesticides and herbicides, fertilizer, fuel and natural 
gas, electricity, purchased feed, purchased seed, purchased livestock, machinery repairs, 
building repairs, custom machinery services, veterinary services, other materials, and 
farm labor). The sample period is 1960-2004. This data was compiled by the United 
States Department of Agriculture’s (USDA), Economic Research Service (ERS) and is 
described in detail in Ball, Halahan, and Nehring (2004). Farmland, equipment, build-
ings, and structures are treated as quasi-fixed inputs. Hereafter, this data set is called the 
Ball data. 

Due to the way that several variables are constructed in the Ball data, it is necessary 
to modify and augment this data for empirical implementation. First, we define the re-
placement cost of owner-operator labor by the farm wage rate. This implies that the re-
turn to owner-operator labor in the Ball data due to management skill is treated as a part 
of the residual claimant’s quasi-rent. Second, we use a direct measure of the value of 
capital obtained from the ERS rather than the measures constructed in the Ball data. 
Third, estimates of the price of farmland are taken from state-level surveys conducted by 
the National Agricultural Statistics Service (NASS), rather than the constructed measures 
in the Ball data. Finally, we adjust the measure of agricultural land. The Census of Agri-
culture has reported land in farms in four- to five-year intervals for 1954, 1959, 1964, 
1969, 1974, 1978, 1982, 1987, 1992, 1997, 2002, and 2002. These are the total farmland 
numbers used in the sample years that match the Census years. ERS reports the harvested 
acres for all major crops by state and year since 1947. This data is used to adjust the 
farmland measures in the Ball data as follows. First, the difference between total farm-
land in the Ball data and harvested acres is calculated for each non-census year by state. 
Second, in each period between adjacent censuses, the average of this difference is calcu-
lated. This mean difference is treated as fixed in each of the three- or four-year intervals 
between census years and added to harvested acres to obtain the measure of farmland 
used in this study in those years of our sample period. We normalize costs, expenditures, 
and acres by capital rather than total land because we are more confident in the capital 
measure and Pope, LaFrance and Just (2007) have shown that deflating by a variable that 
is subject to measurement error leads to difficult econometric issues. 
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4. Crop Acres, Capital, Savings and Investment, and Consumption in Agriculture 

Although the organizational form of farms can vary widely, a recent report by Hoppe and 
Banker (2006) finds that 98% of U.S. farms remained family farms as of 2003. In a fam-
ily farm, the entrepreneur controls the means of production and makes investment, con-
sumption, and production decisions. In this section, we develop and analyze a model of 
the intertemporal nature of these decisions. The starting point is a model similar in spirit 
to Hansen and Singleton’s (1983), but generalized to include consumption decisions and 
farm investments as well as financial investments and production decisions. The addi-
tional variable definitions required for this are as follows: 

 Wt = beginning-of-period total wealth, 

 bt = current holding of bonds with a risk free rate of return rt, 

 ft = current holding of a risky financial asset, 

 ,F tp = beginning-of-period market price of the financial asset, 

 , 1F tρ + = dividend plus capital gains rate on the financial asset, 

 ai,t = current allocation of land to the ith crop, i = 1,…,nY, 

 At = total quantity of farm land, 

 pL,t = beginning-of-period market price of land, 

 , 1 , 1 , ,( ) /L t L t L t L tp p pρ + += − = capital gain rate on land, 

 ,i ty = expected yield per acre for the ith crop, i = 1,…,nY, 

 yi,t+1 = realized yield of the ith crop, 

 , 1iY tp + = end-of-period realized market price for the ith farm product, 

 qt = vector of quantities of consumption goods, 

 ,Q tp = vector of market prices for consumer goods, 

 mt = total consumption expenditures, 

 u(qt) = periodic utility from consumption. 

As with all discrete time models, timing can be represented in multiple ways. In the 
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model used here, all financial returns and farm asset gains are assumed to be realized at 
the end of each time period (where depreciation is represented by a negative asset gain). 
Variable inputs are assumed to be committed to farm production activities at the begin-
ning of each decision period and the current period market prices for the variable inputs 
are known when these use decisions are made. Agricultural production per acre is real-
ized stochastically at the end of the period such that 

 , 1 , , 1(1 ), 1, ,i t i t i t Yy y i nε+ += + = … , (23) 

where εi,t+1 is a random output shock with E(εi,t+1) = 0. Consumption decisions are made 
at the beginning of the decision period and the current market prices of consumption 
good are known when these purchases are made. Utility is assumed to be strictly increas-
ing and concave in qt. The total beginning-of-period quantity of land is t tA a= ι T , withι  
denoting an nY–vector of ones. Homogeneous land is assumed with a scalar price, ,L tp . 

To simplify our derivations, we require an uncommon piece of matrix notation. The 
Hadamard/Schur product of two n×m matrices A and B is the matrix whose elements are 
element-by-element products of the elements of A and B, , .ij ij ijc a b i j= ⇔ = ∀A B Ci  
This definition assists the derivation of the arbitrage conditions present in what follows. 

Revenue at t + 1 is the random price times production 

 1 , 1 , , , 1 , 1 1
1
( (1 )) ( ) ( ).

Y

i

n

t Y t i t i t i t Y t t t t
i

R p y a ε+ + + + +
=

= + ≡ +∑ p a y ι εi i T  (24) 

Wealth is allocated at the beginning of period t to investments, the variable cost of pro-
duction, and consumption, 

 , ( , , , ) .t t t L t t t t t t t t tW b f p A K c K m= + + + + +w a Y  (25) 

Although some costs occur at or near harvest (near t + 1), we include all costs in (25) at 
time t because they are incurred before revenues are received. Consumer utility maximi-
zation yields the indirect utility function conditioned on consumer good prices and con-
sumption expenditure, 

 { }, ,( , ) max ( ) :
QnQ t t Q t t

R
m u mυ

+∈
≡ =

q
p q p qT . (26) 

Realized end of period wealth is 

 
1 , 1 , 1 ,

, 1 , 1 1

(1 ) (1 ) (1 )

(1 ) ( ) ( ),

t t t F t t L t L t t

K t t Y t t t t

W r b f p A

K

ρ ρ

ρ

+ + +

+ + +

= + + + + +

+ + + +p a y ι εi i T
 (27) 
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where , 1K tρ +  is the proportional change in the value of capital held at the beginning of 
the production period. Thus, the decision maker’s wealth is increased by net returns on 
assets and farm revenue. The owner/operator decision maker’s intertemporal utility func-
tion is assumed to be 

 1
0

( ,..., ) (1 ) ( )
T

t
T T t

t
U uρ −

=
= +∑q q q . (28) 

The producer is assumed to maximize von Neumann-Morgenstern expected utility of the 
discounted present value of the periodic utility flows from goods consumption.  

By Euler’s theorem, constant returns to scale implies linear homogeneity of the vari-
able cost function in capital, land, and output. For the variable cost function derived and 
estimated in this paper, this implies  

 

( , , , , ) ( , , , , )( , , , , )

( , , , , ) ( , , , , ) .

t t t t t t t t t t t t
t t t t t t t t

tt

t t t t t t t t t t t t
t t

t t

c A K c A Kc A K A
A

c A K c A KK
K

∂ ∂
≡ +

∂∂

∂ ∂
+ +

∂ ∂

w a Y w a Yw a Y a
a

w a Y w a Y Y
Y

T

T

 (29) 

The vector of expected crop outputs satisfies 

 ,t t t=Y y ai  (30) 

where ,j ty  is the expected yield per acre and ,j ta  is the number of acres planted for the jth 
crop. The variable cost function might depend on time due to technological change or 
other dynamic forces, and the subscript t indicates this possibility. To distinguish quasi-
fixed from variable inputs and to account for the possibility of hysteresis in agricultural 
investments, we allow for adjustment costs for total farmland and capital, 

 2 2
1 1 1 1( , ) ½ ( ) ½ ( ) ,Adj t t t t A t t K t tC A A K K A A K Kγ γ− − − −− − = − + −  (31) 

with , 0.A Kγ γ ≥  

This problem is solved by stochastic dynamic programming working backwards re-
cursively from the last period in the planning horizon to the first. In the last period, the 
optimal decision is to invest or produce nothing and consume all remaining wealth, i.e., 

T Tm W= . Denote the last period’s optimal value function by 1 1( , , )T T T Tv W A K− − . Then 
1 1 ,( , , ) ( , )T T T T Q T Tv W A K Wυ− − = p  is the optimal utility for the terminal period. For all 

other time periods, stochastic dynamic programming yields the Bellman backward recur-
sion (Bellman and Dreyfus 1962). For an arbitrary t < T, the Lagrangean for the problem 
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at time t is 
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{

}
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 (32) 

where ( )tE i  is the conditional expectation at the beginning of period t given information 
available at that point in time, tλ  is the shadow price for the beginning-of-period wealth 
allocation constraint, and tμ  is the shadow price for the land allocation constraint. The 
first-order, necessary and sufficient Kuhn-Tucker conditions are the two constraints and 
the following: 

 0, 0, 0;t t t
t t t

t t t
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We also have the following implications of the envelope theorem: 

 1
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 (40) 

where the variables { , , }t t tA Kλ  are all evaluated at their optimal choices. 

Combining the Kuhn-Tucker conditions with the results of the envelope theorem and 
assuming an interior solution for consumption, bonds, and risky financial assets, we ob-
tain the standard Euler equations for smoothing the marginal utility of consumption and 
wealth, 

 1 1
1

1 1
( ),t t t t

t t t t t
t t t t

V VE E E
m m W W
υ υ λ λ+ +

+
+ +

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (41) 

and the standard arbitrage condition for excess returns to risky financial assets, 

 1
, 1

1
( ) 0t

t F t
t

VE r
W

ρ +
+

+

∂⎡ ⎤− =⎢ ⎥∂⎣ ⎦
 (42) 

The complementary slackness of the Kuhn-Tucker condition (39), implies that for each 
crop we have the supply condition under risk, 

 1
, 1 ,

1 ,
(1 ) 0, 1, , .

i

t t
t Y t i t y

t i t

V cE p r Y i n
W Y

+
+

+

∂ ∂⎡ ⎛ ⎞ ⎤− + = =⎜ ⎟⎢ ⎥∂ ∂⎣ ⎝ ⎠ ⎦
"  (43) 

For each crop produced in positive quantity, this reduces to the well-known result that the 
conditional covariance between the marginal utility of future wealth and the difference 
between the ex post realized market price the marginal cost of production must vanish. 
The multiplicative factor 1 r+  is multiplied by ex ante marginal cost so that these two 
economic values are measured at a common point in time – in the present case at the end 
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of the production period. 

To obtain the arbitrage condition for the level of investment in agriculture, we com-
bine the linear homogeneity property of the variable cost function in ( , , , )t t t tA Ka Y  from 
equation (29) with complementary slackness in Kuhn-Tucker conditions (37)–(41),  

 0 ,t t t
t t t

t tt
A K

A K
∂ ∂ ∂

= + +
∂ ∂∂

a
a
A A A

T
 (44) 

which, after considerable rearranging and combining of terms, gives 
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 (45) 

where , ,( )K t t L t t ts K p A K= +  is capital’s share of the value of the investment in agricul-
ture in period t, , , ,( )L t L t t L t t ts p A p A K= +  is land’s share of the value of the investment 
in agriculture in period t, , ,( )A t t L t t ts A p A K= +  is the ratio of the quantity of land to the 
value of the investment in agriculture at the beginning of the production period, and 

 1
1

,

(1 )t t
t

L t t t

R r c
p A K

π +
+

− +
=

+
 (46) 

is the ex post net return to crop production over the variable cost of production relative to 
the ex ante value of agricultural investment, so that it is measured as a rate of return to 
agricultural production. The first 3 terms inside of the square brackets of equation (45) 
represent the total sum of the excess returns to agriculture, including the rate of net return 
to crop production over variable costs. The last two terms in square brackets capture the 
effects of adjustment costs for farm capital and farmland. This has the standard one-
period ahead and one period behind 2nd–order difference structure common to quadratic 
adjustment cost models in dynamic optimization problems. 

To implement this system of Euler equations, we assume that the indirect utility func-
tion for consumption goods is a member of the certainty equivalent class, 

 
2
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( ) ( )

t t
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m mmυ β
π π
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p
p p

, (47) 

where 0 ( )C Qt tm tβ π≤ < ∀p  and ( )C Qtπ p  is the consumer price index (CPI) for all 
items. Then the marginal utility of money in each period is 
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This allows us to identify the effects of risk aversion separately from those of adjustment 
costs and hysteresis in agricultural investment decisions. We assume that the preferences 
of agricultural producers are of the same class as all other individuals in the economy. 
This allows use of the observable variable per capita personal consumption expenditure, 
rather than the latent variable wealth, to model the empirical arbitrage equations. 

Empirical Arbitrage Equations and Data 

Let yn n≤  be the number of crops included in the empirical model. The specification 

that we choose for ,t i tc Y∂ ∂ is (see Appendix C for a complete derivation), 
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The 3n +  empirical arbitrage/Euler equations therefore are 
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 (50) 

The instruments we will use are variable cost per unit of capital, land per unit of capi-
tal, and variable input prices all lagged two periods, plus the following general economy 
variables lagged one period: real per capita disposable personal income; unemployment 
rate; the real rate of return on AAA corporate 30-year bonds; real manufacturing wage 
rate; real index of prices paid by manufacturers for materials and components; and real 
index of prices paid by manufacturers for fuel, energy and power. Per capita disposable 
personal income is deflated by the consumer price index for all items. The aggregate 
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wholesale price variables are deflated by the implicit price deflator for gross domestic 
product. The real rate of return on corporate bonds is calculated as the nominal rate of 
return minus the midyear annual inflation rate. 

The single equation and system-wide 1st - and 2nd-order Brownian bridge tests for 
specification error and parameter instability developed in LaFrance (2008) will be used to 
check the model for robustness to misspecification errors and non-constant parameters. 
Appendix E presents and discusses this set of within-sample residual test statistics. 

5. Econometric Structure 

Let 1, ,i I= "  index states, 1, ,j N= "  index equations, and 1, ,t T= "  index time. In 
general, the state-level equations can be written as 

 ( , , , ; ) , 1, , , 1, , , 1, , ,ijt ij it it it ijtx f k c t u i I j N t T= + = = =w θ " " "  (51) 

where itw  is the N×1 vector of (normalized) input prices, itk  is capital per acre, itc  is 
(normalized) variable cost per acre, θ  is a K×1 vector of  parameters to be estimated, and 

ijtu  is a mean zero random error term. These errors have intertemporal autocorrelation,  

 1
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, 1, , , 1, , , 1, , .
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ijt jj ij t ijt
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u u v i I j N t Tφ ′ ′ −
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= + = = =∑ " " "  (52) 

The mean zero random variables ijtv  are uncorrelated across time and correlated across 

inputs, ( )i t i tE =v v Σi i
T , 1[ ]i t i t iNtv v=v i " T . Let 1− = LLΣ T , so that the typical element of 

½
i t i t i t

−= =v L vε Σi i i
T  can be written as 1

N
ijt jj ij tj vε ′ ′′=
= ∑ A . These mean zero, unit vari-

ance random variables, ijtε , are uncorrelated across both inputs and time, but are corre-
lated across space, ( ) ( ), 1, , ,ijt i jt iiE d j Nε ε ρ′ ′= = " , where iid ′  is the geographic distance 
between states i and i′ , (0) 1ρ =  and the I×I matrix, 
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, (53) 

is symmetric, positive definite. For simplicity, we assume that R is constant across j. 

5.1 Consistent, Efficient Estimation 
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Let iZ  denote the matrix of instruments for each state and let 1( )i i i i i
−= Z Z Z Z` T T  the 

projection matrix for the instruments. Let [12 ]T=τ " T , stack equation (51) by inputs 
and time, and use NL2SLS to estimate θ  consistently, 

  [ ] ( )[ ]2
1

ˆ argmin ( , , , ; ) ( , , , ; ) .
I

SLS i i i i i i N i i i i i
i=

= − ⊗ −∑ x f w k c I x f w k c
θ

θ τ θ τ θii i ii i i ii i ii i i`T  (54) 

Use this consistent estimator of θ  to generate consistent estimates of the errors, 

 2̂ˆ ( , , , ; ), 1, , , 1, , , 1, , .ijt ijt ij it it it SLSu x f k c t i I j N t T= − = = =w θ " " "  (55) 

For 2, ,t T= " , estimate the 3×3 intertemporal correlation matrix, Φ, consistently by lin-
ear SUR, 
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We could start this stage with ˆ IΣ =  and iterate once on the covariance matrix, or with 
Σ̂  calculated from the 2SLS estimates for θ  and [ ]= 0Φ . Either approach gives a con-
sistent estimator for Φ, since the weight matrix does not affect consistency. But the for-
mer method is the preferred method if the above model assumptions are true. 

Construct consistent estimates of the spatially correlated error terms,  

 1
ˆˆ ˆN

ijt jj ij tj vε ′ ′′=
= ∑ A , (57) 

where 11
ˆˆ ˆ ˆN

ijt ijt jj ij tjv u uφ ′ ′ −′=
= −∑  and ˆˆ [ ]jj′=L A  satisfies 1 ˆ ˆ− = LLΣ� T .  

Calculate the consistent sample estimates for the spatial correlations as,  

 1 2
ˆ ˆ ˆ ( 1), , 1, , .N T

ii ijt i jtj t N T i i Iρ ε ε′ ′= =
′= − =∑ ∑ "  (58) 

Estimate the relationship for the sample estimates and the geographic distance between 
states using robust least squares to obtain [ ]ˆ ˆ ( )iidρ ′=R .  

Let 1ˆ − =R QQT  and write 1
ˆI

ijt ii i ti qω ε′ ′′=
≈ ∑ . Now (in theory, or principle), the random 

variables ijtω  are mean zero, unit variance, and uncorrelated across inputs, states, and 
time. Substitute back recursively, so that 
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 (59) 

Equation (51) gives the definition required to write the last line of equation (59) in terms 
of observable variables, consistently estimated covariance parameters, and the structural 
parameters, say ( )ijtω θ . A final NL3SLS step of the form, 

 ( )3
1

ˆ arg min ( ) ( )
I

SLS i i N i
i=

⎧ ⎫
= ⊗⎨ ⎬

⎩ ⎭
∑ I

θ
θ ω θ ω θii ii`T , (60) 

gives consistent, efficient, asymptotically normal estimates of θ. White’s heteroskedastic-
ity consistent covariance estimator can be used for robustness to any remaining sources 
of herteroskedasticity beyond the state-specific variance-covariance matrices. 

6. Conclusions 

This paper has developed a new structural model of variable input use, production, acre-
age allocations, capital investment, and consumption choices in the U.S. farm sector. The 
theoretical framework identifies and incorporates the restrictions that are necessary and 
sufficient to estimate variable input use using only observable data, and to aggregate from 
micro units of behavior to county-, state-, region-, or country-levels of data and analyses. 
We defined, specified and estimated a dynamic life-cycle model of decision making un-
der risk. We disciplined the model and associated parameter estimates for risk aversion in 
agricultural production and investment decisions with the interactions that naturally occur 
among the available alternative investment and savings opportunities in the economy.  

Current work applies this to state-level data, which should to mitigate the issues re-
lated to aggregating across different production regions, climates, and output choice sets. 
We incorporate input and output specific technological change in the empirical model, 
which should help address issues due to specification errors and structural change that 
cannot be captured in the aggregate setup. We are specifying and estimating the variable 
input use decisions and the asset management choices simultaneously to exploit cross-
equation parameter restrictions and increase the efficiency of our parameter estimates. 
And last, the data set is in the final stages of being updated to the 21st century, which will 
make the model and empirical analysis more timely and relevant to current farm policies. 
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One of the central issues guiding agricultural policy is how risk affects choice and 
welfare. Here, that is manifest in the movement towards general equilibrium found in the 
cross-moment equations in (46) and the cost structure in (45). This provides a rich 
mechanism for policy analysis. The conventional agricultural focus is how policies affect 
the risk environment and thereby production choice and welfare. Thus, for example, in a 
partial equilibrium model of the farm sector, one often studies the effects of a particular 
policy on the risk environment on the portfolio of crop choice (Chavas and Holt 1996 ). 
Here, it is clear that the evolution of wealth and income in all forms, and consumption, 
“cause” production choices. Although this point is not new (e.g., Wright and Hewitt 
1994), it has not been formally modeled and estimated.  

With the results of this analys, one can trace the effects of any policy altering the dis-
tribution of agricultural crop income on the choices which restores equilibrium. More 
specifically, it means that significant responses may be outside of agriculture by changing 
non-agricultural investment and consumption. These responses likely will alter the nor-
mative and positive conclusions of the effects of policies substantially. 

Indeed, returning to the example of crop insurance discussed in the introduction, the 
social value of public insurance will likely be reduced as more margins for adjustment 
(arbitrage conditions) are included in the analysis. In contrast, an increase in uncertainty 
(the covariance term) in non-agricultural investments as witnessed recently could in-
crease the demand for risk reducing agricultural instruments. The key point is that unless 
one has a model that provides for these interactions, one will not obtain reasonable policy 
conclusions. 

The second general policy insight that can be obtained here is a distinction between 
long-run and shorter-run effects which has been one of the foundations of agricultural 
policy analyses, preceding the seminal work of Nerlove. Yet models in current vogue can 
only be interpreted as long-run analyses where adjustment costs are zero. This means that 
one has a natural structural way in the current model to distinguish short-run and long-run 
elasticities. For example, this implies that policies that raise the return to insurance (e.g., 
through public subsidies) have larger responses in the long-run than in the short-run.  
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Appendix A 

Let xn
++∈ ⊆x X  be an nx–vector of variable inputs, let xn

++∈ ⊆w W  be an nx–vector of 

variable input prices, let yn
++∈ ⊆y Y  be an ny–vector of outputs, let zn

++∈ ⊆z Z  be an 
nz–vector of fixed inputs, let :F × × →X Y Z  be a transformation function that defines 
the boundary of a closed, convex production possibilities set with free disposal in inputs 
and outputs, let : ,× × →X W Y Z X  be an nx–vector of variable input demand functions, 
and let :C ++× × →W Y Z  be a variable cost function, 

 { }( , , ) min : ( , , ) 0, ( , , ),c C F= ≡ ≤ ≥ ≡
x

w y z w x x y z x w X w y z0T T  (A.1) 

where the symbol T denotes vector and matrix transposition. The purpose of this appendix 
is to prove that short-run cost-minimizing variable input demands, ( , , )=x X w y z , can be 
written in the form ( , , )c=x X w z  if and only if ( , , ( , )) ( , , ( , ))c C Fθ θ= ⇔w z y z x z y z .  

The neoclassical model of conditional demands for variable inputs with joint produc-
tion, fixed inputs, and production uncertainty is 

 { }( , , ) arg min : ( , , ) 0, ,F= ≤ ≥X w y z w x x y z x 0T  (A.2) 

where x  is an nx–vector of positive variable inputs with corresponding positive prices, 
w , y  is an ny–vector of planned outputs, z  is an nz–vector of fixed inputs, F  is the real 
valued transformation function that defines the boundary of a closed, convex production 
possibilities set with free disposal in the inputs and the outputs, X  maps variable input 
prices, planned outputs, and fixed inputs into variable input demand functions, and 

( , , ) ( , , ),C ≡w y z w X w y zT  is the positive-valued variable cost function. By Shephard’s 
Lemma, we have 

 1( , , ) ( ) ( , , ) .
xnC C w C w= ∇ ≡ ∂ ∂ ∂ ∂wX w y z w, y, z T  (A.3) 

X is homogeneous of degree zero in w by the derivative property of homogeneous 
functions. Integrating with respect to w to recover the variable cost function, we obtain  

 ( , , ) ( , , , ( , )),c C C= ≡w y z w y z y zθ  (A.4) 

where : × →θ Y Z  is the constant of integration. In the present case, this means that θ  
is constant with respect to w. In general, θ  is a function of y and z and its structure cannot 
be identified from the variable input demands because it captures that part of the joint 
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production process relating to fixed inputs and outputs that is separable from the variable 
inputs. 

Under standard conditions, the variable cost function is strictly decreasing in z, 
strictly increasing in y, jointly convex in ( , ),y z  increasing, concave and homogeneous of 
degree one in w . We are free to choose the sign of θ  so that, with no loss of generality, 

0.C∂ ∂ >θ  

Since C  is strictly increasing in θ, a unique inverse exists such that ( , , , )c= w y zθ γ , 
where : +× × × →γ W Y Z , is the inverse of C  with respect to θ. ( , , , )cw y zγ  is 
called the quasi-indirect production transformation function, analogous to the quasi-
indirect utility function of consumer theory (Hausman 1981; Epstein 1982; LaFrance 
1985, 1986, 1990, 2004; and LaFrance and Hanemann 1989). For all interior and feasible 
( , )y z , the function γ  is strictly increasing in c, strictly decreasing and quasi-convex in w, 
and positively homogeneous of degree zero in (w, c). 

The following two identities are simple implications of the inverse function theorem: 

 ( , , , ( , , , ));c C c≡ w y z w y zγ  (A.5) 

and ( , , , ( , , , )).C≡ w y z w y zθ γ θ  (A.6) 

This lets one write the conditional demands for the variable inputs as 

 ( , , , ).C c= ∇ ≡wx G w y z  (A.7) 

Equation (A.7) gives the rationale for writing the factor demands as a function of c  as 
well as ( , , )w y z . Thus, given the above regularity conditions for F and C, one can always 
write the system of factor demands as functions of cost. 

Now define the quasi-production transformation function by 

 { }( , , ) min ( , , , ) .
≥

≡
w

x y z w y z w xυ γ
0

T  (A.8) 

The terminology quasi-production transformation function indicates that ( , , )x y zυ  only 
reveals part of the structure of the joint production process. It cannot, and does not, reveal 

( , ).y zθ  This is analogous to the situation where one only recovers part of a direct utility 
function when analyzing the market demands for a subset of consumption goods.  

The identity ( , ) ( , , , ( , , , ( , )))C≡y z w y z w y z y zθ γ θ  implies 
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 { }( , ) ( , , , ( , , , ( , ))) min ( , , , ) ( , , ),C
≥

≡ ≥ ≡
w

y z w y z w y z y z w y z w x x y zθ γ θ γ υ
0

T  (A.9) 

for all interior and feasible ( , , ).x y z  This inequality follows from the fact that ( , )y zθ  is 
feasible but not necessarily optimal in the minimization problem. The part of ( , , )F x y z  
not contained in ( , , )x y zυ  is given by (Diewert 1975; Epstein 1975; Hausman 1981; and 
LaFrance and Hanemman 1989), 

 ( , , ) ( , , , ( , )).F F≡x y z x y z y zθ  (A.10) 

The quasi-production transformation function is the unique solution, ( , , )= x y zθ υ , to the 
implicit function, ( , , , ) 0,F =x y z θ  in other words, ( , , , ( , , )) 0.F ≡x y z x y zυ  

The function ( , , )x y zυ  in (9) conveys full information about the marginal rates of 
substitution between variable inputs but only partially so for outputs and fixed inputs. 
This is again analogous to the situation in consumption theory when one analyzes only a 
subset of the goods purchased and consumed. This can be shown by applying the implicit 
function theorem to ,F  which gives 

 

( , , , ( , , ))( , , ) ,
( , , , ( , , ))

( , , , ( , , ))
( , , ) ,

( , , , ( , , ))

( , , , ( , , ))
( , , ) .

( , , , ( , , ))

F
F

F
F

F
F

∇
∇ = −

∇

∇
∇ = −

∇

∇
∇ = −

∇

x
x

y
y

z
z

x y z x y zx y z
x y z x y z

x y z x y z
x y z

x y z x y z

x y z x y z
x y z

x y z x y z

θ

θ

θ

υυ
υ

υ
υ

υ

υ
υ

υ

 (A.11) 

This demonstrates that υ conveys full information on marginal rates of substitution be-
tween variable inputs, 

   ( , , ) ( , , , ( , , )) ( , , ) , , 1, , ,
( , , ) ( , , , ( , , )) ( , , )

i i i
x

j j j

x F x F x i j n
x F x F x

∂ ∂ ∂ ∂ ∂ ∂
= = ∀ =

∂ ∂ ∂ ∂ ∂ ∂
x y z x y z x y z x y z
x y z x y z x y z x y z

υ υ
υ υ

 (A.12) 

but only partial information on marginal rates of product transformation between outputs, 

   

( , , ) ( , , , ( , )) ( , , , ( , )) ( , )
( , , ) ( , , , ( , )) ( , , , ( , )) ( , )

( , , ) , , 1, , ,
( , , )

i i i

j j j

i
y

j

F y F y F y
F y F y F y

y i j n
y

∂ ∂ ∂ ∂ + ∂ ∂ ⋅∂ ∂
=

∂ ∂ ∂ ∂ + ∂ ∂ ⋅∂ ∂

∂ ∂
≠ ∀ =
∂ ∂

x y z x y z y z x y z y z y z
x y z x y z y z x y z y z y z

x y z
x y z

θ θ θ θ
θ θ θ θ

υ
υ

 (A.13) 
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and marginal rates of substitution between fixed inputs, 

   

( , , ) ( , , , ( , )) ( , , , ( , )) ( , )
( , , ) ( , , , ( , )) ( , , , ( , )) ( , )

( , , ) , , 1, , .
( , , )

i i i

j j j

i
z

j

F z F z F z
F z F z F z

z i j n
z

∂ ∂ ∂ ∂ + ∂ ∂ ⋅∂ ∂
=

∂ ∂ ∂ ∂ + ∂ ∂ ⋅∂ ∂

∂ ∂
≠ ∀ =
∂ ∂

x y z x y z y z x y z y z y z
x y z x y z y z x y z y z y z

x y z
x y z

θ θ θ θ
θ θ θ θ

υ
υ

 (A.14) 

This background leads directly to the following result. 

 
Proposition 1: The following functional structures are equivalent: 

 ( , , ) ( , , );c= ≡x X w y z X w z  (A.15) 

 ( , , ) ( , , ( , ));c C C= ≡w y z w z y zθ  (A.16) 

and 0 ( , , ) ( , , ( , )).F F= ≡x y z x z y zθ  (A.17) 

Proof: (A.16) ⇒ (A.15). Differentiating (A.16) with respect to w, Shephard’s Lemma 
implies, 

 .C= ∇wx  (A.18) 

C  is strictly monotonic in and has a unique inverse with respect to θ, say ( , , )cθ γ= w z . 
Substituting this into (A.18) obtains 

 ( , , ( , , )) ( , , ).C c cγ= ∇ ≡wx w z w z X w z  (A.19) 

(A.17) ⇒ (A.15) ⇒ (A.16). If the representation of technology has the separable struc-
ture in (A.17), then 

 { }arg min : ( , , ( , )) 0, ( , , ( , )).F θ θ≤ ≥ ≡w x x z y z x X w z y z0T  (A.20) 

This implies that the variable cost function has the separable structure 

 ( , , ( , )) ( , , ( , )).Cθ θ≡w X w z y z w z y zT  (A.21) 

(A.16) ⇒ (A.17). Given (A.16), the quasi-production transformation function satisfies 

 { }( , ) min ( , , ) .υ γ
≥

≡
w

x z w z w x
0

T  (A.22) 
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This implies that 

 ( , ) ( , , ( , , ( , ))) ( , )Cθ γ θ υ≡ ≥y z x z x z y z x z , (A.23) 

for all interior, feasible ( , , )∈ × ×x y z X Y Z , with the boundary of the closed and convex 
production possibilities set defined by equality on the far right. Since υ  is independent of 
y, equations (A.11) and (A.13) imply 

 ( , , ) ( , ) , , 1, , .
( , , ) ( , )

i i
y

j j

F y y i j n
F y y

θ
θ

∂ ∂ ∂ ∂
= ∀ =

∂ ∂ ∂ ∂
x y z y z
x y z y z

 (A.24) 

Hence, the marginal rates of transformation between outputs are independent of variable 
inputs,  

  ( , , ) ( , ) 0, , 1, , , 1, , ,
( , , ) ( , )

i i
y x

k j k j

F y y i j n k n
x F y x y

θ
θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= = ∀ = ∀ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

x y z y z
x y z y z

 (A.25) 

Thus, y is separable from x in the joint production transformation function (Goldman and 
Uzawa 1964, Lemma 1), that is, ( , , ) ( , , ( , ))F F θ=x y z x z y z .             
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Appendix B 

Sufficiency Algebra for Proposition 2 

Define the function :ω + × →  by 

  2
0

( , ) [ ( ) ( , ) ] ,
x

x y y s s y dsω λ ω= + +∫  (B.1) 

where : →λ  is an arbitrary smooth function and w is subject to the pair of initial 
conditions, (0, )w y y=  and 2(0, ) ,w y x y∂ ∂ =  to ensure that the definition is unique and 

smooth. Given two arbitrary smooth functions : xn
++ +→η  and : ,yz nnθ × →  by 

Leibniz’ Rule of differentiation, we have 

  2( ( ), ( , )) ( )( ( )) ( ( ), ( , )) .ω η θ ηλ η ω η θ∂ ∂⎡ ⎤= +⎣ ⎦∂ ∂
w z y ww w z y

w w
 (B.2) 

Given a monotonic, smooth function : , 0,f f++ ′→ ≠  define the relationship be-

tween f and ω  by ( ) ( ) ,f αω β γω δ= + +  , , , : ,xn
++ →α β γ δ  and 1.− ≡αδ βγ  Let 

the cost function be : qx z nn nc ++ ++ ++ ++× × →  and denote an arbitrary positive-valued, 

1° homogeneous, increasing, and concave deflator by : .xn
++ ++→π  The projective 

transformation group representation of any exactly aggregable ex ante cost function is 

  ( , , ) ( ) ( ), ( , )) ( ) .
( ) ( ) ( ), ( , )) ( )

cf α ω η θ β
π γ ω η θ δ

⎛ ⎞ ( +
=⎜ ⎟ ( +⎝ ⎠

w z y w w z y w
w w w z y w

 (B.3) 

Hereafter, suppress all arguments of all functions and use bold italics subscripts to denote 
vector-valued partial derivatives. For example, rewrite (B.2) compactly as 

2( ) .ω λ ω η= +w w  

The inverse of (B.3) with respect to ω w is ( ) ( ).f fω δ β γ α= − − +  Combine this 
with the identification normalization 1− ≡αδ βγ  to obtain the following: 

  1 ,f f f
f f f

δ β γδ βγ γδ αδγω δ γ δ
γ α γ α γ α

⎛ ⎞− − − +
+ = + = =⎜ ⎟− + − + − +⎝ ⎠

 (B.4) 

or equivalently, 1 ( ).fγ α γω δ− + = +   Multiply each side of this by the corresponding 
side of equation (B.3) to obtain 2( ) ( ) ( ) .f fγ α αω β γω δ− + = + +  These relationships 
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are used in what follows to simplify expressions. 

Our task is to differentiate (B.3) with respect to w, combine terms, and rewrite the ex-
pression that results so that the elements of 2{1, , }f f  appear on the right. Differentiating 
gives 

  
2 2

2 2

( ) ( ( )
( (

( ( ) ] ( ( ) ].

c cf
w w

f f f

π α ω αω β αω β γ ω γω δ
π γ δπ γ δ

γ α α ω α λ ω η β γ α γ ω γ λ ω η δ

+ + + ) + +⎛ ⎞′ ⋅ − = −⎜ ⎟ + ) + )⎝ ⎠

= − + )[ + + + − − + ) [ + + +

w w w w w w w w

w w w w w w

(B.5) 

The second line follows from 1 ( ) fγω δ γ α+ = − + , 2( ) ( ) ( ) ,f fαω β γω δ γ α+ + = − +  
and 2( ) .ω λ ω η= +w w  Group terms in ω  on the second line of  (B.5) to obtain 

  
[ ]2

2 2

( ( )

( ( ) ( .

c cf f f

f f f

π γ α β αλη δ γλη
π π

γ α α γ ω γ α η ω

⎛ ⎞′ ⋅ − = − + ) + − +⎜ ⎟
⎝ ⎠

+ − + ) − + − + )

w w
w w w w

w w w

 (B.6) 

Substituting ( ) ( )f fω δ β γ α= − − +  into the second line of (B.6) now leads to 

 

[ ]

[ ]

2

2
2

2

( ( )

( ( ) (

( ( ) ( )( ) ( ) .

c cf f f

f ff f f
f f

f f f f f

π γ α β αλη δ γλη
π π

δ β δ βγ α α γ γ α η
γ α γ α

γ α β αλη δ γλη α γ δ β η δ β

⎛ ⎞′ ⋅ − = − + ) + − +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− −
+ − + ) − + − + )⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠

= − + ) + − + + − − + −

w w
w w w w

w w w

w w w w w w w

 (B.7) 

Expanding the quadratic forms and grouping terms in f in the last line of (B.7) gives 
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[ ]

[ ]

2

2

2 2 2

2

2 2 2

2 2

( )

( )

( )

( 2 )

( ) ( 2 ) ( )

( 2 ) ( )

( )

v

c cf f f

f

f f

f f

f f

f f

π γ β αλη δ γλη
π π

α β αλη δ γλη

α β α δ γ β γ δ

η β βδ δ

α β αλη γβ αδ αγλη γ δ γλη

α β η β α δ γ β βδη γ δ η δ

αβ βα α λ β η

⎛ ⎞′ ⋅ − = − + − +⎜ ⎟
⎝ ⎠

+ + − +

− + + −

+ − +

= + − + + + +

− + + + − + − +

= − + +

−

w w
w w w w

w w w w

w w w w

w

w w w w w w

w w w w w w w

w w w

[ ]
2 2 2

2( )

( ) .

f

f

αδ δα γβ βγ αγλ βδ η

γδ δγ γ λ δ η

− + − + +

⎡ ⎤+ − + +⎣ ⎦

w w w w w

w w w

 (B.8) 

Grouping terms in ηw  as well gives 

  

2
2

2 2

( ) ( )

( ) ( ) .

c cf f f

f f

π αβ βα αδ δα γβ βγ γδ δγ
π π

δ β λ γ α η

⎛ ⎞′ ⋅ − = − − − + − + −⎜ ⎟
⎝ ⎠

⎡ ⎤+ − + − +⎣ ⎦

w w
w w w w w w w w

w

 (B.9) 

Finally, solving for c =w x  gives 

  
{

}

2

2 2

( ) ( )

( ) ( ) .

c f f
f

f f

π π αβ βα αδ δα γβ βγ γδ δγ
π

δ β γ α λ η

= + − − − + − + −
′

⎡ ⎤+ − + − +⎣ ⎦

w
w w w w w w w w

w

x
 (B.10) 
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Appendix C 

Specifying the Cost Function 

The first 1xn −  variable input prices, w, and total variable cost, c, are normalized by the 
average wage rate for hired farm labor, .

xnw We consider the following transformation of 
normalized variable cost, which nests the PIGLOG and PIGL class of models, 

 ( ) ( 1) ,f c cκ κ κ= + −  ( ) ,f c cκ′ =  2( ) ( 1) ,f c cκκ −′′ = −  .κ +∈\  

This includes all of the real-valued Gorman functional forms, with ( )f c c=  when 1,κ =  
and lim ( ) 1 ln .f c c

κ→0
= +  Therefore, the highest rank that the variable input demands can 

achieve is three (Gorman 1981; Lewbel 1987; LaFrance and Pope 2009).  

Previous empirical work considered translated Box-Cox functions of input prices, 
( 1) , [0,1], 1, , 1,i xw i nλ λ λ λ+ − ∈ = −"  to nest models with that have log prices, power 
functions of prices, and are linear prices. In the national model 1λ =  is optimal on this 
interval and for our data set. Hence, we restrict attention here to normalized input prices. 
Our previous empirical results using this data at state- and national-levels of aggregation 
and various levels of aggregation across inputs, suggests quite strongly that rank three 
over-parameterizes this data set (Ball, et al., 2010). Hence, we focus here on rank two:  

 10 1 20 2

1 1

( ( , , , , )) ( , , ) ( ) ( , , , ),

( ) ( , , )( , , , ) ,
( )

( , , ) ( ) ( ) ,

( ) 2 1,

[ ] ,
y yt n n

f c A K A K A K

f c A Kc A K

A K A K

y a y a

α β θ

αθ
β

α α α

β

= +

−
⇔ =

= + + +

= + +

= =

w a Y w w a Y

ww
w

w w w

w w Bw w

Y y a

α α

γ

�

i "

T T

T T

T

 (C.1) 

where iy  is the expected (planned) yield for the ith crop, ia  is the acreage planted to this 

crop, and the symbol i denotes the Hadamard/Schur product for matrices and vectors. 
This appendix identifies restrictions on the parameters in (C.1) that are necessary and suf-
ficient for economic regularity of the variable cost function. 
Monotonicity in w: 
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1 2

1
1 2 2

( )

( ) ,

cc A K

fc A K

κ

κ

θ
β

α
β

−1

−

∂
= + + + ≥

∂

⎡ ⎤⎛ ⎞−
⇔ = + + + ≥⎢ ⎥⎜ ⎟
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Bw
w

x Bw

0

0

α α γ

α α γ�
 (C.2) 

where 1 1[ ]
xnx x −=x� " T  is the (nx–1)–vector of the first nx–1 input quantities, excluding 

labor. 
Concavity in w: 

 

2
2 1

3

2
1

2 2

( 1) ( )( )

1 ( )( ) ,

c c cc c

c fc
c

κ κ

κ

θ θκ
β β

κ α
β β

− −

−

∂ ∂ ∂
− + = − + +

∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞∂ − − + +⎛ ⎞⇔ = + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦

B Bw Bw
w w w w

Bw Bwxx B
w w

γ γ

γ γ� �

T

T T

T
T

T

 (C.3) 

The first matrix on the right-hand-side of the second line is rank and is negative semi-
definite if and only if 1.κ ≥  The matrix in square brackets on the far right of the second 
line will be positive semi-definite if = +B LL γγT T , where L is a triangular matrix with 
nonzero main diagonal elements. This makes the following nx×nx matrix positive definite: 

 
1 1 1 1

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ +
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B L L LL0

0

γ γ γγ γ

γ γ γ

T T T T

T T T T
, (C.4) 

since it give a Choleski factorization of the matrix on the left. It follows from this that 
12 1 [ 1] 011

xn −
++

⎡ ⎤ ⎡ ⎤+ + = > ∀ ∈⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

B ww Bw w w w
γ

γ
γ

\T T T

T
, and ( )( )

2 1
⎡ ⎤+ +

−⎢ ⎥+ +⎣ ⎦

Bw BwB
w Bw w

γ γ
γ

T

T T
 is 

positive semi-definite, by the Cauchy-Schwartz inequality in nx–dimensional Euclidean 
space. Given this, the second term on the right-hand-side of the second line of equation 
(C.3) will be negative semi-definite if and only if .f α≤   
Constant returns to scale (CRS): 

 .A K
A K
θ θ θ θθ ∂ ∂ ∂ ∂

≡ + + +
∂ ∂ ∂ ∂

a Y
a YT T

 (C.5) 

We believe that we have a much more accurate measure of capital than we do of land. 
Hence, we normalize θ  by the value of capital rather than land in farms. 
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Monotonicity in ( , , , ) :A K a Y  

 
10 1 20 20, 0,

, .

c cc c
A A K K

c cc c

κ κ

κ κ

θ θα β α β

θ θβ β

−1 −1

−1 −1
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= + + ≤ = + + ≤

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ≤ = ≤

∂ ∂ ∂ ∂

w w

a a Y Y
0 0

α αT T

 (C.6) 

Joint Convexity in ( , , , ) :A K a Y  

2 2 2 2

2

2 2 2 2

2

2 2 2 2

2 2 2 2
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 (C.7) 

The first matrix on the right is rank one and will be positive semi-definite if and only if 
1.κ ≤  Therefore, ( , , , , )c A Kw a Y  will be concave in w and jointly convex in ( , , , )A K a Y  

more than locally if and only if 1.κ =  We estimated the rank two model using the Box-
Cox transformation on cost. The NL3SLS/GMM point estimate for κ is 1.124 with a clas-
sical (Gaussian) asymptotic standard error of .152 and a White/Huber heteroskedasticity 
consistent standard error of .111. We can not reject a null hypothesis of 1κ =  in either 
case at the 25% significance level. Hence, in this paper we restrict our attention to 1.κ =   

Given this restriction, the cost function will be jointly convex in ( , , , )A K a Y  if and 
only if the Hessian matrix for θ , 
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is positive semi-definite. Given these considerations, the specification for θ employed in 
the paper is 

 
2

5 6 7
1 2 3 4( , , , ) ½ ,t t t t t

t t t t t t t t
t

AA K A K
K

θθ θ θ + +⎛ ⎞= − − − + + ⎜ ⎟
⎝ ⎠

a a Y Ya Y a Y Θ Θθ θ
T T

T T  (C.9) 

where 1 2 5, , 0θ θ θ > , 3 4, ,> 0θ θ  and 6 7,Θ Θ  are symmetric and positive semidefinite. The 
implied constraints for monotonicity can be written as 

   

0 1
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 (C.10) 

These can be imposed iteratively in estimation, if necessary (LaFrance 1991). In this pa-
per, we checked for the monotonicity conditions at each data point given the parameter 
estimates obtained without imposing monotonicity.  

Also, given that 0,tK >  the implied curvature conditions are that the matrix 
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 (C.11) 

is positive semidefinite. This can be imposed during estimation with the Choleski factors, 
6 6 6= TL LΘ  and 7 7 7,= TL LΘ  with 6L  and 7L  lower triangular Choleski factors for 6Θ  and 

7 ,Θ  respectively, and the inequality 5 0.θ >  In this paper, only the matrix 7 7 7= L LΘ T  is 
estimated as part of the arbitrage conditions. 
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Appendix D 

D.1 Output Specific (Embodied) Technological Change 

The specification for θt employed in this paper is 

 
2

5 6 7,
1 2 3 4,( , , , ) ½ ,t t t t t t

t t t t t t t t t t
t

A
A K A K

K
θ

θ θ θ
⎛ ⎞+ +

= − − − + + ⎜ ⎟⎜ ⎟
⎝ ⎠

a a Y Y
a Y a Y

Θ Θ
θ θ

T T

T T  (D.1) 

where 1 2 5, , 0θ θ θ > , 3 4,, ,t > 0θ θ  6 7,, tΘ Θ  are symmetric and positive semi-definite, and 

t t t=Y y ai  is the vector of planned crop production with ty  the vector of expected yields 
per planted acre and at the vector of planted acres. The subscripts t have been added to 

4, 7,, ,t t tθ θ Θ  to indicate that the technology is potentially time-varying as a result of ex-
ogenous embodied technological change in yield per acre (e.g., due to the development of 
hybrid seeds, genetically modified plant organisms, etc.).  

We model this relative to 0t =  via the following vector-valued equations: 

  0( ) , (0) , ( ) 0,t t t t′= = ≥ ∀ ≥y y 0φ φ ι φi  (D.2) 

where i  denotes the Hadamard product, i.e., 1 1 2 2[ ] .n ny x y x y=x y xi " T  Given this, then 

( , , , ) ,y yn nA K + + + +∀ ∈ × × ×a y \ \ \ \  the variable cost function will be constant across 
time periods for any  if and only if: 

  0( , , , ( ) ) ( , , , ).t A K t A Kθ θ=a y a a y aφ i i i  (D.3) 

Applying this to (D.1) gives 

  
4, 4,0

7, 7,0

( ) ,  and

[ ( ) ] [ ( ) ] ( ) ( ) ( ) .y y

t

n n
t

t

t t + +

=

= ∀ ∈ ×

y a y a

y a y a y a y a y a

θ φ θ

φ Θ φ Θ

i i i

i i i i i i i \ \

T T

T T

 (D.4) 

Differentiating with respect to i iy a  term by term, then implies that these matrix equations 
hold if and only if 

  
4, , 4, ,0

7, , , 7, , ,0

( ) , 1, , ,  and

( ) ( ) , , 1, , , 0,1, , .

i t i i y

i j t i j i j y

t i n

t t i j n t T

θ θ φ

Θ Θ φ φ

= ∀ =

= ∀ = =

"

" "
 (D.5) 
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or in matrix notation, 1 1 1
4, 4,0 7, 7,0( ( )) , ( ( )) ( ( )) ,t i t i it t tφ φ φ− − −= =θ Δ θ Θ Δ Θ Δ  where ( )ixΔ  is 

a diagonal matrix with ith diagonal element equal to .ix  To illustrate, suppose expected 
yields follow linear trends, 0 1 0 1( ) , , .t t= + > 0φ φ φ φ φ  Since both lines of (D.5) are 0° 
homogeneous in the parameters, normalizations are required for identification. The nor-
malization consistent with (0) =φ ι  is 0 .=φ ι  This gives the following specification for 
the impacts of embodied technological change on the cost function as: 

  
4, , 4, ,0

7, , , 7, , ,0

(1 ) , 1, , ,  and

(1 )(1 ) , , 1, , , 0, . .

i t i i y

i j t i j i j y

t i n

t t i j n t T

θ θ φ

Θ Θ φ φ

= + ∀ =

= + + ∀ = =

"

" "
 (D.6) 

If the null hypothesis is 0 1: ,Η = 0φ  and the alternative is 1 1: ,Η > 0φ  then under the 
alternative, this shifts the system of marginal cost equations downward at the rate of a 
rectangular hyperbola with an intercept in the denominator, and rotates them downward 
and to the right as the rate of a system of quadratic translated rectangular hyperbolas. 
Note that the effects of linear yield trends do not appear linearly anywhere in the dual 
cost function specification. Hence, linear trends are not likely to appear in output supply 
equations if this form of technological change is correct. 

E.2 Technological Change Specific to Variable Inputs 

The variable cost function we have derived for this study is  

  1 2( , , , , ) ( , , , ),c A K A K A Kθ= + + ×w a Y w w w Bw a Yα αT T T  (D.7) 

To identify the impact of variable input specific technological change, we need to recover 
the joint production transformation function. This is relatively straightforward for this 
specification of cost. The conditional input demands are 

  

1 2

1 2
1 2 .

A K

c A KA K

θ= + +

⎡ ⎤− −
= + + ⎢ ⎥

⎢ ⎥⎣ ⎦

wx B
w Bw

w w wB
w Bw w Bw

α α

α αα α

T

T T

T T

 (D.8) 

Solve the first line of (D.8) for the normalized price vector, ,w w BwT  to obtain 

  1
1 2

1 ( ).A K
θ

−= − −
w B x

w Bw
α α

T
 (D.9) 
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Recall that monotonicity and concavity require 1 2( ) 0.c A Kθ = − − <w w w Bwα αT T T  

Adding up, ,c = w xT  implies 

  11 2
1 2 1 2

1 ( ) ( ),A K A K A Kθ
θ

−− −
= = − − − −

w x w w x B x
w Bw

α α α α α α
T T T

T

T
 (D.10) 

or equivalently,  

  2 1
1 2 1 2( ) ( ).A K A Kθ −= − − − −x B xα α α αT  (D.11) 

The economically relevant root is the negative one, and the joint production transforma-
tion function is 

  1
1 2 1 2( , , , ) ( ) ( ) 0.A K A K A Kθ −+ − − − − =a Y x B xα α α αT  (D.12) 

To model the effects of input specific technological change, define the vector of ef-
fective inputs in period t relative to period 0 by 

  ( ) , (0) , ( ) 0, [1 1] ,t t t′= ≥ ∀ ≥ =x 0ϕ ϕ ι ϕ ιi " T  (D.13) 

With this definition, ( , , , , ) ,y yx n nnA K + + + + +∀ ∈ × × × ×x a Y \ \ \ \ \  write the period t joint 
production transformation function as 

  1
1 2 1 2( , , , ) [ ( ) ] [ ( ) ] 0.A K t A K t A Kθ −+ − − − − =a Y x B xϕ α α ϕ α αi iT  (D.14) 

The implication is that if the vector x of quantity units of the variable inputs are pur-
chased and used, then the effective quantity vector is ( ) 0.t t≥ ∀ ≥x xϕ i  The implied 
variable cost minimizing vector of input demand equations  
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 (D.15) 

Similar to output specific technological change, the linear case 1 1( ) , ,t t= + ≥ 0ϕ ι ϕ ϕ  im-
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plies that technological change shifts and rotates the demand for variable inputs. As a 
consequence, linear trends in variable input use levels are not likely to be valid specifica-
tions for the effects of input specific technological change if this model specification is 
(approximately) correct. 
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Appendix E 

Specification Errors and Parameter Stability Tests 

Many diagnostic procedures for testing parameter stability and model specification errors 
have been developed. Few are designed for large systems of nonlinear simultaneous 
equations in small samples. These properties preclude using recursive-forecast residuals 
or Chow tests based on sequential sample splits to analyze specification errors or non-
constant parameters Brown, Durbin, and Evans 1975; Harvey 1990, 1993; Hendry 1995). 
It is desirable to test whether the data are consistent with the model specification and con-
stant parameters. LaFrance (2008) derived a set of specification and parameter stability 
diagnostics for this class of problems. These test statistics rely on the estimated in-sample 
residuals and have power against a range of alternatives, including non-constant parame-
ters and specification errors. The purpose of this section is to discuss briefly the main 
ideas that underpin this class of test statistics. 

If the model is stationary and the errors are innovations, then consistent estimates of 
the model parameters can be found in any number of ways. Given consistent parameter 
estimates, the estimated errors converge in probability (and therefore, in distribution) to 

the true errors, ˆ P
t t→ε ε . Therefore, for each 1, , 1,xi n= −  by the central limit theorem 

for stationary Martingale differences, we have  

 
1

1 (0,1)
T D

it
ti

N
T

ε
σ =

→∑ , (1) 

where 2 2( )i itEσ ε=  is the variance of the residual for the ith demand equation. Moreover, 
for any given proportion of the sample, uniformly in [0,1],z ∈  

 
[ ]

1

1 (0, )
zT D

it
ti

N z
T

ε
σ =

→∑ , (2) 

where [ ]zT  is the largest integer that does not exceed zT. The variance is z because we 
sum [zT] independent terms each with variance 1/T. Multiplying (1) by z and subtracting 
from (2) then gives 

 ( )
[ ]

1

1 ( ) (1) ( )
zT D

it i
ti

W z zW B z
T

ε ε
σ =

− → − ≡∑ , (3) 

where W(z) is a standard Brownian motion on the unit interval, with ( ) ~ (0, )W z N z , and 
( )B z  is a standard Brownian bridge, or tied Brownian motion. For all z ∈ [0,1], B(z) has 

an asymptotic Gaussian distribution, with mean zero and standard deviation (1 )z z−  
(Bhattacharya and Waymire, 1990). For a given z – that is, to test for a break point in the 
model at a fixed and known date – an asymptotic 95% confidence interval for B(z) is 

1.96 (1 )z z± − . To check for an unknown break point, a statistic based on the supremum 
norm,  
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[0,1]

sup ( )T T
z

Q B z
∈

=  (4) 

has an asymptotic 5% critical value of 1.36 (Ploberger and Krämer, 1992). 

We can use consistently estimated residuals and consistently estimated standard er-
rors to obtain sample analogues to these asymptotic Brownian bridges. This gives 
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1 ˆ ˆ( ) ( ) ( )
ˆ

zT D

iT it i
ti

B z B z
T

ε ε
σ =

≡ − →∑ , (5) 

also uniformly in [0,1]z ∈ , so long as the model specification is correct and the parame-
ters are constant across time periods. This statistic is a single equation first-order specifi-
cation/parameter stability statistic since it is based on the first-order moment conditions, 

( ) 0 ,itE i tε = ∀ . A system-wide first-order specification/parameter stability statistic can 
be defined by 
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1 1

1 1 ˆ ˆ( ) ( ) ( )
qnzT D

T it
t ix

B z B z
T n

ξ ξ
= =

⎡ ⎤
≡ − →⎢ ⎥
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∑ ∑ , (6) 

where ½ˆ ˆ ˆt t
−=ξ Σ ε  is the tth estimated standardized error vector and 

1 1
ˆ ˆqT n

it xt i
n Tξ ξ

= =
≡ ∑ ∑ . 

Similar methods apply to second-order stationarity and parameter staibility. We focus 
on system-wide statistics. Let Σ  be factored into LLT , where L is lower triangular and 
nonsingular. Define the random vector tξ  by t t= Lε ξ . In addition to the assumptions 
above, add 4

,
sup ( )it

i t
E ε < ∞ . Estimate the within-period average sum of squared standard-

ized residuals by 
 11 1ˆ ˆ ˆˆ ˆˆt t t t tn nυ −= =ξ ξ ε Σ εT T , (7) 

where t̂ε  is the vector of consistently estimated residuals in period t and 1
ˆ ˆ ˆT

t tt T== ∑Σ ε ε T  
is the associated consistently estimated error covariance matrix. The mean of the true tυ  
is one for each t, and the martingale difference property of tε  is inherited by 1.tυ −  A 
consistent estimator of the asymptotic variance of tυ  is  

 2 2

1

1 ˆˆ ( 1)
T

t
tTυσ υ
=

= −∑ . (8) 

A system wide second-order specification/parameter stability test statistic is obtained 
by calculating centered and standardized partial sums of ˆtυ ,  
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1 ˆ( ) ( 1) ( )
ˆ

zT
D

T t
Tt

B z B z
T υ

υ
σ →∞=

= ⋅ − ⎯⎯→∑ , (9) 

uniformly in [0,1]z ∈ , where the limiting distribution on the far right follows from the 
identity 1ˆ ˆ 1T

tt Tυ υ=≡ ≡∑ . 




