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Motivation

� Recent interest in “fat tails” in distribution over temperatures

� one motivation: survey of published scientific work (Weitzman)

� subjective appraisals of key parameters, unclear these are independent
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Figure 1: Estimated probability density functions for the climate sensitivity from a variety of
published studies, collated by Meinshausen et al. (2009).

statics results on the effect of ambiguity on optimal abatement in a two-period model. Although
not confined to climate applications, the work of Traeger (2009) and Gollier & Gierlinger (2008)
on the effect of ambiguity aversion on the social discount rate is clearly relevant and has important
implications for the assessment of mitigation investments.

In this paper we hope to provide a further step along the path sketched out by these authors.
In Section 2 we provide insight into the comparative statics of ambiguity aversion in stylized

timeless models of greenhouse gas emissions abatement policy choice. Examining the static case
helps to build intuition for the effect of ambiguity aversion on optimal decisions. We introduce a
model of decision under ambiguity, analyze its basic properties, and derive a new and quite general
condition that allows us to perform comparative statics. This condition is sufficient for an increase
in ambiguity aversion to increase optimal abatement, or conversely, to decrease it. We then extend
our comparative statics to two simple illustrative examples of abatement policy. The first example
directly applies our sufficient condition to obtain conditions on the model’s input assumption
which ensure that optimal abatement is increasing in ambiguity aversion. Our sufficient condition
is not satisfied in our second example, but it is possible to explicitly compute optimal abatement,
and its relation with ambiguity aversion. In Section 3 we extend this analysis to the dynamic case,
and attempt to understand how ambiguity aversion affects the welfare assessment of dynamic
abatement policies. The dynamic aspects of ambiguity models are especially difficult, and we only
consider their implications to a limited extent. In particular, we do not account for the dynamic
resolution of ambiguity over time through learning, but rather focus on computing welfare measures
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Motivation

Current economic literature typically assumes:

� damages based on carbon stock not temperature
� exponential decay of carbon stock (linear uptake)
� stylized [quadratic] representation of link between climate and damages
� deterministic or simple stochastic representation

each of these assumptions is suspect

Combined, these assumptions imply downward bias in social cost of carbon

� relating damages to carbon stocks only sensible if direct relation
� climate scientists recently observed some carbon (≈ 20%) stays in

atmosphere virtually indefinitely⇒ concave (non linear) uptake
� quadratic damages⇒ focus on mean & variance

� higher-order moments not relevant
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carbon stock vs. temperature

� temperature changes linked to carbon stock (Ṫ = αln(C/C0)−βT )

� carbon stock changes linked to emissions (Ċ = g(C,E))

� suggests relation between temperature and accumulated emissions

Introduction Deterministic Model Stochastic Model Conclusion

carbon stock vs. temperature

LETTERS

Warming caused by cumulative carbon emissions
towards the trillionth tonne
Myles R. Allen1, David J. Frame1,2, Chris Huntingford3, Chris D. Jones4, Jason A. Lowe5, Malte Meinshausen6

& Nicolai Meinshausen7

Global efforts to mitigate climate change are guided by projections
of future temperatures1. But the eventual equilibrium global mean
temperature associated with a given stabilization level of atmo-
spheric greenhouse gas concentrations remains uncertain1–3,
complicating the setting of stabilization targets to avoid poten-
tially dangerous levels of global warming4–8. Similar problems
apply to the carbon cycle: observations currently provide only a
weak constraint on the response to future emissions9–11. Here we
use ensemble simulations of simple climate-carbon-cycle models
constrained by observations and projections from more compre-
hensive models to simulate the temperature response to a broad
range of carbon dioxide emission pathways. We find that the peak
warming caused by a given cumulative carbon dioxide emission is
better constrained than the warming response to a stabilization
scenario. Furthermore, the relationship between cumulative
emissions and peak warming is remarkably insensitive to the emis-
sion pathway (timing of emissions or peak emission rate). Hence
policy targets based on limiting cumulative emissions of carbon
dioxide are likely to be more robust to scientific uncertainty
than emission-rate or concentration targets. Total anthropogenic

emissions of one trillion tonnes of carbon (3.67 trillion tonnes of
CO2), about half of which has already been emitted since indus-
trialization began, results in a most likely peak carbon-dioxide-
induced warming of 2 6C above pre-industrial temperatures, with
a 5–95% confidence interval of 1.3–3.9 6C.

Under conventional climate stabilization scenarios, greenhouse gas
emissions are reduced until atmospheric composition approaches a
stabilization level consistent with a desired equilibrium warming and
are then adjusted to hold concentrations stable thereafter5. If climate
system and carbon cycle properties were known, this would be
straightforward: we could reliably map emissions to temperatures
and vice versa. For example, if the climate system were to follow the
response of a simple model with most likely values of key parameters
(see Methods Summary and Supplementary Information), the emis-
sions scenario highlighted by the solid red line in Fig. 1a would bring
atmospheric carbon dioxide (CO2) concentrations towards 490 p.p.m.
(parts per million) by the end of the twenty-first century (solid red line
in Fig. 1b). Under the ‘490 p.p.m. stabilization scenario’ shown by the
dotted red lines, rapid reductions cease after 2070, with smaller sub-
sequent adjustments causing concentrations to converge to 490 p.p.m.

1Department of Physics, University of Oxford, OX1 3PU, UK. 2Smith School of Enterprise and the Environment, University of Oxford, OX1 2BQ, UK. 3Centre for Ecology and Hydrology,
Wallingford, OX10 8BB, UK. 4Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK. 5Met Office Hadley Centre (Reading Unit), Department of Meteorology, University of
Reading, RG6 6BB, Reading, UK. 6Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany. 7Department of Statistics, University of Oxford, OX1 3TG, UK.
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Figure 1 | Idealized carbon dioxide emission scenarios and response to
benchmark scenario. a, Emissions, including zero emissions after 2000
(dotted black line). Solid red and orange lines show scenarios with
cumulative emissions 1750–2500 within 1% of 1 Tt C. Solid red line shows
benchmark case and dotted red line shows the ‘490 p.p.m. stabilization’
scenario. b, CO2 concentration response to benchmark scenario with best-fit
combination of simple climate model parameters (solid red line) and with
random parameter combinations shaded by likelihood (grey plume). The
vertical scale bar shows the corresponding likelihood profile for a normally

distributed quantity, with black line showing 5–95% (horizontal tickmarks:
17–83%) confidence interval. The dotted red line shows best-fit response to
stabilization scenario. c, Temperature response to benchmark scenario from
simple model: best fit in red and likelihood profile in grey. Bar on right shows
likelihood profile for peak warming response to ‘490 p.p.m. stabilization’
emissions scenario: in cases where temperatures are still rising in 2500,
equilibrium warming response to 2500 CO2 concentration is plotted.
Diamonds in b and c show observed CO2 concentrations and temperatures
(relative to 1900–1920), respectively.
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carbon stock dynamics

� relating damages to carbon stocks only sensible if direct relation

� Physicists typically assume “three box model”
� 3 state variables, related to different time frames

� C3 reflects ‘long term equilibrium ’ stock
� C2 reflects medium term variations around C3

� C1 represents shorter term variations

� importantly, gases depreciate from C3 so slowly as to be negligible

� implies some carbon (≈ 20%) stays in atmosphere virtually indefinitely

� temperature changes linked to carbon stock

� carbon stock changes linked to emissions

� suggests 2nd order relation between temperature and accumulated
emissions
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Three box model

Ċ2 = a0E−b2C2

Ċ3 = b3C3

� concave relation in Ċ... approximate with quadratic decay?

� analogous to the logistic growth component in modern fisheries models

Ċ = a1E−U(C) = a1E−C(b0−b1C)

� U(C) is “uptake”

� interpretation of coefficient on C2: “carrying capacity”
� maximum ability of sinks to uptake carbon

� oceans
� forest stocks

Climate jumps (Mason & Wilmot) UCB-ARE seminar 23 September, 2011 6 / 19
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Linear marginal damage?

Introduction Empirical Evidence Implications Other stuff

Linear marginal damage?

Introduction Empirical Evidence Implications

Linear marginal damage?

Introduction Deterministic Model Stochastic Model Conclusion

Linear marginal damage?Figure 6: Nonlinear Relation Between Temperature and Corn Yields By Precipitation Quar-
tile
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stochastic temperatures?
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Control model

� PDV of payoffs at time t = [π(E)−D(T )]e−ρt ,
� π: net benefits from unabated emissions [GDP net of seq’n, abatem’t costs]
� D: temperature-related damages
� ρ: discount rate

� π′(E) > 0 for small E ,π′′(E) < 0

� iso-elastic form π(E) = AEθ+1 has received significant attention

� elasticity θ = π′(E)
Eπ′′(E)

� define Current-value Hamiltonian

H = π(E)−D(T ) + µ[a1E−C(b0−b1C)] + ν[αln( C
C0

)−βT ]

� µ is co-state variable (shadow value) associated with state variable C
� ν is co-state variable (shadow value) associated with state variable T

Climate jumps (Mason & Wilmot) UCB-ARE seminar 23 September, 2011 9 / 19
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Maximum principle

Necessary conditions for solution:

0 = π′(E∗) + a1µ

µ̇ = ρµ−∂H/∂C = (ρ + b0)µ−2b1Cµ− α
C

ν

ν̇ = ρν−∂H/∂T = (ρ + β)ν + D′(T )

Time-differentiate equation first condition to obtain

0 = π′′(E∗)Ė∗+ a1µ̇ = π′′(E∗)Ė∗+ a1[(ρ + b0)µ−2b1Cµ− α
C ν], or

Ė∗ = (ρ + b0−2b1C) π′(E∗)
π′′(E∗) −

a1α
π′′(E∗)C ν↔

Ė∗

E∗
= U ′(C)θ− a1

E∗π′′(E∗)
αν
C

Climate jumps (Mason & Wilmot) UCB-ARE seminar 23 September, 2011 10 / 19
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Simpler model

Consider ‘conventional’ assumption T (t) = φ(C(t))

� damages are then d(C)≡ D(φ(C))

� state equation on T becomes irrelevant to the dynamic optimization
problem

� optimality condition for E is as above

� equation of motion for the (lone remaining) co-state variable is

µ̇ = (ρ + b0)µ−2b1Cµ + d ′(C)

� differential equation governing the path of optimal emissions becomes

Ė
E

= U ′(C)θ− a1

Eπ′′(E)
d ′(C)

� replace the component αν
C with d ′(C),E∗ with E
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Introduction Deterministic version of model Empirical Evidence Implications

Data

� Temperature: monthly global mean temperature, Centigrade

� Carbon stocks: monthly readings at Mauna Loa, ppm

� March 1958 - August 2011
� Global emissions: annual observations, 1958 - 2007

� ‘conventional’ emissions
� emissions related to land use change

� data sources: NOAA, CDIAC, EIA
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Introduction Deterministic version of model Empirical Evidence Implications

Stochastic temperatures, cont.

� now represent temperature state equation as stochastic
� how to model? GBM? jump process?
� regress ln(Ct−1), Tt−1 on Tt −Tt−1 (= ∆T )

� alternative 1: if C drives T then ∆C drives ∆T
� alternative 2: perhaps outliers
� alternative 3: endogeneity in carbon?

Table 1: Regression results: global mean temperatures

variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5

Tt−1 -.1634∗∗ -.1639∗∗ -.0403∗∗ -.1587∗∗ -.1647∗∗

(.0217) (.0219) (.0114) (.0196) (.0223)

ln(Ct) .5167∗∗ .5167∗∗ — .5058∗∗ .5361∗∗

(.0787) (.0789) — (.0711) (.0834)
Ct−Ct−1 —- .0029 .0308∗ — —

— (.0167) (.0135) — —
Dout0 — — — -.0957∗∗ —

— — — (.0019) —
Dout1 — — — .1075∗∗ —

— — — (.0019) —
constant -.9647∗∗ -.9560 .7767∗∗ 9699∗∗ -1.0943∗∗

( .3368) (.3394) (.2198) (.3038) (.3604)

R-squared .082 .082 .020 .256 .082

Dependent variable: Tt−Tt−1
number of observations = 640

Table 2: Jump analysis

coefficient estimate std. err. restricted estimate restricted std.err.
µ -.1209 .043 -.0001 .040
σ .4196∗∗ .049 .9206∗∗ .026
λ .5816 .069 — —
θ .2076∗ .089 — —
δ 1.0661∗∗ .060 — —

Chi-squared test statistic = 54.87
p-value < .0001
*: significant at 5% level
**: significant at 1% level

19
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Introduction Deterministic version of model Empirical Evidence Implications

Normally distributed residuals?

Distribution of Climate Residuals errT_ts

-0.450 -0.400 -0.350 -0.300 -0.250 -0.200 -0.150 -0.100 -0.050 0 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450

0

2.5

5.0

7.5

10.0
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15.0

P
er
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nt

Summary Statistics

N 641
Mean -.000
Std Dev 0.092
Skewness 0.121

climres

� kurtosis = 4.285

� probability this does not differ from 3 (Normal) < .01
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Introduction Deterministic version of model Empirical Evidence Implications

Jumps?

� allow for probability of jump = λ
� distribution of jump sizes

� mean θ, variance δ2

� means and variance of residuals when no jump obtains: µ,σ2

� similar qualitative results to kurtosis test

Table 1: Regression results: global mean temperatures

variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5

Tt−1 -.1634∗∗ -.1639∗∗ -.0403∗∗ -.1587∗∗ -.1647∗∗

(.0217) (.0219) (.0114) (.0196) (.0223)

ln(Ct) .5167∗∗ .5167∗∗ — .5058∗∗ .5361∗∗

(.0787) (.0789) — (.0711) (.0834)
Ct−Ct−1 —- .0029 .0308∗ — —

— (.0167) (.0135) — —
Dout0 — — — -.0957∗∗ —

— — — (.0019) —
Dout1 — — — .1075∗∗ —

— — — (.0019) —
constant -.9647∗∗ -.9560 .7767∗∗ 9699∗∗ -1.0943∗∗

( .3368) (.3394) (.2198) (.3038) (.3604)

R-squared .082 .082 .020 .256 .082

Dependent variable: Tt−Tt−1
number of observations = 640

Table 2: Jump analysis

coefficient estimate std. err. restricted estimate restricted std.err.
µ -.1209 .043 -.0001 .040
σ .4196∗∗ .049 .9206∗∗ .026
λ .5816 .069 — —
θ .2076∗ .089 — —
δ 1.0661∗∗ .060 — —

Chi-squared test statistic = 54.87
p-value < .0001
*: significant at 5% level
**: significant at 1% level

19
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Introduction Deterministic version of model Empirical Evidence Implications

Carbon Decay

� annual data on forest stocks 1990-2008
� use land use data to predict forest stocks going back to 1958

� use this synthetic data to create a proxy D for deforestation
� D represented relative to 1958 (% of land deforested)

� use changes in CO2 stock, total emissions to construct variable
representing ‘uptake’

� regress uptake on C,C2 and perhaps interactions with forest stocks
� H0 : coefficients on C2 are statistically unimportant
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Introduction Deterministic version of model Empirical Evidence Implications

Uptake results

Regression results: carbon uptake analysis

variable coefficient std. err. t-stat
C 1.2460 .4369 2.85
C2 -.00851 .00370 2.30
FC -1.0483 .4953 2.12
FC2 .00314 .00146 2.16
constant 536.95 290.24 1.85

R2 = .803
Durbin-Watson stat = 1.909
F-stat on H0: 5.465 (1% critical value = 5.149)

Climate jumps (Mason & Wilmot) UCB-ARE seminar 23 September, 2011 17 / 19



Introduction Deterministic version of model Empirical Evidence Implications

Theoretical considerations

DP approach: solve for V(C,T) using Fundamental eq’n of optimality

Deterministic modeling approach:

max xt

{
πte−rt +Ċ

∂V
∂C

+ Ṫ
∂V
∂T

}
= ρV .

Stochastic variant:

max xt

{
πte−rt +Ċ

∂V
∂C

+


dt
E
[
dT
]∂V

∂T

}
= ρV .

Expand Ito operator:

1
dt

E
[
dT
]

= αln
(
C/C0

)
−βT︸                ︷︷                ︸

deterministic ingredients

+ χ(µ,σ2,λ,θ,δ)︸              ︷︷              ︸
stochastic ingredients
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Introduction Deterministic version of model Empirical Evidence Implications

Concluding thoughts

� Important to shift focus from carbon stock to temperature
� leads to more complicated, subtler, effects

� some evidence of relatively fat tails in residuals associated with
temperature changes
� suggests fatter-tailed distribution than Brownian motion
� possible role for unanticipated rapid changes (jumps)

� evidence of non-linear decay in carbon stocks
� important in both ocean and forest sinks
� forest sinks absorb less rapidly, non-linear effect enters less rapidly
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