Climate Jumps, Fat Tails and Non-linear Carbon Uptake

Charles F. Mason¹ Neil Wilmot²

¹Department of Economics and Finance University of Wyoming Laramie, Wyoming, USA

> ²Department of Economics University of Minnesota–Duluth Duluth, MN, USA

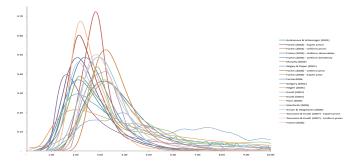
23 September, 2011

Introduction	Deterministic version of model	Empirical Evidence	Implications
	Motivation		

- Recent interest in "fat tails" in distribution over temperatures
- one motivation: survey of published scientific work (Weitzman)
- subjective appraisals of key parameters, unclear these are independent

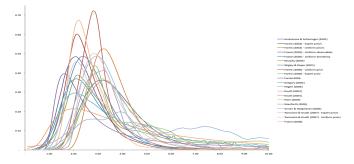
Introduction ••••••	Deterministic version of model	Empirical Evidence	Implications
M	otivation		

- Recent interest in "fat tails" in distribution over temperatures
- one motivation: survey of published scientific work (Weitzman)
- subjective appraisals of key parameters, unclear these are independent



Introduction ••••••	Deterministic version of model	Empirical Evidence	Implications
M	otivation		

- Recent interest in "fat tails" in distribution over temperatures
- one motivation: survey of published scientific work (Weitzman)
- subjective appraisals of key parameters, unclear these are independent



can we say something using current climate data?

Introduction 000000	Deterministic version of model	Empirical Evidence	Implications
Mot	ivation		

Current economic literature typically assumes:

- damages based on carbon stock not temperature
- exponential decay of carbon stock (linear uptake)
- stylized [quadratic] representation of link between climate and damages
- deterministic or simple stochastic representation

Introduction 000000	Deterministic version of model	Empirical Evidence	Implications
Mot	ivation		

Current economic literature typically assumes:

- damages based on carbon stock not temperature
- exponential decay of carbon stock (linear uptake)
- stylized [quadratic] representation of link between climate and damages
- deterministic or simple stochastic representation

each of these assumptions is suspect

Introduction 000000	Deterministic version of model	Empirical Evidence	Implications
	Motivation		

Current economic literature typically assumes:

- damages based on carbon stock not temperature
- exponential decay of carbon stock (linear uptake)
- stylized [quadratic] representation of link between climate and damages
- deterministic or simple stochastic representation

each of these assumptions is suspect

Combined, these assumptions imply downward bias in social cost of carbon

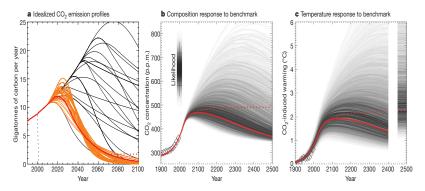
- > relating damages to carbon stocks only sensible if direct relation
- ► climate scientists recently observed some carbon (≈ 20%) stays in atmosphere virtually indefinitely ⇒ concave (non linear) uptake
- quadratic damages \Rightarrow focus on mean & variance
 - ▷ higher-order moments not relevant

Empirical Evidence

Implications

carbon stock vs. temperature

- temperature changes linked to carbon stock
- carbon stock changes linked to emissions
- suggests 2nd order relation between temperature and accumulated emissions



carbon stock dynamics

- relating damages to carbon stocks only sensible if direct relation
- Physicists typically assume "three box model"
- 3 state variables, related to different time frames
 - ▷ C₃ reflects 'long term equilibrium ' stock
 - \triangleright C₂ reflects medium term variations around C₃
 - \triangleright C₁ represents shorter term variations
- ▶ importantly, gases depreciate from C₃ so slowly as to be negligible
- implies some carbon (\approx 20%) stays in atmosphere virtually indefinitely
- temperature changes linked to carbon stock
- carbon stock changes linked to emissions
- suggests 2nd order relation between temperature and accumulated emissions

Introduction 0000000	Deterministic version of model	Empirical Evidence	Implications
Thr	ee box model		

$$\begin{array}{rcl} \dot{C}_2 &=& a_0 E - b_2 C_2 \\ \dot{C}_3 &=& b_3 C_3 \end{array}$$

- concave relation in \dot{C} ... approximate with quadratic decay?
- analogous to the logistic growth component in modern fisheries models

$$\dot{C} = a_1 E - U(C) = a_1 E - C(b_0 - b_1 C)$$

- *U*(*C*) is "uptake"
- interpretation of coefficient on C^2 : "carrying capacity"
- maximum ability of sinks to uptake carbon
 - ▷ oceans
 - ▷ forest stocks

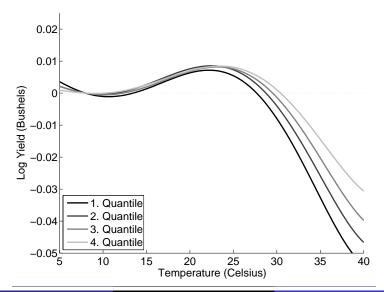
Introduction

Deterministic version of model

Empirical Evidence

Implications

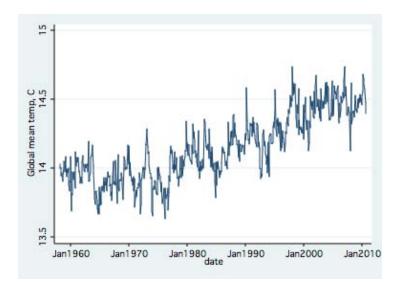
Linear marginal damage?



Empirical Evidence

Implications

stochastic temperatures?



Empirical Evidence

Control model

- ► PDV of payoffs at time $t = [\pi(E) D(T)]e^{-\rho t}$,
 - \triangleright π : net benefits from unabated emissions [GDP net of seq'n, abatem't costs]
 - ▷ D: temperature-related damages
 - ρ: discount rate

•
$$\pi'(E) > 0$$
 for small $E, \pi''(E) < 0$

► iso-elastic form $\pi(E) = AE^{\theta+1}$ has received significant attention

> elasticity
$$\theta = \frac{\pi'(E)}{E\pi''(E)}$$

define Current-value Hamiltonian

$$\mathbf{H} = \pi(E) - D(T) + \mu[a_1E - C(b_0 - b_1C)] + \nu[\alpha \ln(\frac{C}{C_0}) - \beta T]$$

 \triangleright μ is co-state variable (shadow value) associated with state variable *C*

 \triangleright v is co-state variable (shadow value) associated with state variable T

Empirical Evidence

Implications

Maximum principle

Necessary conditions for solution:

$$0 = \pi'(E^*) + a_1\mu$$

$$\dot{\mu} = \rho\mu - \partial \mathbf{H} / \partial C = (\rho + b_0)\mu - 2b_1C\mu - \frac{\alpha}{C}\nu$$

$$\dot{\nu} = \rho\nu - \partial \mathbf{H} / \partial T = (\rho + \beta)\nu + D'(T)$$

Time-differentiate equation first condition to obtain

$$0 = \pi''(E^*)\dot{E}^* + a_1\dot{\mu} = \pi''(E^*)\dot{E}^* + a_1[(\rho + b_0)\mu - 2b_1C\mu - \frac{\alpha}{C}\nu], \text{ or }$$

Empirical Evidence

Implications

Maximum principle

Necessary conditions for solution:

$$0 = \pi'(E^*) + a_1\mu$$

$$\dot{\mu} = \rho\mu - \partial \mathbf{H} / \partial C = (\rho + b_0)\mu - 2b_1C\mu - \frac{\alpha}{C}\nu$$

$$\dot{\nu} = \rho\nu - \partial \mathbf{H} / \partial T = (\rho + \beta)\nu + D'(T)$$

Time-differentiate equation first condition to obtain

$$0 = \pi''(E^*)\dot{E}^* + a_1\dot{\mu} = \pi''(E^*)\dot{E}^* + a_1[(\rho + b_0)\mu - 2b_1C\mu - \frac{\alpha}{C}\nu], \text{ or}$$
$$\dot{E}^* = (\rho + b_0 - 2b_1C)\frac{\pi'(E^*)}{\pi''(E^*)} - \frac{a_1\alpha}{\pi''(E^*)C}\nu \leftrightarrow$$

Empirical Evidence

Implications

Maximum principle

Necessary conditions for solution:

$$0 = \pi'(E^*) + a_1\mu$$

$$\dot{\mu} = \rho\mu - \partial \mathbf{H} / \partial C = (\rho + b_0)\mu - 2b_1C\mu - \frac{\alpha}{C}\nu$$

$$\dot{\nu} = \rho\nu - \partial \mathbf{H} / \partial T = (\rho + \beta)\nu + D'(T)$$

Time-differentiate equation first condition to obtain

$$0 = \pi''(E^*)\dot{E}^* + a_1\dot{\mu} = \pi''(E^*)\dot{E}^* + a_1[(\rho + b_0)\mu - 2b_1C\mu - \frac{\alpha}{C}\nu], \text{ or}$$
$$\dot{E}^* = (\rho + b_0 - 2b_1C)\frac{\pi'(E^*)}{\pi''(E^*)} - \frac{a_1\alpha}{\pi''(E^*)C}\nu \leftrightarrow$$
$$\frac{\dot{E}^*}{E^*} = U'(C)\theta - \frac{a_1}{E^*\pi''(E^*)}\frac{\alpha\nu}{C}$$

Empirical Evidence

Simpler model

Consider 'conventional' assumption $T(t) = \phi(C(t))$

- damages are then $d(C) \equiv D(\phi(C))$
- state equation on T becomes irrelevant to the dynamic optimization problem
- optimality condition for E is as above
- equation of motion for the (lone remaining) co-state variable is

$$\dot{\mu} = (\rho + b_0)\mu - 2b_1C\mu + d'(C)$$

differential equation governing the path of optimal emissions becomes

$$rac{\dot{E}}{E} = U'(C) heta - rac{a_1}{E \pi''(E)} d'(C)$$

• replace the component $\frac{\alpha v}{C}$ with $d'(C), E^*$ with E

- Temperature: monthly global mean temperature, Centigrade
- Carbon stocks: monthly readings at Mauna Loa, ppm
- March 1958 August 2011
- Global emissions: annual observations, 1958 2007
 - 'conventional' emissions
 - emissions related to land use change
- data sources: NOAA, CDIAC, EIA

Stochastic temperatures, cont.

- now represent temperature state equation as stochastic
- how to model? GBM? jump process?
- ► regress $ln(C_{t-1})$, T_{t-1} on $T_t T_{t-1}$ (= ΔT)
 - \triangleright alternative 1: if C drives T then ΔC drives ΔT
 - alternative 2: perhaps outliers
 - ▷ alternative 3: endogeneity in carbon?

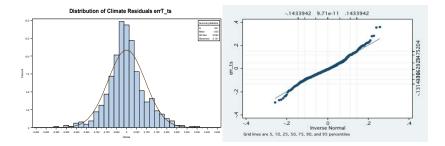
variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5
T_{t-1}	1634**	1639**	0403**	1587**	1647**
	(.0217)	(.0219)	(.0114)	(.0196)	(.0223)
$\ln(C_t)$.5167**	.5167**	_	.5058**	.5361**
	(.0787)	(.0789)	_	(.0711)	(.0834)
$C_t - C_{t-1}$.0029	.0308*		_
	_	(.0167)	(.0135)	_	
D_{out0}	_			0957**	_
	_		_	(.0019)	_
D_{out1}	_			.1075**	_
			_	(.0019)	
constant	9647**	9560	.7767**	9699**	-1.0943**
	(.3368)	(.3394)	(.2198)	(.3038)	(.3604)
R-squared	.082	.082	.020	.256	.082

Dependent variable: $T_t - T_{t-1}$ number of observations = 640

Empirical Evidence

Implications

Normally distributed residuals?



kurtosis = 4.285

probability this does not differ from 3 (Normal) < .01

Introduction 0000000	Deterministic version of model	Empirical Evidence	Implications
	~~~?		

- Jumps?
- allow for probability of jump =  $\lambda$
- distribution of jump sizes
- mean θ, variance δ²
- means and variance of residuals when no jump obtains:  $\mu, \sigma^2$
- similar qualitative results to kurtosis test

coefficient	estimate	std. err.	restricted estimate	restricted std.err.
μ	1209	.043	0001	.040
σ	.4196**	.049	.9206**	.026
λ	.5816	.069	_	_
θ	.2076*	.089	_	_
δ	1.0661**	.060	_	_

Chi-squared test statistic = 54.87 p-value < .0001 *: significant at 5% level **: significant at 1% level

### **Carbon Decay**

- annual data on forest stocks 1990-2008
- use land use data to predict forest stocks going back to 1958
  - $\triangleright$  use this synthetic data to create a proxy *D* for deforestation
  - ▷ D represented relative to 1958 (% of land deforested)
- use changes in CO2 stock, total emissions to construct variable representing 'uptake'
- regress uptake on C, C² and perhaps interactions with forest stocks
   H₀: coefficients on C² are statistically unimportant

Empirical Evidence

Implications

### Uptake results

Regression results: carbon uptake analysis

variable	coefficient	std. err.	t-stat
С	1.2460	.4369	2.85
$C^2$	00851	.00370	2.30
FC	-1.0483	.4953	2.12
$FC^2$	.00314	.00146	2.16
constant	536.95	290.24	1.85

 $R^2$  = .803 Durbin-Watson stat = 1.909 F-stat on  $H_0$ : 5.465 (1% critical value = 5.149)

Empirical Evidence

Implications

## Theoretical considerations

DP approach: solve for V(C,T) using Fundamental eq'n of optimality

Deterministic modeling approach:

$$\max_{x_t} \left\{ \pi_t e^{-rt} + \dot{C} \frac{\partial V}{\partial C} + \dot{T} \frac{\partial V}{\partial T} \right\} = \rho V.$$

Stochastic variant:

$$\max_{x_t} \left\{ \pi_t e^{-rt} + \dot{C} \frac{\partial V}{\partial C} + \frac{1}{dt} E \left[ dT \right] \frac{\partial V}{\partial T} \right\} = \rho V.$$

Expand Ito operator:

$$\frac{1}{dt}E[dT] = \underbrace{\alpha ln(C/C_0) - \beta T}_{\text{deterministic ingredients}} + \underbrace{\chi(\mu, \sigma^2, \lambda, \theta, \delta)}_{\text{stochastic ingredients}}$$

## Concluding thoughts

- Important to shift focus from carbon stock to temperature
  - leads to more complicated, subtler, effects
- some evidence of relatively fat tails in residuals associated with temperature changes
  - > suggests fatter-tailed distribution than Brownian motion
  - ▷ possible role for unanticipated rapid changes (jumps)
- evidence of non-linear decay in carbon stocks
  - ▷ important in both ocean and forest sinks
  - ▷ forest sinks absorb less rapidly, non-linear effect enters less rapidly