Math Review for Environmental Economics: EEP 101/ ECON 125

GSIs: Fang Lai and James Manley
Just in case you feel a little bit rusty...
Please come to our office hours if you have difficulty in solving these problems.

1) Graph $y=8-4 x$.
2) Derivatives: find $\frac{d y}{d x}$.
a) $y=4 x^{3}$ [First derivative is $12 x^{2}$]
b) $y=a x^{b}\left[\right.$ First derivative is $\left.a b x^{b-1}\right]$
c) $y=x^{-1}\left[\right.$ First derivative is $\left.-1 / x^{2}\right]$
d) $y=\ln (x)[$ First derivative is $1 / x]$
e) $y=2 x^{2} \ln (x)[$ First derivative is $4 x(\ln (x))+2 x]$
f) $y=4 \quad$ [First derivative is 0$]$
3) If q is the quantity and the total cost is represented by TC $=a-b q^{3}+2 c q$, what is
a) the marginal cost (MC) ? $\left[\mathrm{MC}=-3 \mathrm{bq}^{2}+2 \mathrm{c}\right]$
b) the average cost (AC) ? $\quad\left[\mathrm{AC}=\mathrm{a} / \mathrm{q}-\mathrm{bq}^{2}+2 \mathrm{c}\right]$
4) What value of b maximizes the following function? What is the maximum value of the function?
$\begin{array}{ll}a=-b^{2}+4 b & \begin{array}{l}\text { [First derivative is }-2 b+4, b=2 \text { when the first derivative is equal to } \\ 0 ; \text { second derivative is }-2<0, \text { so } b=2 \text { at maximum. There, } a=4 .]\end{array}\end{array}$
5) Consider the line $p=6-2 q$.
a) What is the p -intercept? $\quad[\mathrm{p}=6]$
b) What is the q -intercept? $[\mathrm{q}=3]$
c) What is the area under the line (and above the q axis)? Evaluate it geometrically, using the formula for the area of a triangle. [9]
d) Aside from the geometric way, we can calculate the area using integration. What is $\int_{0}^{3} 6-2 q \mathrm{~d} q ?\left[6 \mathrm{q}-\mathrm{q}^{2}=9\right]$
Why is that the integral we use in this case?
