ARE 251/Econ 270A, Fall 2006 Elisabeth Sadoulet

Household Models

I. The Basic Separable Household Model (Singh, I., Squire, L., and Strauss, J. (eds.) *Agricultural Household Models*. Chapters 1 and 2. Baltimore, MD: The Johns Hopkins University Press, 1986)

Two producer goods: food (*a*) and cash crops (*c*) Two factors of production: labor (*l*) and other variable inputs (*x*) Three consumer goods: food (*a*), manufactured goods (*m*), and leisure (*l*)

Definitions:

- q_a production of food crop with price p_a
- q_c production of cash crop with price p_c
- q_l labor used in farm production with wage p_l
- q_x other variable inputs with price p_x
- z^q fixed factors in production and producer characteristics
- c_a consumption of food product with price p_a
- c_m consumption of manufactured good with price p_m
- c_l consumption of leisure with price p_l
- z^h household characteristics in consumption
- l^s time worked
- E total time endowment
- p_l wage on labor market
- y income
- S exogenous cash transfers

1.1. The structural model

Assume: perfect markets for all products and factors, including food and family labor. Household optimization problem:

$$\max_{q_a,q_c,q_l,q_x,c_a,c_m,c_l} U(c_a,c_m,c_l;z^h)$$

s.t.

(1) $g(q_a, q_c, q_l, q_x; z^q) = 0$, production function

(2) $p_xq_x + p_mc_m = p_a(q_a - c_a) + p_cq_c + p_l(l^s - q_l) + S$, liquidity constraint

(3)
$$l^{s} + c_{l} = E$$
, time constraint

Substituting l^{*} in (2) for its value in (3) gives the full income constraint:

$$p_a c_a + p_m c_m + p_l c_l = (p_a q_a + p_c q_c - p_l q_l - p_x q_x) + p_l E + S$$

= $\Pi + p_l E + S$
where $\Pi = p_a q_a + p_c q_c - p_x q_x - p_l q_l$, restricted profit in agriculture.

The household optimization problem can be rewritten as:

 $\max_{q_a,q_c,q_l,q_x,c_a,c_m,c_l} = U + \phi g + \lambda \left[\Pi - p'c + p_l E + S \right]$

Hholds_handt_2006

Assume interior solution with q and c > 0. First order conditions:

(4)
$$\frac{\partial W}{\partial q_i}$$
: $\phi g'_i = -\lambda p_i, \ i = a, c$ (producer goods)
(5) $\frac{\partial W}{\partial q_i}$: $\phi g'_i = \lambda p_i, \ j = l, x$ (factors)

(6)
$$\frac{\partial q_j}{\partial \phi}$$
: $g = 0$ (technology constraint)

(7)
$$\frac{\partial W}{\partial c_k}$$
: $U'_k = \lambda p_k$, $k = a, m, l$ (consumption goods)
(8) $\frac{\partial W}{\partial \lambda}$: $p'c - (\Pi + p_l E + S) = 0$ (full income constraint)

This indicates recursivity, called separability or separation, i.e.:

Equations (4)–(6) \Rightarrow optimum levels of outputs, inputs, and maximum profit Π^* . Equations (7) and (8) identical to a pure consumer problem.

Production decisions influence consumption only through profit Π^* .

1.2. Recursive solution: the reduced form

First step: Solve the producer problem for maximum agricultural profit:

 $\max_{q_a,q_c,q_l,q_x} \Pi = p_a q_a + p_c q_c - p_x q_x - p_l q_l, \quad s.t. g(q_a,q_c,q_l,q_x;z^q) = 0.$ This gives the reduced form: Supply functions $q_i = q_i (p_a, p_c, p_l, p_x; z^q), i = a, c$ Factor demands $q_j = q_j (p_a, p_c, p_l, p_x; z^q), j = l, x$ Maximum restricted profit $\Pi^* = \Pi^*(p_a, p_c, p_l, p_x; z^q)$

Second step: Solve the consumer problem for maximum utility given the level of profit Π^* achieved in production

$$\begin{array}{l} \underset{c_{a},c_{m},c_{l}}{\operatorname{Max}} \quad U(c_{a},c_{m},c_{l};z^{h}) \\ \text{s.t.} \qquad p_{a}c_{a}+p_{m}c_{m}+p_{l}c_{l}=\Pi^{*}+p_{l}E+S \text{, full income constraint} \\ \text{This gives the reduced form:} \\ \text{Final demand functions:} \qquad c_{k}=c_{k}\left(p_{a},p_{m},p_{l},y^{*};z^{h}\right), \ k=a,m,l \end{array}$$

where
$$y^* = \Pi^* (p_a, p_c, p_l, p_x; z^q) + p_l E + S.$$

Hence:
$$c_k = c_k (p_a, p_c, p_l, p_x, p_m; z^q, z^h, E, S)$$

Note: under separability, the prices of consumption goods not produced at home (p_m) and the z^h, E , and S variables do not influence production decisions. This will provide a test of separability.

II. Household model with missing markets for food and labor

(de Janvry, A., Fafchamps, M., and Sadoulet, E. "Peasant Household Behavior with Missing Markets: Some Paradoxes Explained." *Economic Journal*, Vol. 101, No. 409 (November, 1991), pp. 1400-1417.)

2.1. The structural model

Market failures for food (a) and labor (l): non-tradables

Perfect markets for cash crops (c), other inputs (x), and manufactured goods (m): tradables with exogenous idiosyncratic prices:

 p_c farm gate sale price of cash crop

 p_x, p_m farm gate purchase prices of other inputs and manufactured goods

$$\begin{array}{l} \underset{q_{a},q_{c},q_{l},q_{x},c_{a},c_{m},c_{l}}{\text{Max}} U(c_{a},c_{m},c_{l};z^{h}) \\ \text{s.t.} \\ p_{x}q_{x} + p_{m}c_{m} = p_{c}q_{c} + S \\ g(q_{a},q_{c},q_{l},q_{x};z^{q}) = 0 \end{array} \qquad \text{cash income constraint,} \\ g(q_{a},q_{c},q_{l},q_{x};z^{q}) = 0 \\ p_{i} = \overline{p}_{i} \quad \text{for } i = c, x,m \\ \begin{cases} c_{a} = q_{a} \\ c_{l} = E - q_{l} \end{cases} \qquad \text{exogenous effective prices for tradables} \\ \text{equilibrium conditions for non-tradables} \end{cases}$$

2.2. The first order conditions

 $\max_{\substack{q_a,q_c,q_l,q_x,c_a,c_m,c_l}} W = \left[U + \lambda \left(p_c q_c + S - p_x q_x - p_m c_m \right) + \phi g + \mu_a (q_a - c_a) + \mu_l (E - q_l - c_l) \right]$ First-order conditions:

$\frac{\partial W}{\partial q_c}: \phi g'_c = -\lambda p_c; \frac{\partial W}{\partial q_x}: \phi g'_x = \lambda p_x$	(tradables)
$\frac{\partial W}{\partial q_a}: \ \phi g'_a = -\mu_a; \ \frac{\partial W}{\partial q_l}: \ \phi g'_l = \mu_l$	(non-tradables)
$\frac{\partial W}{\partial c_m}: \ u'_m = \lambda p_m$	(tradables)
$\frac{\partial W}{\partial c_k}: \ u'_k = \mu_k, k = a, l$	(non-tradables)
$\frac{\partial \hat{W}}{\partial \phi}: g = 0$	(technology constraint)
$\frac{\partial W}{\partial \lambda}: \ p_x q_x + p_m c_m = p_c q_c + S$	(cash income constraint)
$\frac{\partial W}{\partial \mu_a}: \ c_a = q_a$	(equilibrium condition for food)
$\frac{\partial W}{\partial \mu_l}: \ c_l = E - q_l$	(equilibrium condition for labor).

Define decision prices p^* as follows:

$p_a^* = \mu_a / \lambda, p_l^* = \mu_l / \lambda$	shadow prices for the nontradables a and l					
$p_i^* = \overline{p}_i$	effective market prices for the tradables <i>c</i> , <i>x</i> , and <i>m</i> .					

.....

Combining the last three conditions gives the full income constraint:

$$p_{x}q_{x} + p_{m}c_{m} + p_{a}^{*}c_{a} + p_{l}^{*}c_{l} = p_{c}q_{c} + p_{a}^{*}q_{a} + p_{l}^{*}(E-q_{l}) + S$$

By analogy with the first-order conditions for the separable model in 1.1, the first order conditions for the non-separable model can be rewritten using decision prices p^* as:

$\phi g'_i = -\lambda p^*_i, \ i = c, a$	products
$\phi g'_j = \lambda p^*_j, \ j = l, x$	factors
g = 0	technology

 $u'_{k} = \lambda p^{*}_{k}, \ k = m, a, l \qquad \text{consumer goods}$ $\sum_{k=a,m,l} p^{*}_{k} c_{k} = \sum_{i=a,c} p^{*}_{i} q_{i} - \sum_{j=l,x} p^{*}_{j} q_{j} + p^{*}_{l} E + S \qquad \text{full income constraint}$

 $\begin{cases} c_a = q_a \\ c_l = E - q_l \end{cases}$ equilibrium conditions for non-tradables

2.3. The household's decision structure (semi-structural form)

Production decisions from profit maximization: supply and derived demand:

.

$$q_i = q_i (p_a^*, p_c^*, p_l^*, p_x^*; z^q), \ i = a, c, l, x$$

Profit and full income:

$$\Pi^{*} = \sum_{i=a,c} p_{i}^{*} q_{i} - \sum_{j=l,x} p_{j}^{*} q_{j}$$
$$y^{*} = \Pi^{*} + p_{i}^{*} E + S.$$

Consumption from utility maximization (with prices p^* and income y^*)

$$c_k = c_k \left(p_a^*, p_m, p_l^*, y^*; z^b \right), \ k = a, m, l$$

Equilibrium conditions

$$c_{a}(p^{*}, y^{*}; z^{h}) = q_{a}(p^{*}_{a}, p^{*}_{c}, p^{*}_{l}, p^{*}_{x}; z^{q})$$

$$c_{l}(p^{*}, y^{*}; z^{h}) = E - q_{l}(p^{*}_{a}, p^{*}_{c}, p^{*}_{l}, p^{*}_{x}; z^{q})$$
for non – tradables

Solving these equilibrium conditions for the shadow prices of non-tradables:

$$p_j^* = p_j^* (p_i, p_x, p_m; z^q, z^b, E, S), \quad j = a, l$$

The p^* for nontradables are function of the prices of tradable consumption goods and of z^q, z^h, E , and S.

The semi-structural solution of the model is thus:

$$q_{i} = q_{i} \left(p_{a}^{*}, p_{c}, p_{l}^{*}, p_{x}; z^{q} \right), \ i = a, c, l, x$$
$$c_{k} = c_{k} \left(p_{a}^{*}, p_{m}, p_{l}^{*}, y^{*}; z^{b} \right), \ k = a, m, l$$

Hholds_handt_2006

and
$$p_j^* = p_j^* (p_c, p_x, p_m; z^q, z^b, E, S), \quad j = a, l$$

Hence, household characteristics in consumption, z^{b} , *E*, and *S* and consumption prices, p_{m} , affect production decisions, as opposed to the separable model. The system would be recursive if there were only tradables.

2.4. The reduced form

Substituting the expression just derived for the shadow price p_j^* into the production and consumption decisions give:

$$q_{i} = q_{i} \left(p_{c}, p_{x}, p_{m}; z^{q}, z^{b}, E, S \right), \ i = a, c, l, x$$
$$c_{k} = c_{k} \left(p_{c}, p_{x}, p_{m}; z^{q}, z^{b}, E, S \right), \ k = a, m, l$$

2.5. Price elasticities (E)

Supply response

$$E^{G}(q_{i}/p_{j}) = E(q_{i}/p_{j}) + E(q_{i}/p_{a}^{*})E(p_{a}^{*}/p_{j}) + E(q_{i}/p_{l}^{*})E(p_{l}^{*}/p_{j}), \quad i = a,c; j = c.$$

where E^G is the global elasticity.

Consumption

$$E^{G}(c_{k}/p_{j}) = E^{H}(c_{k}/p_{j}) + E^{H}(c_{k}/p_{a}^{*})E(p_{a}^{*}/p_{j}) + E^{H}(c_{k}/p_{l}^{*})E(p_{l}^{*}/p_{j}), \ k = m, l; j = m$$

where E^{H} is the elasticity in the separable household model with endogenous income effects:

$$E^{H}(c_{k}/p_{k}) = E(c_{k}/p_{k}) + E(c_{k}/y^{*})E(y^{*}/p_{k}), \quad k = a, m.$$

III. Examples of empirical analyses:

- Benjamin, D. "Household Composition, Labor Markets, and Labor Demand: Testing for Separation in Agricultural Household Models." *Econometrica*, Vol. 60, No. 2 (1992), pp. 287-322.
- Jacoby, Hanan. "Shadow Wages and Peasant Family Labour Supply: An Econometric Application to the Peruvian Sierra." *Review of Economic Studies*, Vol. 60 (1993), pp. 903-921.
- Bowlus, Audra J. and Terry Sicular, "Moving toward markets? Labor allocation in rural China," Journal of Development Economics, Vol. 71, No. 2 (2003), pp. 561-583
- Strauss, J. 1986. "Does better nutrition raise farm productivity." *Journal of Political Economy* 94(2), pp. 297-320.
- Key, Nigel, Elisabeth Sadoulet, and Alain de Janvry. "Transactions Costs and Agricultural Household Supply Response", *American Journal of Agricultural Economics*, Vol. 82, No. 2, (May 2000), pp 245-59.

						2.2. II	mpact of a	10 percei	nt					2.4. In	npact of a	10 percent
		2.1. Impa	act of a 10	percent			increase i			2.3. I	mpact of a	a monetary	/	increase in productivity		
	inc	crease in th	cash crops	8	price of manufactured goods			head tax				of food production				
	Market failures					Market failures			Market failures				Market failures			
	Food				Food	Food				Food						
	and								and				and			
	labor	Labor	Food	None	labor	Labor	Food	None	labor	Labor	Food	None	labor	Labor	Food	None
	Percentage changes over base				Percentage changes over base			Percentage changes over base				Percentage changes over base				
Consumption																
Food	-0.5	3.0	-0.8	2.1	1.1	1.8	1.0	1.7	-4.9	-9.1	-4.3	-7.0	8.8	4.5	8.8	3.0
Leisure	0.4	0.6	4.0	2.7	0.2	0.3	0.9	0.6	-3.9	-4.2	-10.2	-9.0	0.8	0.5	1.3	3.9
Manufactured good	15.8	7.7	9.5	5.6	-12.8	-14.5	-14.0	-14.8	-33.6	-23.6	-22.3	-18.7	1.0	11.4	0.2	8.0
Production																
Food crop	-0.5	-6.4	-0.8	-5.4	1.1	-0.2	-1.0		-4.9	2.3	-4.3		8.8	16.4	8.8	18.0
Cash crop	1.8	9.3	5.5	9.9	-1.7	-0.1	-1.0		10.7	1.7	4.1		0.7	-8.8	1.2	-7.7
Fertilizer	4.7	2.8	3.1	2.2	0.5	0.1	0.2		-3.7	-1.4	-0.8		0.0	2.4	-0.2	1.5
Labor	-0.6	-1.0	3.9	1.7	-0.4	-0.4	0.5		5.8	6.3	-2.0		-1.2	-0.7	-0.6	3.7
Prices																
Food crop	8.8	^a	5.8		1.9		1.3		-10.7		-5.4		-11.0		-11.4	
Cash crop	10.0	10.0	10.0	10.0												
Fertilizer	0.0	4.5			1.7	0.7			16.4	10.5			1.0	.		
Labor Manufactured good	9.3	4.5			1.7 10.0	0.7 10.0	10.0	10.0	-16.4	-10.5			1.3	7.4		
Net labor supply ^b			-10.6	-6.1			-1.7	-0.8			15.2	11.7			-1.7	-9.7
Marketed surplus of food ^b		-10.1		-7.9		-2.0		-1.5		11.2		7.0		10.3		12.7

Simulation Results

^aBlanks indicate no change relative to base value. ^bNet labor supply in percent of household labor effort, and marketed surplus in percent of food production. Source: A. de Janvry, M. Fafchamps, and E. Sadoulet, "Peasant Household Behavior with Missing Markets: Some Paradox Explained", *Economic Journal*, Vol. 101, No. 409 (November 1991), pp. 1400-17.