Elisabeth Sadoulet

ARE 251/Econ 270A Fall 2004

Micro-finance institutions

1. MFIs and their borrowers

1.1. The principles of group lending

- Grameen Bank
- Other MFIs
- The basic rules of micro-finance for the poor:
 - small loans at start and steep increase in loan size
 - no physical collateral
 - intensive screening and monitoring by agents
- The basic rules of group lending: same plus:
 - self-selection in groups (SS)
 - joint liability (JL)
- The usual arguments for group lending:
 - SS + JL \Rightarrow eliminate bad borrowers (AS)
 - SS among people that know each other \Rightarrow Social sanctions for enforcement \Rightarrow limit MH in willingness to pay and in choice of projects.

Both allow to maintain access to the poor and high repayment rates

1.2. The lending problem

• Moral hazard in repayment:

Could be curtailed by either collateral or dynamic incentives. Hence not such an issue. The real problem is the need for insurance.

Investment of 1 unit \Rightarrow *X* with probability *p* and 0 with probability (1 - p). Assume no other resources to repay (hence necessary limited liability). Repayment *r* (includes principal).

				Net return	
			Returns:	Collateral	Future
(1 <i>-p</i>)	Fails	Default	0	-C	0
p^{-}	Success	Repay	X-r	X - r	X - r + F
-		Unwilling	X	X - C	X

MH eliminated if C > r (but then limited liability is de facto cancelled) or F > r. But this does not address the fundamental risk of a bad return, and the consequent loss of access to credit. Limited liability and adverse selection: Would need differentiated contracts. With asymmetric information, cross subsidization of risky borrowers by safe borrowers. Problem to keep safe borrowers.

2 types of individual

$$R X_R p_R \mu$$
 (μ proportion in population)
 $S X_S p_S (1-\mu)$
 $p_S > p_R, X_S < X_R$.

Bank: 0 profit, cost of money : ρ (including principal)

- First best under perfect information is interest rate discrimination: $r_i = \rho / p_i$,

- Under asymmetric information: pooling \Rightarrow interest rate at an intermediate level.

$$\mu p_R r + (1 - \mu) p_S r = \rho$$

$$\Rightarrow r = \frac{\rho}{\mu p_R + (1 - \mu) p_S}$$
Hence $r_S < r < r_R$

Cross-subsidization of risky loans by safe loans. Participation of borrower *i* for $p_i X_i \ge p_i r$

If projects are just profitable, $p_S X_S = p_R X_R = \rho$, then S borrowers are driven out. (Lemons)

• Exercise: For reference, find an efficient separating contract.

1.3. Joint liability with a unique contract: produces interest rate discrimination, which improves efficiency and the pool of borrowers (Ghatak, EJ 2000)

 JL and SS induce assortative matching (homogenous groups)
 JL: payment of own share *r* if successful, and part of other's share *c* if other fails. Utility for *i* associated with *j*:

$$U_{ij} = p_i X_i - p_i \left(r + \left(1 - p_j \right) c \right)$$

Loss to *S* for accepting *R*: $T_S = p_S (p_S - p_R)c$ Gain to *R* for teaming with *S*: $B_R = p_R (p_S - p_R)c < T_S$

Hence heterogenous groups are not possible, since R cannot compensate S. Notice: This model has no cost to loosing access to credit. Show that heterogenous groups are possible if there is future benefit in access to credit (Sadoulet, 2000) • Hence interest rate discrimination:

Payment by *i*: $P_i = p_i \left(r + (1 - p_i) c \right)$ Difference: $P_R - P_S = \left(p_S - p_R \right) \left(\left(p_S + p_R - 1 \right) c - r \right)$ increases with *c*. As *c* increases, efficiency in allocation of resources improves.

 P_R however remains lower than P_S for $c < \frac{r}{p_S + p_R - 1}$. Hence usually cannot reach full efficiency.

• Equilibrium contract:

Zero profit for bank: $\mu p_R \left(r + (1 - p_R) c \right) + (1 - \mu) p_S \left(r + (1 - p_S) c \right) = \rho$ $\Rightarrow r = \frac{\rho}{\overline{p}} + c \left(\frac{\mu p_R^2 + (1 - \mu) p_S^2}{\overline{p}} - 1 \right), \text{ where } \overline{p} = \mu p_R + (1 - \mu) p_S$

• Pool of borrowers:

Payment by *i*: $P_i = \rho \frac{p_i}{\overline{p}} - c \frac{p_S p_R}{\overline{p}} (p_i - \overline{p})$ Participation constraint : $P_i \le p_i X_i$

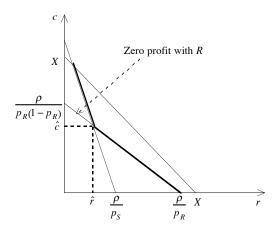
Hence *c* lowers the participation constraint for *S* and raises it for $R \Rightarrow$ improves efficiency in allocation of funds.

1.4. Joint liability as a screening device, with a menu of contracts (Ghatak, EJ 2000)

• The contract:

Bank offers a menu $\{(r_s, c_s), (r_R, c_R)\}$ $U_{ij}(k) = p_i X_i - p_i (r_k + (1 - p_j)c_k)$, utility to *i*, associated with *j*, in contract (r_k, c_k) Constraints:

- zero-profit on each type of loan: $p_i(r_i + (1 p_i)c_i) = \rho$
- participation constraint: $U_{ii}(i) = p_i X_i p_i (r_i + (1 p_i)c_i) \ge 0$
- incentive compatibility: $U_{ii}(i) \ge U_{ii}(j)$
- limited liability constraint: $r_i + c_i \le X_i$
- Incentive compatibility constraint \Rightarrow assortative matching: $U_{SS}(S) - U_{SR}(S) > U_{RS}(S) - U_{RR}(R)$


• Optimal contract:

Let (\hat{r}, \hat{c}) be the efficient pooling contract solution of 1.3 above:

$$\hat{c} = \frac{\hat{r}}{p_S + p_R - 1} \text{ and } \hat{r} \frac{p_S p_R}{p_S + p_R - 1} = \rho \text{, (which satisfy: } p_i \left(\hat{r} + \left(1 - p_i \right) \hat{c} \right) = \rho \text{)}$$

Then there exists a separating contract $\{(r_S, c_S), (r_R, c_R)\}$, in which: $r_S < \hat{r} < r_R$ and $c_R < \hat{c} < c_S$

Notice, however, that in this contract, $\hat{c} > \hat{r}$, and henceforth $c_S > r_S$

1.5. Joint liability induces the choice of safer projects (Ghatak & Guinnane, JDE 99)

One type of borrower : *X* with probability *p*, and 0 with probability (1-*p*) Borrower/agent can choose *p*, at cost $\frac{1}{2}\gamma p^2$ Bank/principal sets the interest rate for 0 profit.

• Individual loan without limited liability (first best):

 $p = \arg \max \left(pX - r - \frac{1}{2}\gamma p^2 \right) = \frac{X}{\gamma}$ and bank sets $r = \rho$

• Individual loan with limited liability:

$$p = \arg \max \left(p \left(X - r \right) - \frac{1}{2} \gamma p^2 \right) = \frac{X - r}{\gamma} < \frac{X}{\gamma}$$

Bank's zero profit: $pr = \rho \implies p^*$ solution of $\gamma p^2 - pX + \rho = 0$.

• Non-cooperative group playing Nash:

Reaction function:

$$p_{i} = \arg \max \left(p_{i} \left(X - r \right) - p_{i} \left(1 - p_{j} \right) c - \frac{1}{2} \gamma p_{i}^{2} \right) = \frac{X - r - c}{\gamma} + p_{j} \frac{c}{\gamma}$$
Nash non-coop solution: $p_{i} = \frac{X - r - c}{\gamma - c}$
Bank's zero profit: $pr + p \left(1 - p \right) c = \rho$

$$\Rightarrow p^{*} \text{ solution of } \gamma p^{2} - pX + \rho = 0 \text{, same as individual.}$$

• Cooperative group:

Joint maximization:

$$p_i = \arg \max \left(p \left(X - r \right) - p \left(1 - p \right) c - \frac{1}{2} \gamma p^2 \right) = \frac{X - r - c}{\gamma - 2c}$$

Bank's zero profit: $pr + p(1-p)c = \rho$ $\Rightarrow p^{**}$ solution of $(\gamma - c)p^2 - pX + \rho = 0$.

 $p^{**} > p^*$ and repayment rate of each individual is higher than under individual loans.

<u>Conclusion</u>: Group credit creates a mechanism for mutual insurance \Rightarrow improves efficiency in resource allocation towards safer borrowers and safer projects. However: transfers insurance from (risk-neutral) Bank to (risk-averse) borrowers

References:

Ghatak, M. "Screening by the Company you Keep: Joint Liability Lending and the Peer Monitoring Effect." *Economic Journal*, 2000 July, V110 N465:601-31.

Ghatak, M; Guinnane, TW. "The economics of lending with joint liability: theory and practice." *Journal of Development Economics* 1999 OCT, V60 N1:195-228.