
Fall2008 ARE211

Final Exam - Answer key

Problem 1 (Real Analysis) [36 points]:

A) [6 points] Show that if {xn} is a convergent sequence, then for any N , the sequence

given by the average yn =
xn+1+xn+2+...+xn+N

N converges to the same limit. Is it possible for
the sequence {yn} to converge even if {xn} does not?

Ans: Suppose {xn} converges to x. Then yn converges to N x
N = x. Now let xn = −1n and let

N = 2. Clearly {xn} = {−1, 1,−1, 1, ...} does not converge but yn = {0, 0, 0, 0, ...} does.

B) [6 points] Show that if K is a compact subset of R and F is a closed subset of R, then
K ∩ F is compact.

Ans: Since K is compact, then there exists b
¯
, b̄ ∈ R such that b

¯
is a lower bound, and b̄ is an

upper bound, for K. Since K ∩ F ⊂ K, b
¯

and b̄ are necessarily lower and upper bounds for
K ∩ F as well. Hence K ∩ F is bounded. Moreover the intersection of closed sets is closed, so
K ∩ F is closed. K ∩ F is thus closed and bounded, and hence compact.

C) [7 points] Prove that every finite set in R is compact.

Ans: Let X be a finite subset of R. Since X is finite, it has a maximum and a minimum. The
maximum is an upper bound for X; the minimum is a lower bound for X; hence X is bounded.
For each distinct pair x, y ∈ X, let ǫx,y denote the euclidean distance between x and y. Since
X is finite, {ǫx,y : x, y ∈ X} is a finite set of positive numbers. Let ǫ

¯
> 0 be the minimum of

this set. Now note that no point in X is an accumulation point, since for x ∈ X, y ∈ B(x, ǫ
¯
/2)

implies y = x. A set is closed if it contains all of its accumulation points. Since X has no
accumulation points, this requirement is satisfied vacuously.

D) [7 points] Let {xn}, {yn} and {zn} be sequences in R. Show that if xn ≤ yn ≤ zn for all
n, and if lim{xn} = lim{zn} = ℓ then lim{yn} = ℓ as well.

Ans: Fix ǫ > 0 and N ∈ N such that for all n > N , xn, zn ∈ B(ℓ, ǫ). Fix n > N . Since yn ≤ zn,
yn < ℓ + ǫ. Since yn ≥ xn, yn > ℓ − ǫ. Hence yn ∈ B(ℓ, ǫ). We have established then that for
all n > N , yn ∈ B(ℓ, ǫ). Hence {yn} converges to ℓ.

E) [10 points] Show that the empty set and R
n are both open and closed in R

n. Prove that no
other subsets of the R

n can be both open and closed.

Ans: A set X is open if for any point x ∈ X, there exists ǫ > 0 and a ball B(x, ǫ|X) ⊂ X.
Since there exists no x contained in the empty set, this definition is satisfied trivially for that set.
Hence the empty set is open in R

n. Now consider R
n. For any point x ∈ R

n and any ǫ > 0,
the ball B(x, ǫ, Rn) is necessarily contained in R

n. Hence R
n is open in R

n. A set is closed if
its complement is open. The empty set and R

n are complements of each other in R
n. Hence

they are both closed as well. Now consider a set X ∈ R
n which is neither empty or R

n itself, i.e.
both X and Xc (the complement of X) are nonempty. Let x be an boundary point of X, i.e.,
a point x such that for all ǫ > 0, there exists y, z ∈ B(x, ǫ|Rn) such that y ∈ X and z ∈ Xc.
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If X is closed, then x ∈ X. But in this case, there does not exist an open ball around x that is
contained in X. So X cannot be open.

Problem 2 (Linear Algebra) [36 points]:

A) [3 points] Give necessary and sufficient conditions for an n×m matrix A to be invertible.

Ans: n = m and det(A) 6= 0.

B) [3 points] Verify that v1 =

[

0.5
√

3/4

]

is a unit eigenvector of the matrix A =

[

5 −
√

3

−
√

3 3

]

.

Ans: First note that ||v1|| =
√

0.25 + 0.75 = 1 so that v1 is indeed a unit vector. Second

Av = [1,
√

3] = 2[0.5,
√

3/4], so that Av = λv, for λ = 2.

C) [3 points] What is the eigenvalue corresponding to v1. Verify.

Ans: 2. I just verified this.

D) [3 points] Identify a second, distinct unit eigenvector v2 of the matrix A.

Ans: Since there necessarily exist pairwise orthogonal eigen-vectors, we can solve for
[

0.5
√

3/4
]

·
[

1
x

]

= 0. i.e., x = 0.5
√

4/3 = −
√

1/3. Now

[

1

−
√

1/3

]

is an eigenvector

but it is not a unit eigenvector. To get the corresponding unit eigenvector, we divide by the

norm, i.e.,
√

4/3 to obtain v2 =

[
√

3/4

−
√

1/4

]

=

[√
3/2

−1/2

]

.

E) [3 points] What is the eigenvalue corresponding to v2. Verify.

Ans: The second eigenalue is 6. To verify this, note that Av2 =

[

6
√

3/2
−3

]

= 6

[√
3/2

−1/2

]

= 6v2.

F) [3 points] What can you say about the definiteness or otherwise of A?

Ans: Since both eigenvalues are positive, the matrix is positive definite.

G) [5 points] Prove that a 2 × 2 matrix A that has less than full rank is semi-definite.

Ans: A 2× 2 matrix that has less than full rank either has two zero eigenvalues or one non-zero
eigenvalue. In the former case, x′Ax = 0, for all x so that the matrix is both positive and
negative semi-definite. In the latter case, if the non-zero eigenvalue is positive, then x′Ax ≥ 0,
for all x, i.e., the matrix is positive semi-definite; if the non-zero eigenvalue is negative, then
x′Ax ≤ 0, for all x, i.e., the matrix is negative semi-definite.

H) [3 points] Now construct a matrix B with the following properties:

• all of its elements are non-zero
• it is symmetric
• all but one of its elements are equal to the corresponding elements of A
• it is semi-definite
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Ans: B =

[

5 −
√

3

−
√

3 3/5

]

. The first three of the required properties are obviously satisfied. To

check that it’s semi-definite, note that its determinant is 3 − 3 = 0, so that it has less than full
rank. From part G), the matrix is therefore semi-definite.

I) [5 points] Is the matrix you have constructed positive or negative semi-definite?

Ans: It’s positive definite. To verify this note that its one non-zero eigenvector,

[

5

−
√

3

]

has a

positive eigenvalue; For ease of computation, consider the non-unit eigenvector v =

[

1

−
√

3/5

]

and note that Bv =

[

28/5

−
√

3 × 28/5

]

= 28/5

[

1

−
√

3/5

]

. Thus the one non-zero eigenvalue is

positive.

J) [5 points] For n > 2, an n×n matrix that has less than full rank need not be semi-definite.
Explain why not.

Ans: For n > 2, a matrix can have at least one eigenvalue, at least one positive eigenvalue and
at least one negative eigenvalue. In this case it will be indefinite.

Problem 3 (Calculus) [36 points]:

You operate a factory that makes cars according to a production function, F (K,L) = 3K1/3L2/3.

A) [5 points] How many cars do you produce when your input mix is (27, 125)?

Ans: F (27, 125) = 3 × 3 × 25 = 225.

For the next four parts, use the answer you obtained in part A).

B) [5 points] Use the differential to compute a first order approximation to the number of
cars you would produce if your input mix input were (36, 130)?

Ans: ▽F (K,L) is F (K,L)/3 × (1/K, 2/L). So

F (36, 130) ≈ F (27, 125) + ▽F (27, 125) · (9, 5) = 225 + 75 × (1/27, 2/125) · (9, 5)
= 225 + 75 × (1/3 + 2/25) = 225 + 25 + 6 = 256

C) [5 points] What is the directional derivative of F (27, 125) in the direction (9, 5)?
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Ans:

F9,5 = ▽ F (27, 125) · (9/
√

81 + 25, 5/
√

81 + 25) = 75 × (1/27 + 2/125) · (9, 5)/
√

81 + 25

= 75 × (1/3 + 10/125)/
√

106

= (25 + 6) /
√

106 = 31/
√

106

D) [5 points] Using the answer you obtained in part C), compute a first order approximation to
the number of cars you would produce if your input mix input were (36, 130)?

Ans:

F (30, 130) ≈ F (27, 125) + F9,5||(9, 5)|| = 225 + 31/
√

106 ×
√

106 = 256

E) [6 points] Compute a second order approximation to the number of cars you would produce
if your input mix were (36, 130)? (Since you don’t have calculators, we’ll give you full credit for
this part even if you don’t complete the numerical computation. But you should go up to the
point at which a calculator would be necessary.)

Ans: The Hessian of F is H = 2/9F

[

−1/K2 1/(LK)
1/(LK) −1/L2

]

. Evaluated at (27, 125) the Hessian

is 50. The second order term in the Taylor expansion is 0.5[9, 5] × H × [9, 5]′ = −4.30. Thus,
our second order approximation is 256 − 2.15 = 253.85.

F) [5 points] In what proportions should you add K and L to (27, 125) if you want to increase
production most rapidly?

Ans: Add in the proportions given by the gradient, i.e., (1/27, 2/125)/(1/27 + 2/125).

Your car company is unprofitable, so, in order to receive a government bailout, you must implement
a new technology. Under this technology, your production inputs, K and L, are functions of time,

t, and the interest rate, r. Specifically, K(t, r) = 9 t2

r and L(t, r) = t2 + r (note: your production
function, F , does not change).

G) [5 points] Calculate the rate of change of output with respect to t when t = 10 and
r = 0.1.

Ans: The rate of change is

dF

dt
= F/3(1/K, 2/L) · (2t/r, 2t) = 75 × (1/27, 2/125) · (18, 20)

= 75 × (2/3 + 40/125) = 50 + 24 = 74.
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Figure 1. The constraint set in problem 4

Problem 4 (Kuhn Tucker) [36 points]:

Consider the problem

minx,y − 3(x − 10)(y − 25) + (x − 10)3 s.t. 2x − y = −5, 5x + 2y ≥ 37, x ≥ 0, y ≥ 0.

A) [3 points] Write this problem in the canonical NPP format.

Ans: The problem in canonical NPP format is

max
x,y

3(x − 10)(y − 25) − (x − 10)3 s.t.

2x − y ≤ − 5

y − 2x ≥ 5

−5x − 2y ≤ − 37

−x ≤ 0

−y ≤ 0

B) [3 points] Sketch the constraint set.

Ans: The constraint set is the thick red line in Fig. 1

C) [3 points] State what it means for the constraint qualification to be satisfied in language

that involves no mathematical symbols.

Ans: The constraint qualification is satisfied at a point if the linearized version of the constraint
set is, in a neighborhood of that point, almost identical to the original constraint set.

D) [3 points] What points in the constraint set satisfy the constraint qualification?
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Ans: Since the constraints are already linear, the linearized version of the constraint set is, vac-
uously, identical to the constraint set at every point in the constraint set.

At this point, to facilitate solving the problem, convert it into a problem with one unknown, x,
and one constraint. Call the objective function f .

E) [4 points] Write down the single variable constrained optimization problem.

Ans: A necessary condition for a solution to this problem is that y = 2x+5. Rewriting the objec-
tive function as a function, f , of one variable, x, we have
f(x) = 3(x − 10)(2x − 20) − (x − 10)3 = 6(x − 10)2 − (x − 10)3 = (16 − x)(x − 10)2.
Rewriting the second constraint in terms of x, we have 5x + 2(2x + 5) ≥ 37, or 9x ≥ 27 or
x ≥ 3. Thus the single variable constrained optimization problem can be written as

max
x

6(x − 10)2 − (x − 10)3 s.t. x ≥ 3

F) [4 points] Write down the first and second derivatives of f .

Ans: f ′(x) = 12(x − 10) − 3(x − 10)2 = 3(x − 10)(4 − (x − 10)) = −3(x − 10)(x − 14) =
−3(x2 − 24x + 140) while f ′′(x) = 6(12 − x).

G) [4 points] Using your answer to part F), sketch the constraint set and objective function.

Ans: See Fig. 2. The thick red line is the constraint set.

H) [4 points] What values of x satisfy the KKT conditions for this problem? (Get help from
your graphical answer in part G).)

Ans: Clearly, f ′(x) = 0 at 10 and 14. Moreover, f ′(x) < 0 at the lower bound on the constraint
set x = 3. So all three points satisfy the KKT.

I) [4 points] What point on the constraint set solves the NPP? (Get help from your graphical
answer in part G).)
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Ans: From part F), f ′′(x) is positive at 10 and negative at 14. So x = 10 is not a solution, but
x = 3 and x = 14 are candidates. f(14) = (16−14)(14−10)2 = 32; f(3) = (16−3)(3−10)2 =
637. So 3 solves the NPP.

J) [4 points] Comment on why there are more than one values of x that solve the KKT.

Ans: The second order sufficiency conditions are not globally satisfied: Specifically, f is not
quasi-concave and certainly not pseudo-concave.

Problem 5 (Comparative Statics) [36 points]:

A) Consider the function f(x, y, γ) = xy+γy subject to the following constraints: g(x, y, γ) ≤ 1,
x ≥ 0, y ≥ 0, where g(x, y) = x2 + γy.
(a) [10 points] For γ = 1, solve this maxmization problem using either the Lagrangian

or KKT method.

Ans: The KKT conditions are
[

y x + γ
]

= λ
[

2x γ
]

(1)

We’ll try to solve this assuming that the first constraint is binding and the nonnegativity
constraints are slack. In this case, y = 1 − x2, so that when γ = 1, the KKT conditions
become

[

1 − x2 x + 1
]

= λ
[

2x 1
]

Solving the second equation, we obtain λ = x + 1. Substituting into the first, we get
1 − x2 = (x + 1)2x or 3x2 + 2x − 1 = 0 or (3x − 1)(x + 1) = 0. The unique posi-
tive solution to this equation is x = 1/3, hence y = 8/9, λ = 4/3. Double-checking the
KKT conditions for arithmetic errors, the l.h.s. of (1) is

[

8/9 4/3
]

while the r.h.s. is

4/3
[

2/3 1
]

=
[

8/9 4/3
]

. We’ve established, then, that the KKT conditions are indeed
satisfied at (x∗, y∗, λ∗) = (1/3, 8/9, 4/3).

(b) [10 points] Now, use the envelope theorem to estimate the maximized value of f when
γ = 1.2

Ans: To estimate the required value, we will use a first order Taylor expansion, i..e,

f(x∗(1), y∗(1), 1) + df(x∗(1),y∗(1),1)
dγ dγ, where dγ = 0.2. By the envelope theorem,

df(x∗(γ),y∗(γ),γ)
dγ = ∂f(x∗(γ),y∗(γ)),γ)

∂γ + λ∗(γ)∂g(x∗(γ),y∗(γ)),γ)
∂γ . Now ∂f(·,·,·)

∂γ = ∂g(·,·,·)
∂γ = y,

so that df(x∗(γ),y∗(γ),γ)
dγ = y∗(γ)(1−λ∗(γ)). Plugging in the solution values we have just ob-

tained, we have f(x∗(1), y∗(1), 1) = 8/9 × (1 + 1/3) = 32/27 while
df(x∗(γ),y∗(γ),γ)

dγ = y∗(γ)(1− λ∗(γ)) = 8/9×−1/3 = −8/27. Hence, our first order approx-

imation to f(x∗(1.2), y∗(1.2), 1.2) is 32/27 − 0.2 × 8/27 = 152/135.

B) [16 points] Consider the problem maxx f(x;α) s.t. g(x;α) ≤ b, where x, α, b ∈ R,
f and g are twice continuously differentiable, gx(·, α) > 0. Let x∗(α) denote the solution to
this problem, given α. Use the implicit function theorem to identify sufficient conditions for
x∗(·) to be everywhere strictly increasing in α. Are the conditions you identified necessary
as well? If so prove it. If not, provide a counter-example.
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Ans: The Lagrangian for this problem is L(x, λ;α) = f(x;α)+λ(b− g(x, α)). To determine the
relationship between x and α we apply the implicit function theorem to the zero level set of the
first order conditions of the Lagrangian. We have

Lx = 0 = fx(x, α) − λgx(x, α)

Lλ = 0 = b − g(x, α)

Applying the implicit function theorem to these conditions, we have

[

Lx,x Lx,λ

Lλ,x Lλ,λ

]

=

[

(fxx − λgxx) −gx

−gx 0

]

while

[

Lx,α

Lλ,α

]

=

[

(fx,α − λgx,α)
−gα

]

and

[

dx/ dα
dλ/ dα

]

= −
[

Lx,x Lx,λ

Lλ,x Lλ,λ

]

−1 [

Lx,α

Lλ,α

]

We can now apply Cramer’s rule to obtain

dx/ dα = − det

([

Lx,α Lx,λ

Lλ,α Lλ,λ

])/

det

([

Lx,x Lx,λ

Lλ,x Lλ,λ

])

= − det

([

(fx,α − λgx,α) −gx

−gα 0

])/

−g2
x

= −
(

gxgα/ g2
x

)

= − (gα/ gx)

Since gx is positive by assumption, it follows that dx/ dα will be positive iff gα < 0.

This condition is not necessary however for x∗(·) to be strictly increasing in α. For example, let
f(x;α) = x, and let g(x;α) = x−α3. Our maximization problem is now maxx x s.t. x ≤ b+α3.
Clearly the solution to this problem is globally strictly increasing in α. However, when α = 0,
then gα = 0. Hence the condition gα < 0 is not necessary for x∗(·) to be strictly increasing in α.


