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3. Nonlinear Programming Problems and the Kuhn Tucker conditions (cont)

Key points: Sufficient conditions for a solution to the NPP

• Quasi-concavity and semi-definiteness on a subspace:
dx′Hf(x)dx ≤ 0, for all dx s.t. ▽f(x)dx = 0.

• The principal minor representation of strict quasi-concavity:
∀x, and all k = 1, ..., n, the sign of the k’th leading principal minor of the bordered matrix[

0 ▽f(x)′

▽f(x) Hf(x)

]

. must have the same sign as (−1)k, where the k’th leading principal

minor of this matrix is the det of the top-left (k + 1)× (k + 1) submatrix.
• Understanding the problem of the vanishing gradient
• Defn of pseudo-concavity: f is pseudo-concave if

∀x,x′ ∈ X, if f(x′) > f(x) then ▽ f(x) · (x′ − x) > 0.

• Pseudo-concavity and its relationship to quasi-concavity:
if f is C2 then f is pseudo-concave iff f is quasi-concave and if ▽f(·) = 0 at x implies f(·)
attains a global max at x.

• Sufficient conditions for a solution to the NPP:
If f is pseudo-concave and the gj ’s are quasi-convex, then a sufficient condition for a solution
to the NPP at x̄ ∈ R

m
+ is that there exists a vector λ̄ ∈ R

m
+ such that

▽f(x̄)T = λTJg(x̄)

1
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Figure 1. Three examples where KKT conditions are not sufficient for a soln

and λ̄ has the property that λ̄j = 0, for each j such that gj(x̄) < bj.
• understanding the role of second order conditions in the sufficiency argument

3.2. Sufficient conditions for a solution to an NPP: Preliminaries

So far we’ve only established necessary conditions for a solution to the NPP. Not surprisingly,
without further restrictions, the KTT conditions aren’t sufficient for a solution. They may be
satisfied at a minimum on the constraint set, or else at a local but not global max. In this lecture
we focus on identifying restrictions we can impose on the objective and constraint functions which
ensure that the KKT conditions will be both necessary and sufficient for a solution. A good place to
start, in our search for restrictions is to assume that objective function f is strictly quasi-concave
while the constraint functions are quasi-convex. (Since the lower contour sets of quasi-convex
functions are convex, and the intersection of convex sets is convex, and the constraint set is an
intersection of lower contour sets, the condition that the constraint functions are quasi-convex
implies that the constraint set is a convex set.) This isn’t quite good enough, as we will see.

Figure Fig. 1 illustrates why quasi-concavity of the objective and convexity of the constraint set are
required as restrictions. It also illustrates why they are not enough to ensure that the a solution
to the KKT is sufficient for a solution to the NPP.

• the left panel has a constraint set that isn’t generated by quasi-convex functions; level set
represents a strictly quasi-concave objective function; the KKT conditions are satisfied at a
local tangency, but it’s a local minimum on the north east boundary of the constraint set.
there are points further away that give higher values for the objective function.

• the middle panel has a convex constraint set, but the objective isn’t quasi-concave. In this
case we have a local max on the constraint set that isn’t a solution to the problem. By a
solution we mean a global max on the constraint set.

• the right panel is a more subtle problem. The constraint set, [−1, 1] is convex and compact.
It’s given by g1(x) = x ≤ 1, g2(x) = −x ≤ −1. The objective function f(x) = x3 is strictly
quasi-concave, but at the origin (represented by the big dot, the KKT is satisfied: i.e.,
f ′(x) = 0 = [0, 0] · [1,−1] = 0. But zero is clearly not a solution to the NPP. The problem
in this example is referred to as the “vanishing gradient” problem, because the gradient
vanishes at an x value that is not a global maximum.
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Figure 2. Weakest condition such that solution to KKT =⇒ soln to NNP

These examples make clear that we cannot say that if the objective and constraint functions have
the right “quasi” properties, then satisfying the KKT conditions is sufficient for a max. We will
have to strengthen quasi-concavity just enough so that it excludes function such as f(x) = x3.

3.2.1. First preliminary: the problem of the vanishing gradient. To avoid the problem in the right
panel of Fig. 1, we could simply assume that f has a non-vanishing gradient. But this restriction
throws the baby out with the bath-water: e.g., the problem max x(1 − x) s.t. x ∈ [0, 1] has a
global max at 0.5, at which point the gradient vanishes. More generally, the non-vanishing gradient
assumption excludes any differentiable function that attains a global maximum.

So we need a condition that implies quasi-concavity and also has the property that the gradient
vanishes at x only if x is a global maximizer of the function. The following condition on f—called
pseudoconcavity in S&B (the original name) and M.K.9 in MWG—does just precisely this

∀x,x′ ∈ X, if f(x′) > f(x) then ▽ f(x) · (x′ − x) > 0. (1)

Fig. 2 summarizes the issue: going from the top panel to the bottom, the assumptions on f get
progressively weaker. All but the bottom panel, give us what we want, i.e., a condition that is
sufficient to ensure that a solution to the KKT =⇒ a soln to NNP.

Note that (1) says a couple of things. First, it says that a necessary condition for f(x′) > f(x)
is that dx = (x′ − x) makes an acute angle with the gradient of f . (This looks very much like
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Figure 3. ¬-pseudo-concavity implies ¬-quasi-concavity

quasi-concavity). Second, it implies that

if ▽ f(·) = 0 at x then f(·) attains a global max at x (2)

since if not then there would necessarily exist x,x′ ∈ X s.t. f(x′) > f(x), and ▽f(x) · (x′ − x) =
0 · (x′ − x) = 0, violating (1).

Our next result establishes precisely the relationship between pseudo-concavity and quasi-concavity:

if f is C2 then f is pseudo-concave iff f is quasi-concave and satisfies (2) (3)

To prove the =⇒ direction of (3), we’ll show that (2) together with (¬ quasi-concavity) implies (¬
pseudo-concavity).

Suppose that f is not quasi-concave, i.e., there is an upper contour set that is not convex, i.e.,
∃x′,x′′,x ∈ X such that x = λx′ + (1 − λ)x′′, for some λ ∈ (0, 1) and f(x′′) ≥ f(x′) > f(x). (x
exists by Weierstrass.) Assume w.l.o.g. that f(·) is minimized on [x′,x′′] at x. In this case, by the
KKT necessary conditions, either ▽f(x) = 0 or ▽f(x) is perpendicular at x to the level set of f
corresponding to f(x). In either case, ▽f(x) · (x′ − x) = 0. Since x′ > x this contradicts (1).
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To prove the ⇐ direction of (3), we’ll show that (2) together with (¬ pseudo-concavity) implies (¬
quasi-concavity). Assume that there exists x,x′ such that f(x′) > f(x) but ▽f(x) · (x′ − x) ≤ 0..
Since x is not a global maximizer of f , (2) implies that ▽f(x) 6= 0. By continuity, we can pick
ǫ > 0 sufficiently small that for y = x′ − ǫ▽ f(x), f(y) > f(x). We’ll show that a portion of the
line segment joining y and x does not belong to the upper contour set of f corresponding to f(x),
proving that f is not quasi-concave. We have

▽f(x) · (y− x) = ▽ f(x) · ((x′ − ǫ▽ f(x))− x)

= ▽f(x) · (x′ − x)
︸ ︷︷ ︸

≤0 by assumption

− ǫ || ▽ f(x)||2
︸ ︷︷ ︸

>0

< 0

Let dxǫ = ǫ(y−x). For all ǫ, ▽f(x) ·dxǫ = ǫ▽f(x) · (y−x) < 0.
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Figure 4. pseudo-concavity
rules this out

Now, by Taylor-Young’s theorem, if dx 6= 0 is sufficiently small,
then the sign of (f(x + dxǫ) − f(x)) is the same as the sign of
▽f(x) · dxǫ, i.e., f(x + dxǫ) < f(x). We have now established
that a portion of the line segment joining x and y does not belong
to the upper contour set of f corresponding to f(x). �

Conclude that pseudo-concavity is a much weaker assumption than
the non-vanishing gradient condition, and will give us just enough
to ensure that the KT conditions are not only necessary but suffi-
cient as well. In particular, pseudo-concavity admits the possibil-
ity that our solution to the NPP may be unconstrained, whereas
quasi-concavity plus “the gradient never vanishes” excludes this
possibility.

3.2.2. Second preliminary: quasi-concavity and the Hessian of f . Recall from earlier that a condi-
tion sufficient to ensure that f is strictly (weakly) concave is to require that the Hessian of f be
everywhere negative (semi) definite. Analogously, as we’ve seen in the Calculus section, a sufficient
condition for f is strict (weak) quasi-concavity is a weaker “definiteness subject to constraint” prop-
erty for f . The following result, which is a tiny bit stronger than the one we proved earlier, gives
a sufficient condition for strict quasi concavity. Since we’ve already proved the earlier theorem, we
won’t bother to prove this variant.

Theorem (SQC): A sufficient condition for f : Rn → R to be strictly quasi-concave is that for all x
and all dx such that ▽f(x)′dx = 0, dx′Hf(x)dx < 0.

The following condition on the leading principal minors of the bordered hessian of f is equivalent
to this “definiteness subject to constraint” property. for all x, and all k = 1, ..., n, the sign of the
k’th leading principal minor of the following bordered matrix must have the same sign as (−1)k:
[

0 ▽f(x)′

▽f(x) Hf(x)

]

. where the k’th leading principal minor of this matrix is the determinant of the

top-left (k +1)× (k+1) submatrix. We emphasize yet again that strict quasi-concavity is a global

property, so that this leading principal minor property has to hold for all x in the domain of the
function in order to guarantee strict quasi-concavity.
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Note also that the above condition isn’t necessary for strict quasi-concavity: the usual example,
f(x) = x3, establishes this: f is strictly quasi-concave, but at x̄ = 0, and all dx, ▽f(x̄)dx = 0,
while dx′Hf(x̄)dx = 0.

3.2.3. Third preliminary: “Definiteness subject to constraint” and sufficiency. A sufficient condi-
tion for strict concavity is that for all x, dx′Hf(x̄)dx < 0, and all dx 6= 0. For strict quasi-concavity,
we only require this property of the Hessian holds for vectors that are orthogonal to ▽(x). Simi-
larly, for g to be strictly quasi-convex, we only require that dx′Hg(x̄)dx > 0, and all dx 6= 0 such
that ▽g(x) = 0. These conditions are much weaker, infinitely weaker in fact, than the conditions
for concavity and convexity. However, they are not quite as weak as they look: the condition on
orthogonal vectors also has implications for dx 6= 0’s that are almost orthogonal to ▽(x), and
we need these implications in order to prove that the KT conditions are sufficient for a solution.
Specifically, if ▽f(x̄)dx = 0 implies dx′Hf(x̄)dx < 0, then by continuity, there exists ǫ > 0 such
that for any dx 6= 0,

if | ▽ f(x̄)dx| < ǫ, then dx′Hf(x̄)dx < 0 (4a)

similarly, if ▽g(x̄)dx = 0 implies dx′Hg(x̄)dx > 0, then

if | ▽ g(x̄)dx| < ǫ, then dx′Hg(x̄)dx > 0 (4b)

Why is (4) so important?

a) to show that the KKT conditions give us a solution to the NPP, we need to show that

for any dx, if f(x+ dx)− f(x) > 0 then g(x+ dx)− g(x) > 0 (5)

b) We know that ∀ǫ > 0, ∃δ > 0 s.t. if ||dx|| < δ, then the first order Taylor approximations to
both (f(x + dx) − f(x)) and (g(x + dx) − g(x)) have the same signs as the true differences,
except (possibly) if | cos θdx| < ǫ, where θdx is angle between dx and ▽f . Since ▽f and ▽g

are colinear, it follows that θ is also the angle between dx and ▽g.
c) It follows from point b) that condition (5) is established for all dx such that ||dx|| < δ and θdx ≥

ǫ. Specifically, point b) establishes that (f(x+dx)− f(x)) > 0 implies (g(x+dx)− g(x)) > 0.
d) Now pick ǫ > 0 such that conditions (4) hold and consider dx such that ||dx|| < δ and θdx < ǫ.

There are now two cases to consider
i) ▽f(x)dx ≥ 0: Necessarily ▽g(x)dx ≥ 0. But from (4b), we know that the remainder term

is positive also. Conclude that (g(x + dx)− g(x)) > 0 establishing (5) for this dx.
ii) ▽f(x)dx < 0: From (4a), we know that the remainder term is negative also. Conclude

that (f(x+ dx)− f(x)) < 0 so that for this dx, condition (5) does not apply.

Here’s the above argument in more detail. Now as we’ve discussed over and over again, you
can’t find this ball just by using first order conditions. You need your second order conditions

to be cooperative in the region where the first order conditions fail you. If they are sufficiently
uncooperative, i.e., if the signs of the quadratic terms in (4) are all reversed, then for any given
ǫ-ball, there are going to be dx’s that

• make an angle close to 90◦ with both ▽f(x) and ▽g(x), resulting in almost zero inner
products ▽f(x)dx and ▽g(x)dx, which are dominated by

• a positive second order term for f , resulting in a net increase in f , and
• a negative second order term for g, resulting in a net decrease in g, so you remain in the
constraint set.

• in which case you don’t have a maximum on the constraint set.
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Figure 5. Second order conditions and sufficiency

On the other hand, suppose that the point x in Fig. 5 satisfies the KKT conditions for the canonincal
NPP with one constraint, i.e., max f(x) s.t. g(x) ≤ b. We will make the following assumptions:

(1) the KKT conditions are satisfied;
(2) the constraint is satisfied with equality;
(3) the two parts of (4) are satisfied for any vector dx in the double cone labeled C.
(4) for any vector dx in the shaded circle but not in the set C, the first order terms in the

Taylor expansions of f and g dominate, i.e., the signs of the first order terms ▽f(x)dx and
▽g(x)dx agree with, respectively, f(x+ dx)− f(x) and g(x+ dx)− g(x)..

The following four part argument is a very informal sketch of the proof that x solves the constrained
maximization problem.
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(1) For a vector such as dx1 which makes an acute angle with ▽g(x), but does not belong to
C, the positive first order term in the expansion of g dominates, so that g(x+ dx) > g(x),
implying that x+ dx does not belong to the constraint set.

(2) For a vector such as dx4 which makes an obtuse angle with ▽f(x), but does not belong to
C, the negative first order term in the expansion of f dominates, so that f(x+dx) < f(x).

(3) For a vector such as dx2 ∈ C which makes a near 90◦ acute angle with ▽g(x), the second
order term 0.5dx′Hg(x̄)dx > 0 reinforces rather than offsets the negligible first order term,
ensuring that x+ dx does not belong to the constraint set.

(4) For a vector such as dx3 ∈ C which makes a near 90◦ obtuse angle with ▽f(x), the second
order term 0.5dx′Hf(x̄)dx < 0 reinforces rather than offsets the negligible first order term,
ensuring that f(x+ dx) < f(x).

How small is “sufficiently small” in (4)? The following example shows that the requirement for
sufficiently small gets tougher and tougher, the less concave is f . Example: Consider the function
f(x,y) = (xy)β, which is strictly quasi-concave but not concave for β > 0.5. We’ll illustrate that

regardless of the value of β, dx′Hfλdx < 0, for any vector that is almost orthogonal to ▽f , but
that the criterion of “almost” gets tighter and tighter as β gets larger. That is, the higher is β

(i.e., the less concave is f), the closer to orthogonal does dx have to be in order to ensure that

dx′Hfλdx is negative.

We have ▽f(x1,x2) = β
(

x
β−1
1 x

β
2 ,x

β
1x

β−1
2

)

and Hf(x1,x2) = β

[

(β − 1)xβ−2
1 x

β
2 βx

β−1
1 x

β−1
2

βx
β−1
1 x

β−1
2 (β − 1)xβ

1x
β−2
2

]

.

Evaluated at (x1,x2) = (1, 1), we have Hf(1, 1) = β2

[
β−1
β

1

1 β−1
β

]

= β2

[
λ 1
1 λ

]

, where λ = β−1
β

.

Note that λ → 1 as β → ∞.
Now choose a unit length vector dx and consider

dx′Hfλdx = λ(dx21+dx22)+2dx1dx2 = (dx1+dx2)
2−(1−λ)(dx21+dx22) = (dx1+dx2)

2−(1−λ)

For dx such that x1 = −x2, dx
′Hfλdx < 0, for all λ < 1, verifying that f is strictly quasi-concave.

However, the closer is λ to unity, the smaller is the set of unit vectors for which dx′Hfλdx < 0.

3.3. Sufficient Conditions for a solution to the NPP: the theorem

The following theorem gives sufficient conditions for a solution (not necessarily unique) to the NPP.

Theorem (S): (Sufficient conditions for a solution to the NPP): If f is pseudo-concave and the gj ’s
are quasi-convex, then a sufficient condition for a solution to the NPP at x̄ ∈ R

m
+ is that there

exists a vector λ̄ ∈ R
m
+ such that

▽f(x̄)T = λTJg(x̄)

and λ̄ has the property that λ̄j = 0, for each j such that gj(x̄) < bj .

Note that Theorem (S) doesn’t guarantee that a solution exists. Need compactness for this. Note
also that the sufficient conditions are like the necessary conditions, except that you don’t need the
CQ but do need pseudo-concavity and quasi-convexity. (MWG’s version of Theorem (S)—Theorem
M.K.3—is just like mine except that they do include the constraint qualification. This addition is
unnecessary (they’re not wrong, they just have a meaningless additional condition). The C.Q. says
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that you can have a maximum without the non-negative cone condition holding. If you assume
as in (S) that the nonnegative cone property holds, then, obviously, you don’t need to worry that
perhaps it mightn’t hold!

Proof of Theorem (S):

(1) suppose x̄ does not solve the NPP, i.e., for some dx;
• f(x̄+ dx) > f(x̄) & gj(x̄+ dx) ≤ bj, ∀j.
• since f is pseudo-concave, ▽f(x̄)dx > 0.
• we’ll show x fails the KKT:

– i.e., consider any λλλ ∈ R
m
+ s.t. gj(x̄) < bj =⇒ λj = 0

– we’ll show ▽f(x̄) 6= λλλTJg(x̄)
– that is,

⋄ the KKT necessary conditions state that in order for x̄ to solve the NPP, there must exist a λλλ vector

satisfying a certain property (the complementary slackness condition), and also satisfies equation (6).

⋄ we’ll show that this condition cannot be satisfied for any λλλ vector in the specified class.

(2) since for all j, gj(x̄) ≤ bj and gj(x̄+ δdx) ≤ bj, it follows from the convexity of gj ’s lower
contour sets that ∀δ < 1, gj(x̄+ δdx) ≤ bj.

(3) there are now two cases to consider
(a) suppose gj(x̄) = bj: in this case, ∀δ < 1 gj(x̄+ δdx)− gj(dx) ≤ 0.

• Local Taylor implies that for such a j, ▽gj(x̄)dx ≤ 0,
– suppose instead that for such a j, ▽gj(x̄)dx > 0;

⋄ then Local Taylor implies: for δ ≈ 0, gj(x̄+ δdx) − gj(dx) > 0, a contradiction.

(b) suppose gj(x̄) < bj: in this case,
• it’s not necessarily true that ∀δ < 1 gj(x̄+ δdx)− gj(dx) ≤ 0.
(we can’t rule out the possibility that gj(dx) ≪ bj, while gj(x̄+ dx) = bj.)

• so we can’t conclude ▽gj(x̄)dx ≤ 0.
• but we have, by assumption, that λj = 0.

(4) Whichever case hold in part (3), we have that λj ▽ gj(x̄) · dx ≤ 0:
• for (3a), it holds because λj ≥ 0 and ▽gj(x̄) · dx ≤ 0:
• for (3b), it holds because λj = 0.

(5) That is, (λλλTJg(x̄)) · dx =
∑m

j=1 λ
j ▽ gj(x̄) · dx ≤ 0

(6) Combining (1) and (5), and factoring out dx, we have
(
▽f(x̄)− λλλTJg(x̄))

)
· dx > 0.

(7) Hence, the vector
(
▽f(x̄)−λλλTJg(x̄))

)
6= 0.

(8) But since KKT requires equality of the expression in (7) to be zero, x̄ fails the KKT.

3.4. Second Order conditions Without Quasi-Concavity

The right way to think about second order conditions for a constrained maximum is as follows:
you have to ensure that there are no feasible changes in x that will increase your objective function
while keeping you in the constraint set. Divide the possible changes in x that increase f into

• changes that give you a first order increase in the objective function i.e., moves in a direction
dx such that ▽f(x̄)dx > 0.

• changes that give you only a second order increase in the objective function i.e., moves in a
direction dx such that ▽f(x̄)dx ≈ 0. but which have a positive second term in the Taylor
expansion. The key point to note is: for any given direction which is not orthogonal to

the gradient vector, if the length of dx is sufficiently small, then the first order term in the
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Taylor expansion dominates; however, for any ǫ > 0, there will in general be directions that

are nearly but not quite orthogonal to the gradient vector for which the first order term in

the expansion will be dominated by the second. These are the directions that we take care

of using the second order conditions.

You have to rule out the possibility of both kinds of changes, i.e., show that any such moves would
take you outside of the constraint set.

• The K-T conditions do exactly the first of these: we saw that last time, i.e., we checked that
if the K-T conditions were satisfied, then any move in a direction dx such that ▽f(x̄)dx > 0
took you outside of the constraint set

• The K-T conditions have nothing to say about the second kind of change, and we have to
rule them out, by looking at the second order Taylor expansion.

We’ll first consider second order conditions for maximizing subject to equality constraints, and then
see that we have really taken care of inequality constraints as well.

3.4.1. One linear equality constraint. Consider the problem of maximizing a function subject to a
single linear equality constraint: maximize f(x) subject to g(x) = b, where g is linear.

• we know that the first order condition for a maximum is that ▽f(x) = λ▽ g(x) for some
λ ∈ R. Recall that this is only a necessary condition, not a sufficient one. Can’t distinguish
between points a and c in Fig. 6:

• The second order condition for a maximum is that dx′Hf(x̄)dx < 0, for all dx such that
▽g(x̄)dx = 0. i.e., you need to show that the “swivelling more than 90 degrees” condition
holds only for vectors dx that lie in the particular subspace of Rn defined by the linear
equality constraint, i.e., this is a much weaker condition. We say in this case that the

Hessian is negative definite subject to the constraint ▽g(x̄)dx = 0.
• For some intuition for this condition, recall that to test for a local constrained max at x̄,
we need to check that f(x) < f(x̄), for all x that are in a nbd of x̄ and satisfy g(x) = b.
Now since g is linear, g(x+dx) = b if and only if ▽g(x̄)dx = 0. So to test for a maximum,
we can restrict our test to vectors that satisfy the condition ▽g(x̄)dx = 0.

• By Taylor’s theorem, we know that for vectors of this kind:

f(x̄) + dx)− f(x̄) = ▽ f(x̄)dx+ 0.5dxHf(x̄)dx +Remainder

= λ̄▽ g(x̄)dx + 0.5dxHf(x̄)dx+Remainder

= + 0.5dxHf(x̄)dx+Remainder

and for dx sufficiently small, the sign of the second order term determines the sign of the
right hand side.

• If dx′Hf(x̄)dx < 0, for all dx such that ▽g(x̄)dx = 0, then the left hand side is necessarily
negative.

• Thus, our second order condition, together with the first order condition, is necessary and
sufficient for a constrained local max.

• How do you check to see if the above condition is satisfied? Answer: look at the bordered
Hessian of f , just like we did when we checked for quasi-concavity. In this case, however,
you border the Hessian of f with the gradient of g.
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Figure 6. Constrained max problem with one equality constraint

• Fact: the condition

dx′Hf(x̄)dx < 0, for all dx such that ▽ g(x̄)dx = 0 (6)

holds if the sign of the k’th leading principal minor of the following bordered matrix has

the same sign as (−1)k:





0 g1(x̄) g2(x̄)
g1(x̄) f11(x̄) f12(x̄)
g2(x̄) f21(x̄) f22(x̄)



. (Recall that the k’th leading

principal minor of this matrix is the determinant of the top-left k + 1× k + 1 submatrix.)
• Parenthetical Fact (for completeness): the condition

dx′Hf(x̄)dx > 0, for all dx such that ▽ g(x̄)dx = 0 (7)

holds if the sign of each leading principal minor of the above bordered matrix is negative.
• Of course, an alternative way of proceeding would have been to check that f was quasi-
concave, i.e., to have checked the bordered Hessian of f .

• Note that the test above is practically identical to the test for quasi-concavity of f . I.e., re-
call that to check for quasi-concavity of f , we look at the minors of the matrix



0 f1(x̄) f2(x̄)
f1(x̄) f11(x̄) f12(x̄)
f2(x̄) f21(x̄) f22(x̄)



. What’s the difference between these two bordered Hes-

sian? In the first case, the border is the gradient of g at x̄; in the second it is the gradient of
f at x. However, at the solution to the optimization problem, x̄, we have ▽f(x̄) = λ▽g(x̄),
so that for each k, the k’th principal minor of each of the two bordered matrices have the
same signs. (I.e., the constant doesn’t affect the signs of the determinants.)
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• Alternative, could think about a quasi-concave function as having the property of a concave
function, provided we restrict attention to the subspace defined by the level set, i.e., Hf(x)
is negative definite on the subspace {dx : ▽f(x)dx = 0}.

• Difference between checking for quasi-concavity and checking definiteness subject to con-
straint is that in the latter case, you only have to check the matrix for a specific value in
the domain, whereas in the former you have to check for all possible values in the domain.

• When checking for quasi-concavity of f at x, you check that f goes down as you move along
the tangent plane to the level set of f through x. Moreover, at x̄, this tangent plane is also
the linear constraint g(·) = b.

3.4.2. One nonlinear equality constraint. Now consider the problem of maximizing a function sub-
ject to a single nonlinear equality constraint: maximize f(x) subject to g(x) = b, where g is now
nonlinear. Note that in this case, the cookie cutter sufficiency conditions cannot ever be satisfied:

• you have to maximize f subject to being in the lower contour set of g corresponding to b

and subject to being in the upper contour set of g corresponding to b. Because g is not
affine (constraint is not linear), if the lower contour set of g is convex, the upper contour
set won’t be.

• if the upper contour set of g is convex, the lower contour set won’t be.

So what do we do? Consider for example the problem set question, maximize or minimize the
distance from a given ellipse to the origin.

• if we are maximizing, we need the surface of the ellipse to be more curved than the level
set of the distance function (i.e., more curved than a circle)

• if we are minimizing, we need the surface of the ellipse to be less curved than the level set
of the distance function (i.e., less curved than a circle)

Fortunately, unless the ellipse is itself a circle, then it will be flatter than a circle at its flattest
point and more curved than a circle at its most curved point.

Looks like we only have a local solution. Check this.

In this case, we need to consider the Hessian of the Lagrangian, evaluated at the point (x̄, λ̄)
satisfying its first order conditions, rather than simply the Hessian of the objective function. That
is, instead of looking at the bordered matrix:

BHf(x̄) =





0 g1(x̄) g2(x̄)
g1(x̄) f11(x̄) f12(x̄)
g2(x̄) f21(x̄) f22(x̄)





you look at the following matrix, which is the (unbordered) Hessian of the Lagrangian:

HL(x̄) =





0 g1(x̄) g2(x̄)
g1(x̄) f11(x̄)− λ̄g11(x̄) f12(x̄)− λ̄g12(x̄)
g2(x̄) f21(x̄)− λ̄g21(x̄) f22(x̄)− λ̄g22(x̄)



 (8)
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Figure 7. Role of Second Order Condition for a Constrained Max

For the case of one nonlinear inequality constraint, the second order condition for a maximum is
that

dx′
(
Hf(x̄)− λ̄Hg(x̄)

)
dx < 0, for all dx such that ▽ g(x̄)dx = 0, (9)

or, equivalently, that the k’th principal minor of the matrix HL(x̄) has the same sign as (−1)k.
(Even though HL(x̄) is technically an unbordered hessian, when we talk about its minors, it may

as well be, i.e., the first minor is the determinant of

[
0 g1(x̄)
g1(x̄) f11(x̄)− λ̄g11(x̄)

]

, etc.) Why the

difference in the nonlinear case? I.e., why doesn’t the λ term show up in the linear case?

• First note that in the linear case, HL(x̄) reduces to BHf(x̄) since the second derivatives of
g are all zero.

• graphically, note that even if f had the right curvature (i.e., if the upper contour set of
f through x̄ were a convex set) the point that the KT conditions has located could be a
minimum not a maximum because the g function could have the wrong curvature (see the
right panel of Fig. 7). But unless you assume that g is quasi-convex, you can’t rule out the
possibility that the level set of g is also convex to the origin, and has greater curvature than
f . In this case, your KT conditions would indeed locate a min.

• what determines the curvature of g? Two things:
– the Hessian of g;
– the gradient of g.
– to see the relationship, suppose that g is negative definite at x̄ (not positive definite

as usual), pick a direction dx that makes an angle with ▽g(x̄) that is acute but close
to 90deg. Consider (a) the level set of g passing thru x̄ and (b) the line starting at
x̄ that points in the direction dx. Finally, identify the closest point to x̄ on the line
(b) that intersects the level set (a). (Such a point must exist if g is negative definite
at x̄ and the angle between dx and ▽g(x̄) is sufficiently close to 90deg.) See Fig. 8.
Specifically, solve for the point dx∗ that satisfies

g(x̄) + dx∗)− g(x̄) = 0 = ▽g(x̄)dx∗ + 0.5dx∗Hg(x̄)dx∗ +Remainder (10)

– Observe that if in equation 10, you double the length of ▽g holding everything else
constant, you’d have to lengthen dx∗ to increase the relative importance of the second
term and restore the equality. In other words, increasing ▽g holding all second partials
constant decreases the curvature of the level set.
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Figure 8. Relationship betwen Curvature of g and length of ▽g

It’s for this reason that in the expression for the second order condition—i.e., display (8)—
the second partials of g are multiplied by λ:

– recall that λ = ||▽f(x̄)||
||▽g(x̄)|| ,

– therefore, holding ||▽f(x̄)|| constant, the smaller is ||▽g(x̄)||, the higher is λ, i.e., more

curved is the constraint set, i.e., the more likely you are to be in the case illustrated
by the right hand panel of Fig. 7 (where x̄ is not even a local max) than the left hand
panel (where x̄ is a local max).

• Thus, in expression (8) for the second order conditions above, the role of λ should now be
clear: if as in the right panel of Fig. 7, f is strictly quasi concave and g is locally negative
definite, then holding everything else constant, as || ▽ g(x̄)|| decreases, lambda increases,
the curvature of the constraint set increases and it becomes harder to satisfy the second
order condition.

To illustrate further, suppose for the moment that the cross partials of f and g are both zero. In
this case, we have

HL(x̄) =





0 g1(x̄) g2(x̄)
g1(x̄) f11(x̄)− λ̄g11(x̄) 0
g2(x̄) 0 f22(x̄)− λ̄g22(x̄)





multiplying the diagonals, we get

det (HL(x̄)) = −
{
g2(x̄)

2(f11(x̄)− λ̄g11(x̄)) + g1(x̄)
2(f22(x̄)− λ̄g22(x̄))

}
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which is positive if f22(x̄) < λ̄g22(x̄)) and f11(x̄) < λ̄g11(x̄)). This is certainly true if f11, f22 are
negative (quasi-concavity) while g11, g22 are positive (quasi-convexity). On the other hand it is also
true if for i = 1, 2, fii is larger in absolute magnitude than λgii.


