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1. LINEAR ALGEBRA (CONT)
1.1. Linear Functions

A function with domain X and codomain Y is a rule that assigns a unique point in the codomain
to every point in the domain. Notation: f: X — Y.

The image of f, denoted f(X), is the set of points in the codomain that are reached from some
point in the domain, i.e., f(X)={f(z) €Y 1z € X}.

Note: it’s not required that every point in the codomain of a function be reached from some point
in the domain. This means that the image of a function is not the same as the codomain. Indeed,
if Y is any superset of f(X), then we can write f : X — Y.

There is a lot of variation in language concerning the names that are assigned to f(X) vs Y.
e Some books refer to Y as the “target space” (S&B) or the “co-domain”
e Some books even use the word “codomain” to refer to f(X).

The graph of f: X — Y is defined as:
graphf = {(x,y) e X xY: y=f(x)} (1)
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The symbol x indicates the Cartesian product of the two sets. The result is a set of vectors made
by pairing elements of the first set and elements of the second. Formally:

XxY={(xy):xeX,yeY} (2)

A linear function is a function that satisfies additivity and proportionality, that is, f : X — Y is a
linear function if for all x,y € X and all a € R,

o fix+y)=f(x)+ f(y) Additivity

o f(ax) = af(x) Proportionality

We can combine these two properties into one and obtain
Theorem: f: X — Y is a linear function iff Vx,y € X, Vo, 8 € R, f(ax+ By) = af(x) + 8f(y)

A necessary condition for a function to be linear is that both the domain X and the image f(X)
of f are vector spaces. To see this, note that
(1) if f is defined at x!,x? € X, then by applying the properties of linearity, f is also defined
at ax! + fx?, and hence ax! + fx? € X.
(2) similarly, suppose that for i = 1,2, y* € f(X), i.e., for some x*, y* = f(x*). In this case,
for any o, 8 € R, ay! + By? = f(ax! + Bx?), and hence ay' + By? € f(X).

Fact: A function f is linear if and only if its graph is a vector space.
It’s a good exercise to try to prove this.

It is not necessarily the case that the codomain of a linear function is a vector space. Recall that the
codomain of a function is a very sloppy term. In particular, the codomain is not uniquely defined:

it can be any set that contains the image of the function. Here are two examples.
(1) consider the perfectly good linear function, f : R — Y, defined by f(x) = 0 for all z € R.
f(R) is the zero-dimensional vector space {0}. The codomain can be any subset of R that

contains zero.
11

1 1
one-dimensional subspace of R?, specifically the 45° line. The “natural” codomain of this
function is R? but it could equally well be any subset of R? that contains the 45° line.

(2) now consider the linear function y = Az, where A = [ } This matrix maps R? to a

An affine function has all the properties of a linear function—straight line graph, goes on forever—
except that its graph needn’t pass through the origin.

Definition: f : X — Y is affine if there exists a linear function ¢ : X — Y and a € X s.t.

70 =a+g0).
Theorem: (econ201) f: X — Yisaffineiff Vx,y € X, Va € R, f(ax+(1—a)y) = af (x)+(1—a) f(y)

Note the difference between this and the corresponding statement for a linear function

e for linear functions, the condition is in terms of linear combinations
e for affine functions, the condition is in terms of convexr combinations
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1.2. Baby Riesz

Some linear functions:
e any function whose graph is a straight line? Ans: no (In fact, these are properly called
affine functions).
e f(x) =1+ x where z is a scalar. Ans: no.
e f(x) = ax where a and = are scalars. Ans: yes.
e f(x) =a-x where x and a are vectors. Ans: yes.

Theorem: (Riesz Representation (baby version))
e Any linear function from R! to R! can be written in the form f(z) = ax, for some a € R.
e Any linear function from R™ to R! can be written as f(x)=a - x, for some a € R"
e Any linear function from R™ to R™ can be written in the form f(x) = Ax, where A is a
matrix with m rows and n columns.

It’s obvious that any a € R defines a linear function f(x) = axz. What’s definitely not obvious

R—R
is that given any function f: { R™ — R satisfying additivity and proportionality, there exists
R™ — R™
aeR zeR, f(z) =ax
acR" such that for all < x € R", f(x) =a-x . It’s this reverse implication that is
A e R™*" xeR" f(x)=A-x

the real content of Riesz’s representation theorem; the Riesz result has enormous implications for
everything we do as economists. In particular

e Theorem: (Taylor-Young) if f : R™ — R, is twice continuously differentiable, then for each
x € R™ there exists a unique linear function ¢* : R™ — R such that if dx is sufficiently
small and g*(dx) # 0, then sgn(f(x + dx) — f(x)) = sgn(g*(dx)).

e Useful thing to know (indeed fantastically helpful, the basis of all comparative statics),
especially if we can figure out what function ¢g*(-) is

e Reisz tells us that for any linear function g from R™ to R, there exists a unique vector a
such that g(x) = a-x. So to nail down the function that Taylor-Young is talking about, all
we have to do is find a.

e It turns out that a = 7 f(x), the vector of partial derivatives of f, evaluated at x.

e That is: ¢g*(-) is the function defined by, for dx € R", ¢*(dx) = v f(x) - dx.

e The above result is useful, but limitedly so: what can we say about sgn ( flx+dx)—f (x))
for the case in which our unique linear function ¢g*(dx) is identically zero? This situation
crops up occasionally, since ¢*(dx) = 7 f(x) = 0 happens to be a necessary conditions for
an unconstrained optimum, and we as economists are often interested in such things.

— In this case, we turn to a different, also uniquely defined linear function G* : R" — R"™.

— Theorem: (Taylor-Young (again)) if f : R™ — R, is thrice continuously differentiable
and v/ f(x) = 0, there exists a unique linear function G* : R™ — R™ such that if dx is
sufficiently small and G*(dx) # 0, then sgn(f(x + dx) — f(x)) = sgn(dx - G*(dx)).

— This is also useful for us, because it enables us to distinguish between local maxes,
local mins, and local nothings. Provided we can figure out what G* is.
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— Reisz tells us that for any linear function G from R"™ to R™, there exists a unique n X n
matrix A such that G(x) = A -x. So to nail down the function that Taylor-Young is
talking about, all we have to do is find A.

— It turns out that G*(dx) = Hf(x) - dx, where Hf(x) is the matrix of second partials of
f, evaluated at x.

1.3. The “graph” of a linear function from R? to R?

If we have a linear function from R? to R, y = a - x, we can get a good intuitive sense of the
properties of this function by looking at its graph, which is a plane in R3. Similarly, it would be
nice if we could look at the graph of the linear function from R? to R?, y = Ax, but this graph is
difficult to envisage because it is in R*.

It turns out, however, that there is a way to visualize the graph of a linear function from R™ to R™,
provided both m and n are not greater than 3, i.e., the graph of the function f(x) = Ax, where
A is m x n. We do this by asking the question “what does the matriz A “do” to the unit circle
(sphere)?’ Formally, we will be investigating the image of the unit circle under A. Once we know
what this image looks like, we’ll know everything there is to know about the entire graph of the
function Ax. Note that this only works for linear functions.

e consider f : R" — R™ = Ax and let C denote the unit sphere in R", ie., {x € R" :

2k=1mi = 1}

e for any x € R", x € aC, where a = Y ;_; ;.

e by linearity, f(aC) = af(C).

e if we know what f(C) looks like, we know what af(C) looks like.

In particular, studying the image of the unit circle under A tells us almost all there is to know
about

the determinant of A

the rank of A

the eigenvectors of A

the eigenvalues of A

definiteness of A (positive vs negative definiteness; indefiniteness)

linear difference equations of the form x* = Ax'~!

and much, much more.

We’ll focus particularly on the concept of definiteness of a matrix, which you will recall is the
cornerstone of second order conditions.
(1) recall that if your first order conditions for a maximum are satisfied, it doesn’t mean much,
i.e., you could have a max, min, or neither
(2) specifically, for x,dx € R,

FER4dx) - f®) ~ v fE)dx+ %dx’Hf(fc)dx 3)

(3) if dx satisfies the FOC for an unconstrained maximum then 7 f(x) = 0.
(4) whether % is a local max, local min or neither depends, then, on the sign of dx'Hf(x)dx
(5) it will be a local

(a) maz if dx'Hf(x)dx < 0, for all dx, i.e., if Hf(X) is a negative definite matrix.

(b) min if dx'Hf(X)dx > 0, for all dx, i.e., if Hf(X) is a positive definite matrix.
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(c) neither if there exists dy,dz € R" such that dy’Hf(x)dy > 0 > dz'Hf(X)dz i.e., if
Hf(x) is an indefinite matrix.
(6) in the following we're going to get some graphical intuition for what these definite concepts
really mean, and their relationship to the eigen-vectors and eigen-values of the matrix H.

For now, we are going to focus on the image of the circle under symmetric matrices. Reason
is that later on we are going to be talking about eigenvalues, eigenvectors and definiteness. For
symmetric matrices, these relationships are very clearcut. The waters are substantially muddied
with nonsymmetric matrices. For our purposes, we are only interested the definiteness of matrices
that are the Hessians of some twice differentiable function; these are always symmetric, i.e., the
cross-partials are identical. So the restriction is harmless for current purposes. (For the study of
difference equations, it’s important to look at non-symmetric matrices.)

The the image of the unit circle under A C R?*? is defined as the following set:

{b € R%: b = Ax, for some x whose norm is unity}

. |

Look at what this matrix “does” to selected elements of the unit circle:
e set x! = (1,0): A maps this vector to the first column of A
e set x2 = (0,1): A maps this vector to the second column of A
3_ (1 1

Example: Let A = [ ?

e set x ): A maps this vector to a scalar multiple of itself.

o set x* = >: A maps this vector to a scalar multiple of itself (what is the scalar, in

~— N
|
SIL
|~
no

this case?

Observe the ellipse. What can we learn about A from the picture of
{b: b = Ax, for some x whose norm is unity}

e a vector is said to be an eigenvector of a matrix M if the vector and its image under M are
collinear, i.e., v is an eigenvector of M if v and Mv point either in the same direction or

opposite directions. In the case of our matrix A, two eigenvectors are x> = <%, %) and

xt = (4, %).
V27 V2
— Note that there are a lot of vectors with this property.
— Important fact: Symmetric matrices have always a set of eigenvectors that are pairwise
orthogonal.
— The four unit eigenvectors—=x! and +x?>—split up the unit circle into 4 equal seg-
ments, each having an arc of 90 degrees, in the following sense:
* Given any vector v, once we know what a symmetric matrix M does to the two
eigenvectors on either side of it, we have a lot of information about what M’s
going to do to v.
* For example, for o, 8 > 0, let v = ax®+ x* be a vector that’s in the nonnegative
cone defined by x? and x*
* by linearity, Av = aAx® 4+ BAx?, i.e., Av is in the nonnegative cone defined by

Ax3 and Ax5.
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Cost 1 st T T
(a) The columns of A

f(‘Z
X4 X3

0.5
0.5 0.5 P x 2 ,
-1-
0.5 ,
Ay ._.1 ..... “eeeen® . L

(b) Selected elements of the unit circle (¢) The image of the circle under A

FIGURE 1. What the matrix A does to the unit circle
% The same is true for a positive linear combination of, say, —x> and —x?.

— Now consider the particular matrix A. Observe how any arrow in the unit circle gets
swivelled by no more than 90 degrees, i.e., for any vector x, the inner product of Ax
and x is positive. Called a positive definite matrix.

— To see why this must be, and what the relationship is between positive definiteness
and the eigenvalues, note what A does to any vector b that lies in the nonnegative
cone defined by our two eigenvectors, x> and x*:

% Ab has to lie in the nonnegative cone defined by the vectors Ax> and Ax*:

+ Why? Because Ax is a linear function, i.e., if b = ax®+8x*, then Ab = A(ax>+
pxt) = aAx3 + BAx*, i.e., Ab is necessarily a nonnegative linear combination of
Ax? and Ax?, i.e., in the nonnegative cone that these vectors define.

* but this cone is the same cone as the one defined by x3 and x*!

* 80, we've established that b and Ab live in the same cone which has an arc of
exactly 90 degrees.

* Example in Fig. 1: look at what happens to the vector x2.
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e The eigenvalues of A: each eigenvector has a corresponding eigenvalue: this value is a scalar
that measures the size and sign of the magnification of the eigenvectors. That is, for any
eigenvector of A, Ax and x are collinear, i.e., Ax is a scalar multiple of x: the eigenvalue
tells you by how much the vector is stretched or shrunk.

Defn: A vector x is an eigenvector of a matrix A if there exists a scalar A € R such that Ax = Ax.
In this case, A is referred to as the eigenvalue corresponding to x. (The word “eigen” in German
means “belonging to,” which is appropriate since a (nonzero) vector v is an eigenvector of A if
the image of that vector under A, i.e., Av belongs to (i.e., is collinear with) the single-dimensional
vector space spanned by v.)

For every symmetric n x n matrix A, there are infinitely many vectors that satisfy the above
definition: if v is an eigenvector, then so also is yv, for arbitrary v € R. For this reason we
typically focus on unit eigenvectors, i.e., vectors with unit norm. Still we have more than n: in
fact, every symmetric n X n matrix A has at least 2n unit eigenvectors, the n identified above plus
the negatives of these. The point is that we only need n pair-wise orthogonal ones to “build” the
image of the unit circle/sphere/hyper-sphere. We don’t care about the rest.

Fact: Every symmetric n X n matrix A has at least n, pairwise orthogonal unit eigenvectors.
That is, any two of the n vectors identified above make a right angle with each other.

Theorem: If v! and v? are eigen-values of a symmetric n x n matrix A, with eigen-values A\; and Ao,
if A1 # Ao, then v! and v? are orthogonal

Proof: If v* is an eigenvector of A then Av’ = \;v*. Therefore
(1) (v ) = (v*) Al = M\ (0?)0!

2) (v1) Av? = (v')' Av? = Ag(v!) 02

) since A is Symmetrlc (v?) Avt = (vl) Av?

)

)

hence \;(v?)v! = A2 (v1)v?

(
(3
(4
(

5) Now since (v?)'v! = (v!)v?, we can factor out this common term, to obtain.

(M= X)) = 0
Since by assumption (A; —Ag) # 0, it follows that (v!)v? = 0, i.e., v! and v? are orthogonal.

Every symmetric n x n matrix A has at least n, pairwise orthogonal unit eigenvectors.

Question: Under what conditions will a symmetric matrix have an infinite number of unit eigenvec-
tors?

Answer: Iff at least two distinct eigenvectors have eigenvalues that are equal to each other

Defn: An n x n matrix A is positive definite (positive semidefinite) if for every x € R", x # 0
implies x'Ax > (>)0.
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v2

(a) The columns of B
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(b) Selected elements of the unit circle (¢) The image of the circle under B

FIGURE 2. What the matrix B does to the unit circle

Fact: A symmetric matrix A is positive definite (positive semidefinite) if and only if all of its
eigenvalues are positive (nonnegative).

Now consider the negative of matrix A, which has both arrows pointing into the negative orthant.
-2 -1
Let B = 1 9|
e Note that the two eigenvectors get flipped by 180 degrees. Look at the cone defined by the
two eigenvectors x> and x*: the whole cone gets flipped over.
e Conclude that every vector gets swivelled by more than 90 degrees, i.e., for every vector b,
the inner product of Bb and b is negative. Called a negative definite matrix.

e Example in Fig. 1: look at what happens to the vector x2.

Defn: An n X n matrix A is negative definite (negative semidefinite) if for every x € R™, x # 0
implies xAx < (<)0.
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Cost 1 st T T
(a) The columns of C
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(b) Selected elements of the unit circle (c) The image of the circle under C

FIGURE 3. What the matrix C does to the unit circle

Fact: A symmetric matrix A is negative definite (negative semidefinite) if and only if all of its
eigenvalues are negative (nonpositive).

Finally, we construct an indefinite matriz C' with the property that there is some vector x such
that x and C'x make an acute angle with each other, and some other vector y such that y and Cy
make an obtuse angle with each other.

Let C = ; i . Note that C is obtained by flipping the order of the column vectors in A. Look

at what happens to the image of the unit circle under C:
e The ellipse for C looks exactly the same as for matrix A: but in fact it is a mirror image of
what happens to A: a vector that would have gotten mapped to one side of the long axis

now gets mapped to the other side.
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What matrix A does to the unit circle What matrix C does to the unit circle

1k v ) 1k v

20 20

= ) ) o 1 2 s = ) =) o 1 2 s
FIGURE 4. Relationship between orientation and determinant

e Which vectors are going to make an obtuse angle with their images under C' and which ones
make an acute angle? ones that are close to the eigenvector with a negative eigenvalue will
end up making an obtuse angle, etc.

Defn: An n x n matrix A is indefinite if there exists x,y € R™ such that the product of x’'Ax is
positive and y’ Ay is negative (that is, they are neither both positive nor both negative).

Notice a striking difference between the figures for matrix A and for C'. The matrices map the unit
circle into identical ellipses, but the “orientation” of the ellipses is different. This is illustrated in
Fig. 4. The left panel superimposes the image of the unit circle under A on the circle itself. The
figure consists of a number of triangles. For each triangle in the figure:

(1) vertex #1 is the origin
(2) vertex #2 is a point on the unit circle
(3) vertex #3 is the point on the ellipse to which vertex #2 is mapped by A.

The right panel does the same for the matrix C. Matrix A preserves orientation in the sense that for
any two unit vectors v and w, if vector w in the unit circle is reached by moving counter-clockwise
from v, then Aw in the ellipse is reached by moving counter-clockwise from Av. On the other
hand, C reverses orientation in the sense that C'w is reached by moving clockwise from Cv. As
we shall see in the next lecture, whether a matrix preserves orientation or reverses it is reflected in
the signs of the determinants of the two matrices, i.e., the determinants of A and C are equal in
absolute magnitude, but A’s has a positive sign, while C’s is negative.



