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4. Foundations of Comparative Statics (cont)

Key points of this lecture:

(1) The solution to any economic system can be characterized as the level set corresponding to
zero of some function

(2) When you do comparative statics analysis of a problem, you are studying the slope of the
level set that characterizes the problem.

(3) The implicit function theorem tells you
(a) when this slope is well defined
(b) if it is well-defined, what are the derivatives of the implicit function

(4) Implicit function theorem (single variable version): Given f : R2 → R
1 continuously differ-

entiable and (ᾱ, x̄) ∈ R
2, if ∂f(ᾱ,x̄)

∂x
6= 0, then there exist neighborhoods Uα of ᾱ and Ux of

x̄ and a continuously differentiable function g : Uα → Ux such that for all α ∈ Uα,

f(α, g(α)) = f(ᾱ, x̄) i.e., (α, g(α)) is on the level set of f through (ᾱ, x̄)

g′(α) = −
∂f(α,g(α))

∂α
∂f(α,g(α))

∂x

(5) Implicit function theorem (intermediate version): Given f : Rn+1 → R
1 continuously dif-

ferentiable and (ᾱαα, x̄) ∈ R
n × R

1 if fn+1(ᾱαα, x̄) 6= 0, then there exist neighborhoods Uααα of
ᾱαα and Ux of x̄ and a continuously differentiable function g : Uααα → Ux such that for all
ααα ∈ Uααα,

f(ααα, g(ααα)) = f(ᾱαα, x̄) i.e., g puts us on the level set of f containing (ᾱαα, x̄)

gj(ααα) = −fj(ααα, g(ααα))/fn+1(ααα, g(ααα)).

(6) Implicit function theorem (final version): Theorem: Given f : R
n+m → R

m continuously

differentiable, and (ᾱαα, x̄) ∈ R
n × R

m, if the determinant of Jfx(ᾱαα, x̄)) is not zero, then
there exist neighborhoods Uααα of ᾱαα and Ux of x̄ and a continuously differentiable function
g : Uααα → Ux such that for all ααα ∈ Uααα,

f(ααα,g(ααα)) = f(ᾱαα, x̄) i.e., g puts us on the level set of f containing (ᾱαα, x̄) and
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4.3. Implicit function Theorem.

Level sets and comparative statics: The solution to any economic system can be characterized as
the level set of some function. The members of the level set are pairs, consisting of endogenous
and exogenous variables; each such pair produces the same value for our function of interest. By
convention, once we’ve identified the function whose level sets we are interested in, we focus on its
zero level set.

Here’s a simple economic model: S = S(t, p), D = D(y, p), S = D, where p denotes market price, t
denotes a tax rate paid by the producer and y denotes consumer income level. The solution to this
model can be represented as the level set f(t, y, p) ≡ 0, where f = S−D, ααα = t, y and x = p. Given
a pair of exogenous variables (t, y), we are interested in the p value such that the triple (p, t, y)
belongs to the level set of f corresponding to zero.

When we do comparative statics on this problem, we start out at some initial solution to the
problem, (t∗, y∗, p∗), then change either t, y, or both, and ask: how does p have to change in order
to stay on this zero level set. In other words, what’s the slope of the relevant level set at the starting
point (t∗, y∗, p∗).

Cf, elementary micro-economics: you have an isoquant, you start out at a point (k∗, ℓ∗), then you
change k and ask “how much does ℓ have to change to keep you on the same level set?”; the
answer is the marginal rate of technical substitution, which is the slope of the isoquant at the point
(k∗, ℓ∗). Every comparative statics exercise you’ll ever do is exactly analogous to this elementary
exercise: you have a starting point, you change an exogenous variable or variables and adjust some
endogenous variable or variables so that you stay on the given level set.

In the first example we looked at, the defining property of the economic system was market equi-
librium. Another class of economic system arises from optimization. In this case, the level set that
our exog-endog pairs live on is the level set corresponding to zero of the first order conditions of

the Lagrangian. E.g., consider the problem maxx u(x) s.t. p · x ≤ y. The Lagrangian for this
problem is L(x, λ;p, y) = u(x) + λ(y − p · x). Assuming the income constraint is binding, the first
order conditions necessary conditions for a solution are f = ▽(x,λ)L = 0. Once again, when we do
comparative statics on this problem, we change one of the three exogenous variables (prices and/or
income), and ask: “how do the three endogenous variables have to change to keep us on the same
level set of f?”. The answer gives you the slopes of the components of the consumer’s demand
function.

The mathematical tool that’s used to compute slopes of the level set is the implicit function theorem.

To motivate the content of the theorem, go back to the isoquant of a production function. You have
q = f(k, ℓ). We’re interested in the slope dℓ

dk
|f(k,ℓ)=q̄ at some point (k∗, ℓ∗) such that f(k∗, ℓ∗) = q̄.

Specifically, we’ll consider the Cobb Douglas production function f = kαkℓαℓ . The brute force way
to compute dℓ

dk
|f(k,ℓ)=q̄ would be to manipulate the equation q̄ = kαkℓαℓ , until ℓ is on the left hand

side; Then we’d have ℓ as an explicit function of k and q̄. We’d then obtain dℓ
dk
|f(k,ℓ)=q̄ as the partial

derivative of ℓ(q̄, k) w.r.t. k.

But of course we never ever go to the trouble of computing ℓ(·, ·) explicitly. Rather, we’ve memorized

that dℓ
dk

= − fk
fℓ
. That is, the slope of the explicit function we’re interested in is a combination of

the partial derivatives of the function whose level set we are required to stay on. That is, instead
of computing explicitly the function ℓ(q̄, k), we just write down its slope in terms of the primitive
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function whose level set we are interested in. The implicit function theorem makes all this precise.
It’s called the implicit function theorem because the function whose slope we’re calculating is
implicit rather than explicit in our analysis.

The implicit function theorem has two parts: first, under what conditions can you do what I’ve
just described; second, if you can do it, what’s the formula relating the slope you are interested in
to the partial derivatives of the function whose level set you are given.

Implicit function theorem: motivation. Given a level set of a function f : R2 → R and a starting

point in R
2, the implicit function theorem tell us

(1) when we can characterize the level set locally (i.e., in a nbd of the starting point) as the
graph of a differentiable function from α to x? That is, is there an alternative way to
represent {(α, x) : f(α, x) = c} as the graph of some function x = g(α)?

(2) what the slope is of this function, i.e., dx
dα

.

Look at the next diagram:

(1) In Case 1, it’s obvious that x is a perfectly nice, well behaved function of α.
(2) In Case 2, x is certainly a function of α, but it is not so well-behaved. Specifically, it isn’t

differentiable, because fx(ᾱ, x̄) = 0, so that the “slope” of the implicit function is infinite
at this point.

(3) Case 3 is a little more subtle: we can’t write x globally as a function of α. What we can do,
however, is to restrict our attention to a small neighborhood of (α, x), and characterize the
level set restricted to that neighborhood as the graph of a function mapping α to x. Note
also that we can’t always do this: there is no neighborhood of the point (ᾱ, x̄), on which
the level set can be represented as the graph of a function.

(4) The next point is about computation. In some instances, we could solve for x explicitly, then
take derivative of this function that we’ve computed. For example, suppose u(α, x) =

√
αx

and we are interested in the the level set
√
αx = 4.5. We could solve this to get x = g(α),

then take the derivative. The implicit function theorem saves us the trouble: we can can
calculate g′(.) directly from the derivatives of f , without ever constructing the function
explicitly.

Implicit function theorem (single variable version): Given f : R2 → R
1 continuously differentiable

and (ᾱ, x̄) ∈ R
2, if ∂f(ᾱ,x̄)

∂x
6= 0, then there exist neighborhoods Uα of ᾱ and Ux of x̄ and a

continuously differentiable function g : Uα → Ux such that for all α ∈ Uα,

f(α, g(α)) = f(ᾱ, x̄) i.e., (α, g(α)) is on the level set of f through (ᾱ, x̄)

g′(α) = −
∂f(α,g(α))

∂α
∂f(α,g(α))

∂x

Note that there are no bar’s on the α’s on the second line. The reason is that g is an implicitly
defined function, and its derivative is defined everywhere on the nbd Uα by the above condition.
To reiteratre, g′(α) is the slope of the function that locally represents the level set through (ᾱ, x̄).
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Case 1: x is a well-defined, differentiable function of α

Case 2: x is a well-defined, but not differentiable function of α

Case 3: Locally, x is a well-defined, differentiable function of α, except at (ᾱ, x̄)

Figure 1. Deriving x as a function of α from level sets

The proof of this result is completely trivial:

df(α, g(α))

dα
≡ 0 =

∂f(α, g(α))

∂α
+

∂f(α, g(α))

∂x
g′(α)

Hence

g′(α) = −
∂f(α,g(α))

∂α
∂f(α,g(α))

∂x



ARE211, Fall2015 5

But in fact there are lots of subtleties that you don’t think about if you just prove the theorem
mechanically. They do, however, become apparent from the picture.

• The neighborhood condition: in general, the condition that (α, x) lies on a given level set
doesn’t necessarily globally associate a unique x to α.

– Look at the bottom left panel of Fig. 1. Except where the level set is vertical, there are
two x’s associated with each α value: thus, for each α value, the implicit function the-
orem identifies two functions, quite different from each other, each of which represents
a different piece of the same level set.

– Once you know both x and α, however, then you can almost always identify a little
neighborhood on which there is a unique relationship between x and α.

• The condition on ∂f(ᾱ,x̄)
∂x

:

– Given the formula, it’s obvious that you can’t have ∂f(ᾱ,x̄)
∂x

= 0, else you wouldn’t be
able to define the ratio.

– What does the nonzero derivative caveat mean in the statement of theorem mean? If
the level set is vertical at (ᾱ, x̄), then there isn’t even a neighborhood on which the
fact that (ᾱ, x̄) lies on a given level set implies a unique relationship between x and α.
Verticality of the level set is vertical at x̄ is precisely the condition that fx(ᾱ, x̄) = 0.
For example, let f(α, x) = α2 +x2; in this case, the level sets are circles; in particular,
the level set corresponding to f = 1 is the unit circle; observe that f2(α, x) = 2x = 0,
when x = 0.

– Hence the appropriate condition to ensure that x is locally uniquely determined given
α is f2(ᾱ, x̄) 6= 0.

Here’s an example using more familiar notation: the computation of the MRS. We have a utility
function u : R2 → R

1, and want to know the slope of an indifference curve through (z̄1, z̄2). In this
case, fitting our specific example into the general notation of the implicit function theorem,

• α is z1,
• x is z2.
• f(α, x) is u(z1, z2)− u(z̄1, z̄2).

hence we have f(z̄1, z̄2) = 0, and we want to vary α (in our example, z1) and see how x (in our
example, z2) has to change in order to keep us on the level set of f corresponding to 0.

We’ll write z2 as a function of z1, i.e., at this point,

dz2
dz1

∣

∣

∣

∣

u constant

= −
∂u(z̄1,z̄2)

∂z1
∂u(z̄1,z̄2)

∂z2

Here’s another example that illustrates the computational value of the theorem. f(α, x) = αx15 +
α13 + x95;

• it would be clearly extremely difficult to write down g explicitly.
• however, it’s trivial to compute the slope of g.
• f1(α, x) = x15 + 13α12

f2(α, x) = 15αx14 + 95x94;
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• Implicit function theorem says that g′(α) = −f1(α, g(.))/f2(α, g(.)) = − (x15+13α12)
(αx14+95x94)

Implicit function Theorem: intermediate version: As with the other important concepts in the
course, the implicit function theorem can be stated in various degrees of generality. We now
go up one level and assume that f has n+ 1 arguments.

Theorem: Given f : Rn+1 → R
1 continuously differentiable and (ᾱαα, x̄) ∈ R

n × R
1 if fn+1(ᾱαα, x̄) 6= 0,

then there exist neighborhoods Uααα of ᾱαα and Ux of x̄ and a continuously differentiable function
g : Uααα → Ux such that for all ααα ∈ Uααα,

f(ααα, g(ααα)) = f(ᾱαα, x̄) i.e., g puts us on the level set of f containing (ᾱαα, x̄)

gj(ααα) = −fj(ααα, g(ααα))/fn+1(ααα, g(ααα)).

In words, implicit function theorem says that if you have one equation in n+1 unknowns, you can
solve for any one of the unknowns in terms of the other n, provided that...

Proof again is a trivial exercise in differentiation: since

f(ααα, g(ααα)) ≡ f(ᾱαα, x̄)

we can take the partial derivative of f w.r.t. αj :

df(ααα, g(ααα))

dαj
= 0 =

∂f(ααα, g(ααα))

∂αj
+

∂f(ααα, g(ααα))

∂x

∂g(ααα))

∂αj

rearranging yields:

∂g(ααα))

∂αj
= −

∂f(ααα,g(ααα))
∂αj

∂f(ααα,g(ααα))
∂x

An important feature to note is that the domain of f has one more dimension than the domain of
g. Reason is that it is the graph of g, i.e., {(ααα, g(ααα)) : ααα ∈ Uααα} that locally recovers the level set.
That is, the graph of a real valued function is a set that lives in a Euclidean space one dimension
higher than the dimension of the domain of the function. In this case, a point (ααα, g(ααα)) is a point
on the level set of f .

Recall that I began the lecture saying that the solution to any economic system can be represented
as the level set of some function. Recall the simple economic model that I wrote down: S = S(t, p),
D = D(y, p), S = D, where p denotes market price, t denotes a tax rate paid by the producer and
y denotes consumer income level. The solution to this model can be represented as the level set
f(ααα, x) ≡ 0, where f = S −D, ααα = t, y and x = p. The level set of f corresponding to zero is the
set of all (price , tax , income) triples such that the price clears the market for the corresponding
values of the exogenous variables.

Explicitly we have the following relationship

ααα = (t, y) (1)

x = p (2)
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f(ααα, x) = S(t, p)−D(y, p) (3)

g(ααα) = p(t, y) (4)

p(t, y) tells us how p must change with params to keep us on the level set S(t, p)−D(y, p) = 0.

Solve for an initial equilibrium (ᾱαα, x̄) = (t̄, ȳ, p̄) and compute

∂p(t̄, ȳ)

∂t
= −

∂f(t̄,ȳ,p̄)
∂t

∂f(t̄,ȳ,p̄)
∂p

= −
∂S(t̄,p̄)

∂t
∂S(t̄,p̄)

∂p
− ∂D(ȳ,p̄)

∂p

∂p(t̄, ȳ)

∂y
= −

∂f(t̄,ȳ,p̄)
∂y

∂f(t̄,ȳ,p̄)
∂p

= −
∂S(t̄,p̄)

∂y

∂S(t̄,p̄)
∂p

− ∂D(ȳ,p̄)
∂p

We can now estimate the effect of a shift in the parameter vector (t̄, ȳ) on the equilibrium value of
p, i.e., suppose we add a small vector (dt,dy) to the (t̄, ȳ) and want to get an estimate of dp, the
resultant change in p. To get an approximate answer, we evaluate, as usual, the differential at the
magnitude of the change, and obtain

dp = pt(t̄, ȳ)dt + py(t̄, ȳ)dy (5)

= −





∂f(t̄,ȳ,p̄)
∂t

∂f(t̄,ȳ,p̄)
∂p

dt +

∂f(t̄,ȳ,p̄)
∂y

∂f(t̄,ȳ,p̄)
∂p

dy



 (6)

Note that since (6) is a linear function, we can estimate the constants pt(t̄, ȳ) and py(t̄, ȳ) using a
linear regression, i.e., one of the form

y = β′X + ǫ

Implicit function Theorem: the most general version: The most general version says that if you
have m equations in n + m unknowns, you can solve for any m of the unknowns in terms of the
other n, provided that the usual conditions are satisfied.

Interpretation: write your economic model in the form f(ααα;x) = 0; solve for changes in x ∈ R
m

as a function of changes in the parameter vector ααα ∈ R
n. In other words, think of ααα as a vector of

exogenous variables for your model, and of x as a vector of endogenous variables. We are typically
interested in how the endogenous vector x changes as the exogenous vector ααα changes. Write
f(ααα,g(ααα)) and use implicit function theorem to find the slope of g w.r.t. the components of ααα.

Note that the relative size of n and m is completely immaterial. So long as you have m equations
and m endogenous variables, you can have as many or as few exogenous variables as you want.

Theorem: Given f : Rn+m → R
m continuously differentiable, let

Jfx(ααα,x) =












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...

. . .
...
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


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n+1 denotes the n+1’th partial derivative of the function f1, which is, in turn, the first of the

m single-valued functions stacked on top of each other that make up the vector valued function f .
Given (ᾱαα, x̄) ∈ R

n×R
m, if the determinant of Jfx(ᾱαα, x̄)) is not zero, then there exist neighborhoods

Uααα of ᾱαα and Ux of x̄ and a continuously differentiable function g : Uααα → Ux such that for all
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That is, we have an equality between an m×n matrix and an m×m matrix times an m×n matrix.
Observe that when m = 1, this just collapses to the old implicit function theorem.

Fig. 2 illustrates what’s going on. We saw four of the panels of this figure in the lecture math-
Calculus3. Now they have an entirely different interpretation. Consider what the implicit function
theorem tells us for a function f : Rn+m → R

m, where in this case, m = 2, and n = 1. The top two
panels on the left represent, respectively, the level sets of f1 and f2 passing through (ᾱαα, x̄). The
bottom two panels on the left translate the two tangent planes to the origin as usual. The top right
panel plots the two tangent planes together. The bottom right panel is a zoom of the top right
panel: its only purpose is to make clearer that the intersection of the two tangent planes starts out
below the horizontal axis, then rises above it.

We know that as α changes, x1 and x2 have to change also, to keep us on the two level sets we’ve
drawn. More precisely, since the implicit function theorem is (like everything else we do) all about
first order approximations, they need to change in such a way as to keep us on the two tangent

planes. How can this happen? This is where the two right panels of Fig. 2 are helpful. Clearly,
x1 and x2 must change by dx1 and dx2, where these two changes lie in the intersection of the two
tangent planes. Notice significantly that in order to remain “in the crack” between (i.e., in the
intersection of) the two tangent planes, there’s only one direction along the crack you can move.
In our picture, for example, when α increases (decreases), both components of x have to increase

(decrease) in order that we remain in the crack. In other words, for i = 1, 2, dxi

dα
> 0.

How do we interpret the condition that det Jfx 6= 0. It takes pretty good 3-D eyesight to visualize
it, but if you look hard, you’ll see that det Jf

x
= 0 iff the intersection of the two tangent planes

lives in the horizontal plane. In this case, you could move in either direction along the crack from
the origin and remain in the crack. This is the analog of the simple case we looked at when α and
x were scalars: when fx = 0, you could either increase or decrease x as α moved, and stay in the
tangent line. Here, if det Jfx = 0, then both dx and −dx keep you in the crack.
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As an example, consider a slightly more complex economic system, where Si = Si(t, p1...pm),
demand Di = Di(y, p1...pm), etc:

ααα = (t, y)

x = p

f i(ααα,x) = Si(t,p) −Di(y,p)

g(ααα) = p(t, y)

p(t, y) tells us how p must change to keep us on the level set S(t,p)−D(y,p) = 0.

Solve for an initial equilibrium (ᾱαα, x̄) = (t̄, ȳ, p̄) define

Jfp(t̄, ȳ, p̄) =













∂f1(t̄,ȳ,p̄)
∂p1

∂f1(t̄,ȳ,p̄)
∂p2

· · · ∂f1(t̄,ȳ,p̄)
∂pm

∂f2(t̄,ȳ,p̄)
∂p1

∂f2(t̄,ȳ,p̄)
∂p2

· · · ∂f2(t̄,ȳ,p̄)
∂pm

...
...

. . .
...

∂fm(t̄,ȳ,p̄)
∂p1

∂fm(t̄,ȳ,p̄)
∂p2

· · · ∂fm(t̄,ȳ,p̄)
∂pm













and compute












∂g1(ααα)
∂α1

∂g2(ααα)
∂α1

...
∂gm(ααα)
∂α1













=













∂p1(t̄,ȳ)
∂t

∂p2(t̄,ȳ)
∂t
...

∂pm(t̄,ȳ)
∂t













= − Jfp(t̄, ȳ, p̄)
−1













∂f1(t̄,ȳ,p̄)
∂t

∂f2(t̄,ȳ,p̄)
∂t
...

∂fm(t̄,ȳ,p̄)
∂t













etc...

4.4. A last point.

Often one has to take the derivatives of the derivatives you get from the implicit function theorem.
This always caused me a lot of anxiety; do I need to use the implicit function theorem twice? Answer
is, once you have the derivatives from the IFT, then they are just like any other derivatives. If you
need the derivatives of ▽g, where g is defined implicitly, you just do what you always do.
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Figure 2. The implicit function theorem: how x moves when α moves


