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2. Univariate and Multivariate Differentiation (cont)

2.4. Multivariate Calculus: functions from R
n to R

m

We’ll now generalize what we did last time to a function f : Rn → R
m. In general, if you have a

function from R
n to R

m, what is the notion of slope (or gradient or derivative)? Not suprisingly,
it is a m× n matrix. The matrix which is the derivative of a function from R

n to R
m is called the

Jacobian matrix for that function.

Note well: When I talk about the Jacobian of a function from R
n to R

m, I’m referring to the matrix

which is the function’s derivative. When n = m, the Jacobian has a determinant, properly called the

Jacobian determinant. However, there are some books that use the unqualified term Jacobian to refer

to the Jacobian determinant. So you need to be aware of which is which.

1
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Our three stages of calculus:

(1) Calculus: first stage: If f : R → R is differentiable, then we have

(a) The derivative of a function at a point, f ′(x) ∈ R.
(b) The derivative f ′ : R → R is a (generally) nonlinear function
(c) The differential function, Lfx(dx) = f ′(x)dx, i.e., Lfx : R → R is a linear function
This illustrates the isomorphism between L(R,R)and R, i.e.,

Lfx = f ′(x)dx : f ′(x) :: y = αx : α ∈ R

(2) Calculus: second stage: if f : Rn → R is differentiable, then we have
(a) The derivative of a function at a point, ▽f(x) ∈ R

n.
(b) The derivative ▽f : Rn → R

n is a (generally) nonlinear function
(c) The differential function, Lfx(dx) = ▽f(x)dx, i.e., Lfx : Rn → R is a linear function
This illustrates the isomorphism between L(Rn,R)and R

n, i.e.,

Lfx = ▽f(x) · dx : ▽ f(x) :: y = ααα · x : ααα ∈ R
n

(3) Calculus: third stage: If f : Rn → R
m is differentiable, then we have

(a) The derivative of a function at a point, Jf(x) ∈ R
m×n.

(b) The derivative Jf : Rn → R
m×n is a (generally) non-linear function

(c) The differential function, Lfx(dx) = Jf(x)dx, i.e., Lf : Rn → R
m is a linear function

This illustrates the isomorphism between L(Rn,Rm) and R
m×n, i.e.,

Lfx = Jf(x)dx : Jf(x) :: y = Mx : M

Example: A particularly important function from R
n to R

n is the gradient of f : Rn → R. Specifi-
cally, think of the gradient as being n functions from R

n → R, i.e., each of the partial derivatives

of f , stacked on top of each other: ▽f =






f1(·)
...

fn(·)




. The derivative of the gradient function is

the matrix constructed by stacking the gradients of each of these partial derivatives viewed as row

vectors on top of each other, i.e.,






▽f1(·)
...

▽fn(·)




. This derivative of the derivative of f : Rn → R, which

in generic language would be called the Jacobian of the gradient of f , is more concisely known as
the Hessian of f .

More generally, to visualize the derivative and differential associated with an arbitrary function
f : Rn → R

m, it is helpful to think of f , once again, as a vertical stack of m functions f i : Rn → R,
all stacked on top of each other. (Notationaly, the only difference between this and the previous
paragraph is that now we use superscripts rather than subscripts to distinguish the functions from
each other.) It is now natural to think of the derivative of f as a vertical stack of all the derivatives

(gradients) of the f i’s. That is, f ′(·) ≡ Jf(·) =








▽f1(·)
▽f2(·)

...
▽fm(·)







, where each ▽f i(·) is a row vector

consisting of the partial derivatives of f i(·).
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Next think of the differential of ▽f at x, i.e., the linear function Lfx(·) = Jf(x)(·) as a vertical
stack consisting of the differentials of the f i’s at x, i.e.,

Lfx(dx) = Jf(x)(dx) = Jf(x) · dx =








▽f1(x) · dx
▽f2(x) · dx

...
▽fm(x) · dx







.

2.5. Four graphical examples.

We can now apply all the graphical intuitions we’ve developed from the last lecture about the
differential of a real-valued function, to the general case: instead of considering one 3-D picture
like Figure 1 in the previous lecture, you just visualize a stack of m such pictures.
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The following example is intended to illustrate this idea.
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Figure 1. Graph of f

We start out with a function f : R
2 → R. Its gradient,

then, maps R
2 to R

2. The function we are interested in is
graphed in Fig. 1. Note that the function decreases with
both arguments so that the gradient is a strictly negative
vector. We are interested in how the gradient changes in
response to a small change dx in the domain.

To get some intuition, it’s helpful to return to the 3-D dia-
grams that we were looking at in the last lecture, as we do
in Fig. 2 below.

The function being graphed in Fig. 1 is

f(x) =
(
x21/2 − x31/3

)(
x32/3− x22/2

)

whose gradient is

▽f(x) =

[
f1(x)
f2(x)

]

=

[(
x1 − x21

)(
x32/3− x22/2

)

(
x22 − x2

)(
x21/2− x31/3

)

]

so that d▽fx(dx) = Hf(x) · dx =

[
▽f1(x)
▽f2(x)

] [
dx1
dx2

]

, where

▽f1(x) =
[(
1− 2x1

)(
x32/3− x22/2

) (
x1 − x21

)(
x22 − x2

)]
and

▽f2(x) =
[(
x22 − x2

)(
x1 − x21

) (
2x2 − 1

)(
x21/2− x31/3

)]

We’ll evaluate the gradient of this function at the point x = [0.667, 0.667], and consider a shift in
the domain of dx = [−0.1944, 0.2222], which takes us to the point x+ dx = [0.4722, 0.8889].



ARE201-Simon, Fall2015 5

Plugging in the numbers, we obtain

▽f(x) =

[
−0.0274
−0.0274

]

; ▽f(x+ dx) =

[
−0.0401
−0.0075

]

so that ▽ f(x+ dx) −▽ f(x) =

[
−0.0127
0.0199

]

i.e., the first partial becomes more negative while the second becomes less so. Evaluating the
differential of ▽f at x at the magnitude of the change we obtain

d▽fx(dx) = Hf(x) · dx =

[
0.0412 −0.0494
−0.0494 0.0412

] [
−0.1944
0.2222

]

=

[
−0.0190
0.0187

]

Note that when we evaluate the differential, the second component of the approximation is much
closer to the second component of the true change in ▽f than is the first element.

To see the graphical analog of these computations, we’ll now do exactly what we were doing for a
function mapping R

2 to R, except that we are going to look at two 3-D graphs simultaneously. It’s
much easier to understand Fig. 2 if can view it in color, so if you don’t have access

to a color printer, you might want to look at it on a color screen. Here’s a guide to the
colors:• The level of ▽f(x) is indicated by pink lines;

• The level of ▽f(x+ dx) is indicated by purple lines
• The true change in ▽f(·) is indicated by green lines;
• The evaluation of the differential is indicated by red lines

Observe in Fig. 2 that because of the shape of f2(·), the first order linear approximation to f2(x+dx)
is almost perfect, while the first order linear approximation to f1(x + dx) is much less so. This
is reflected in the bottom right panel, where there is a big gap between (f1(x + dx) − f1(x)) and
dfx

1 (dx) and a negligible one between (f2(x+ dx)− f2(x)) and dfx

2 (dx).

We now consider three more examples, using the differential of the gradient of f to explore how
the gradient vector changes as we change x. Since the gradient of f at x is always perpendicular
to the level set of f corresponding to f(x), what we learn about these changes indirectly tells us
about things like the curvature of the level set of f at x. Here are a couple of examples, applied to
the function f(x) = x1x2.
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Figure 2. The differential approximation to a change in gradient
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Figure 3. f is homothetic

Second example: The function f(x) = x1x2, depicted in Fig. 3, is an example of a homothetic
function, i.e., a function with the property that the slopes of its level sets are constant along rays
through the origin. More precisely, if y = αx, for some scalar α ∈ R+, then the slope of the level
set of f through y is equal to the slope of the level set of f through x. Since gradient vectors are
perpendicular to level sets, this implies that the gradients of f at both x and y must point in the
same direction. Let’s check that this is true for this function.

▽f(x) =
[
x2 x1

]

Hf(x) = J ▽ f(x) =

[
0 1
1 0

]

so the differential of ▽f at x is

d▽fx(dx) =

[
0 1
1 0

] [
dx1
dx2

]

In this case J ▽ f(x) is a constant, so that the higher order terms in the Taylor approx are all
zero, so that the first approximation must be exactly correct. Now consider a move dx along the
ray through the origin passing through x, i.e., choose dx = αx, for some scalar α > 0. In this case,
we have

d▽fx(dx) =

[
0 1
1 0

] [
αx1
αx2

]

=

[
αx2
αx1

]

so that, taking a first order approximation to ▽f(x+ αx):

▽f(x+ αx) ≈ ▽ f(x) + d▽fx(dx) =

[
(1 + α)x2
(1 + α)x1

]

But in this case, we can replace the approximation symbol with an equality. That is, the gradient
of f at (1 + α)x is a scalar multiple of the gradient of f at x, confirming homotheticity. (Note
additionally that the gradient gets longer as you move out along a ray through the origin, indicating
that f exhibits increasing returns to scale.)
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x1
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x

dx

x+ dx
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−αx1

αx2

Figure 4. f exhibits diminishing MRS

Third example (see Fig. 4): We’ll now show that f(x) = x1x2 exhibits diminishing marginal rate

of substitution. Recall that the marginal rate of substitution of x2 for x1 is the ratio
∣
∣
∣
f1(x)
f2(x)

∣
∣
∣.

In Fig. 4, this is the length of the horizontal component of the gradient vector divided by the
length of the vertical component. i.e., “run over rise.” Diminishing MRS means that the gradient
vector becomes flatter (steeper) as we move to the northwest (south east) along a level set. We
consider a northwesterly movement of x, and verify that the gradient vector becomes flatter. Fix
x and consider a north-west movement in the domain, orthogonal to the gradient of f . Since,

▽f(x)′ = [x2, x1], a north-west movement orthogonal to this vector would be dx =

[
−αx1
αx2

]

.

(Observe that ▽f(x) · dx = −αx1x2 + αx1x2 = 0, so that indeed dx and ▽f(x) are orthogonal to
each other). Now

d▽fx(dx) =

[
0 1
1 0

] [
−αx1
αx2

]

=

[
αx2
−αx1

]

so that, evaluating the differential at dx

▽f(x+ αx) ≈ ▽ f(x) + d▽fx(dx) =

[
(1 + α)x2
(1− α)x1

]
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or, in other words

▽f(x+ αx) ≈ ▽ f(x) +

[
αx2,
−αx1

]

(see fig. Fig. 4)

i.e., the partial with respect to x1 gets bigger while the partial with respect to x2 gets smaller,
i.e., the gradient gets flatter. I’ve used the approximation symbol above, but as in the preceding
example, the differential in this case gives exactly the right answer, not just an approximation. As
we shall see when we do Taylor theory, the reason we get exactly the right answer in both cases is
that the Hessian is independent of x. However, it gives exactly the right answer to the gradient
at a location that’s not the one we’re interested in. It tells us what the gradient is at x + αx,
which is close to, but not equal to the point on the level set that we’re interested in—the point
((1− α)x1, x

′

2) that lies on the appropriate level set of f—which is vertically above x+ αx.

Fourth example: Consider the demand system: ξ(p) =






ξ1(p)
...

ξn(p)




. The Jacobian of this function

is written as Jξ(·). Note that I’m using superscripts rather than subscripts, to distinguish between
the components of an arbitrary vector-valued function (here the system of demand equations) and
the specific vector valued function which is the gradient, i.e., vector of partial derivatives. Start out
at p̄. Want to know the effect of a change in the price vector from p̄ to p:

ξ(p)− ξ(p̄)

≈ dξ

= Jξ(p̄)(p− p̄)

Explain that Jξ(·) is the matrix constructed by stacking on top of each other the gradients of each
of the demand functions. i.e.,

Jξ(p̄) =






▽ξ1(p̄)′

...
▽ξn(p̄)′






To do a specific example, we are going to set n = m = 2. Start out with a given vector p̄, then
move it to p. We are interested in approximating the difference between the values of the nonlinear
function ξ, evaluated at these two vectors, i.e., ξ(p)− ξ(p̄) = (dp1, dp2). We have

dξ =

(
dξ1

dξ2

)

=

[
▽ξ1(p̄)′

▽ξ2(p̄)′

](
dp1
dp2

)

=

[
ξ11(p̄) ξ12(p̄)
ξ21(p̄) ξ22(p̄)

](
dp1
dp2

)

=

(
ξ11(p̄)dp1 + ξ12(p̄)dp2
ξ21(p̄)dp1 + ξ22(p̄)dp2

)
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Emphasize again that what’s going on in all of these examples is that we are approximating the
true effect of a change in some variable by the value of the differential, evaluated at the change, in
this case a vector.

Do a concrete example with real numbers.

ξ(p) =

(
y/2p1
y/2p2

)

Jξ(·) =

[
−y/2p21 0
0 − y/2p22

]

Set y = 8000; p̄1 = p̄2 = 4; p1 = p2 = 4.1, so that ξ(p̄) = (1000, 1000); ξ(p) = (975.6, 975.6);

Thus p− p̄ = (0.1, 0.1) while ξ(p)− ξ(p̄) = (−24.4,−24.4).

Calculate the approximation:

dξ(·) =

[
−y/2p21 0
0 − y/2p22

](
0.1
0.1

)

=

[
−8000/32 0
0 − 8000/32

](
0.1
0.1

)

=

[
−250 0
0 − 250

](
0.1
0.1

)

= (−25,−25)

So the approximation is within about 2.5% of the right answer.

Graphically, what is going on here is very similar to what we did in the linear algebra section.
That is, we are going to look at the image of dp under the linear function defined by the Jacobian
matrix. Fig. 5 shows the change in price in dp space, the pair of gradient vectors, the image of dp
under the linear function defined by the Jacobian matrix, and finally the original demand vector
together with the approximate location of the new demand vector.

• top left picture is a circle of dp’s. The horizontal axis is the first component of dp, the
vertical axis is the second.

• bottom left picture has the columns of the Jacobian: emphasize that the vectors are each
gradient vectors for each demand function. The label on the horizontal axis is: derivative
w.r.t. first price.

• bottom right is what happens to the dp’s under the function defined by the Jacobian matrix.
• Top right is in quantity space, and show that where the quantity ends up is roughly obtained
by adding the image of dp to the starting vector.
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dp2

dp
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ξ(p̄) + Jξ(p̄)dp

▽ξ1(p̄)

▽ξ2(p̄)
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Figure 5. Demand as a function of price

2.6. Taylor’s Theorem

Approximating the change in a nonlinear function by evaluating the differential is only a good
approximation if the change is small. As we noted last time, we can improve our approximation by
adding in extra terms; instead of doing a linear or first-order approximation, can do a quadratic or
second-order approximation. Consider Fig. 6. The function f(·) is quite well approximated by the
affine function A(·), but it is better approximated by the quadratic function Q(·). And would be
better still approximated by a cubic function, etc.

f(x̄+ dx)− f(x̄) ≈ f ′(x̄)dx (1a)
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Figure 6. Approximating a function with linear and quadratic functions

f(x̄+ dx)− f(x̄)
≈

even better
f ′(x̄)dx+

1

2
f ′′(x̄)dx2 (1b)

f(x̄+ dx)− f(x̄) = f ′(x̄)dx+
1

2
f ′′(x̄)dx2 + a remainder term (1c)

We don’t need to stop at f ′′, we can go on forever, the k’th term in the series will be f (k)(x̄)dxk/k!,

where f (k) denotes the k’th derivative of f (e.g., f (3) = f ′′′) and k! denotes “n-factorial,” i.e.,
k! = k × (k − 1) × (k − 2) × ... × 2. Note that the equality in (1c) is true trivially. What makes
(1c) useful is that we can say something quite specific about the functional form of the “remainder
term, ” as we’ll see, it’s the (k+1)’th order derivative of f , evaluated at a point somewhere between
x̄ and x̄+ dx, multiplied by dxk+1.
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Similarly, if f : Rn → R and is twice continuously differentiable, then

f(x̄+ dx)− f(x̄) ≈ ▽f(x̄) · dx (2a)

f(x̄+ dx)− f(x̄)
≈

even better
▽f(x̄)dx+

1

2
dx′Hf(x̄)dx (2b)

f(x̄+ dx)− f(x̄) = ▽f(x̄)dx+
1

2
dx′Hf(x̄)dx+ a remainder term (2c)

We’ll refer to (2c) as a second order Taylor expansion of f about x̄ in the direction dx. The relationship
betweeen the left-hand and right-hand sides of (2c) is the content of what’s known as Taylor Theory.
We’ll study two theorems which make precise the notion that the right-hand is a useful way of
reformulating the left-hand side.

(1) The first theorem—I’ll call it “global Taylor”—specifies the functional form of the remainder
term

(2) The second theorem—I’ll call it “local Taylor”—identifies conditions under which we can,
in a very special sense, “ignore” the remainder term series.

The “global” version of Taylor’s theorem is known as the Taylor-Lagrange theorem. I’m going to
state it generally for functions mapping R to R and as two special cases for functions mapping R

n

to R. The reason for this difference is:

• when f : R → R, then all of f ’s derivatives are scalars.
• when f : Rn → R, then the first derivative is a vector, the second a matrix, the third is
a hyper-matrix, so you need different notations to deal with first-order Taylor expansions,
second-order expansions, etc., etc.

Theorem (Taylor-Lagrange or Global Taylor): If f : R → R is (K + 1) times continuously
differentiable, then for any 0 ≤ k ≤ K and any x̄, dx ∈ R, there exists λ ∈ [0, 1] such that

f(x̄+ dx)− f(x̄) = f ′(x̄)dx +
f ′′(x̄)dx2

2
+ ... +

f (k)(x̄)dxk

k!
+

f (k+1)(x̄+ λdx)dxk+1

(k + 1)!
(3)

If f : Rn → R is twice continuously differentiable, then ∀x̄,dx ∈ R
n, ∃λλλ1,λλλ2 ∈ [0, 1]n such that

f(x̄+ dx)− f(x̄) = ▽ f(x̄+ λλλ1 · dx) · dx (4a)

= ▽ f(x̄)dx + 0.5dx′Hf(x+ λλλ2 · dx) · dx (4b)

The reason I call this the “global Taylor” theorem is that there’s no restriction on the magnitude
of dx. By contrast, when we get to “local Taylor” we’ll see that the theorem holds only for dx’s
that are sufficiently small. There’s a close analog here between the difference between a global max
and a local max.

The last term in the theorem is called the remainder term; it differs from the other terms in the
expansion because it is evaluated at some point on the line-segment between x̄ and x̄+dx. A priori,
we have no idea of the value of λ. So how can this theorem be of any use to us?

There are two cases in particular in which it is extremely useful. The second is by far the more
important.
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(1) if f is an k + 1’th order polynomial, then the remainder term independent of its first
argument, so that for the k’th order Taylor expansion, the equality holds for all values of
λ. E.g., let k = 1 and consider the quadratic a + bx+ cx2. In this case, in expression (3),

the term f (k+1)(x̄ + λdx) = 2c, for all x, λ, dx and the remainder term, f(k+1)(x̄+λdx)dxk+1

(k+1)! ,

is simply cdx2, for all λ. In summary, when you are working with polynomial functions,
if you take enough derivatives at a single point x, you can recover the exact value of the
function at an arbitrary point in the domain, x+ dx.

(2) if the Hessian of f is globally a definite (or semi-definite) matrix, then you always know
the sign of the remainder term, even though you don’t know the value of λ. E.g., if f
is a strictly concave, twice differentiable function, then Hf(·) is everywhere negative semi-
definite, i.e., the remainder term 0.5dx′Hf(·)dx is always nonpositive. Hence we know that
f(x̄+dx)−f(x̄) is always weakly less than the differential approximation f(x̄)+▽f(x̄)·dx.
This fact has significant implications: it means that when Hf(·) is everywhere negative semi-
definite, the first order condition ▽f(x̄) = 0 is both necessary and sufficient for x to be a
(weak) global maximum.

Returning to functions where λ really does make a difference, you might think that if the (k+1)’th
derivative of f at x̄ were really huge, then the remainder term, which is determined by this term,
would be really huge also, and thus mess up your approximation in the sense that the remainder
term would be much larger in absolute value than the terms that have been written out explicitly.
However, if an important caveat is satisfied, it turns out that any order of the Taylor expansion
will be “good enough”—in the sense of determining the sign of the left hand side—provided that
the length of dx is small enough. The caveat is that the k′th terms in the approximation must
be non-zero. When n > 1 and k is odd—in particular when k = 1—whether or not this caveat is
satisfied depends on the direction of dx. Indeed, if the domain of f is Rn, n > 1, it will always fail
to be satisfied for some direction(s) dx (since there always exists dx such that ▽f(x) · dx = 0).

Theorem Taylor-Young’s Theorem (Local Taylor): Let f : R → R be (K+1) times continuously

differentiable and fix x̄ ∈ R. For any 0 ≤ k ≤ K, if f (k)(x̄) 6= 0
︸ ︷︷ ︸

k’th term non-zero caveat

there exists ǫ > 0 s.t.

∀dx ∈ R with 0 < |dx| < ǫ,
∣
∣
∣ f ′(x̄)dx +

f ′′(x̄)dx2

2
+ ... +

f (k)(x̄)dxk

k!
︸ ︷︷ ︸

k’th order Taylor expansion

∣
∣
∣ >

∣
∣
∣
f (k+1)(x̄+ λdx)dxk+1

(k + 1)!
︸ ︷︷ ︸

Remainder Term

∣
∣
∣ (5a)

Let f : R
n → R be thrice continuously differentiable and fix x̄ ∈ R

n. For any any dx ∈ R
n

such that ▽ f(x̄)dx 6= 0
︸ ︷︷ ︸

1st term non-zero caveat

∃ǫ > 0 s.t. if ||dx|| < ǫ,

| ▽ f(x̄)dx| > |0.5dx′Hf(x̄+ λλλ2 · dx)dx| (5b)

(5c)

Similarly, if dx′Hf(x̄)dx 6= 0
︸ ︷︷ ︸

2nd term non-zero caveat

, ∃ǫ > 0 s.t. if 0 < ||dx|| < ǫ

| ▽ f(x̄)dx + 0.5dx′Hf(x̄)dx| > |remainder term| (5d)
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It should be emphasized that if k > 1, then the theorem has content even if the first k−1 terms are
zero, provided the k’th term isn’t. To see the significance of the “k’th term nonzero caveat” consider
an unconstrained optimum of the function. In this case, the first order term in the Taylor series
is necessarily zero, since f ′(x) or ▽f(x) is necessarily zero, demonstrating that for this important
case, the “k = 1” version of Local Taylor is necessarily useless to us.

The intuition for Local Taylor is clearest when f maps R to R and (a) the first thru k− 1’th order

terms are zero; and (b) the k’th order term, f(k)dxk

k! , is nonzero. By the Taylor Lagrange theorem,
we have in this case that for some λ ∈ [0, 1],

f(x+ dx)− f(x) =
f (k)(x̄)dxk

k!
︸ ︷︷ ︸

k’th order Taylor expansion

+
f (k+1)(x+ λdx)dxk+1

(k + 1)!
︸ ︷︷ ︸

Remainder term

=
dxk

k!

(

f (k)(x̄) + dx
f (k+1)(x+ λdx)

(k + 1)

)

(6)

Consider dx > 0. If dx is sufficiently small, then the first term in parentheses is going to dominate
the second term, and (f(x+ dx)− f(x)) is going to have the same sign as f (k)(x).

When k is odd, there is a striking difference in the applicability of Local Taylor depending on
whether the domain of f is R or R

n. For example, set k = 1. In the former case, the condition
is that f ′(x) 6= 0; in the latter it is that ▽f(x)dx 6= 0. I.e., in the latter case, it’s possible that
the analog of f ′(x) 6= 0 is satisfied—i.e., ▽f(x) 6= 0—but the “1st term non-zero caveat” for the
theorem fails. Thus, when n = 1, whether or not the caveat f ′(x) 6= 0 is satisfied depends only on
x. But when n > 1, whether or not the caveat ▽f(x)dx 6= 0 is satisfied depends on both x and the
direction of dx. Indeed, if the domain of f is Rn, n > 1, the caveat will always fail to be satisfied
for some direction(s) dx (since there always exists some dx such that ▽f(x̄) · dx = 0).

Relationship between the Two Taylor Theorems: We’ll consider the scalar version:

• Global:

f(x̄+ dx)− f(x̄) = f ′(x̄)dx + ... +
f (k)(x̄)dxk

k!
+

f (k+1)(x̄+ λdx)dxk+1

(k + 1)!

• Local: If dx is “small enough” and the “k’th term nonzero caveat” is satisfied:
∣
∣
∣f ′(x̄)dx + ... +

f (k)(x̄)dxk

k!

∣
∣
∣ >

∣
∣
∣
f (k+1)(x̄+ λdx)dxk+1

(k + 1)!

∣
∣
∣

• Implication:

f(x̄+ dx)− f(x̄) = f ′(x̄)dx + ... +
f (k)(x̄)dxk

k!
︸ ︷︷ ︸

k’th expansion

+
f (k+1)(x̄+ λdx)dxk+1

(k + 1)!
︸ ︷︷ ︸

Remainder
∣
∣k’th expansion

∣
∣ >

∣
∣Remainder

∣
∣ implies

sgn(f(x̄+ dx)− f(x̄)) = sgn

(

f ′(x̄)dx + ... +
f (k)(x̄)dxk

k!

)

• Conclusion: If |dx| is small, can sign the LHS without knowing anything about Remainder

Illustration of Taylor’s theorem for k = 1: The purpose of this example is to illustrate, that



16 CALCULUS3: TUE, SEP 15, 2015 PRINTED: SEPTEMBER 15, 2015 (LEC# 6)

f

x1

x2

▽f(x) = (6, 6)

v =

[
1

−(1 + δ)

]

Level set of f

ǫv

Figure 7. 1st order approx “works” if ǫ ≈ 0

(1) provided the direction of movement dx isn’t orthogonal to the gradient, in which case the
caveat of Taylor’s theorem would fail for k = 1, then the sign of the linear approximation to
the change in f will agree with the sign of the true change in f , provided that the magnitude
of the shift dx is sufficiently small.

(2) whenever there exists dx such that dx′Hf(x)dx 6= 0, there will never exist an ǫ > 0 such
that for any dx with ||dx|| < ǫ, the sign of the linear approximation to the change in f will
agree with the sign of the true change in f .

this implies that in order to be sure that the sign of the first order Taylor approximation agrees
with the actual sign of f(x̄ + dx) − f(x̄), you must first choose the direction h and then de-
termine the supremum of the lengths of the vector dx = ǫh for which the first order Taylor

approximation has this property. Suppose that f(x) = 3x21 + 3x22, so that ▽f(x) =

[
6x1
6x2

]

and

Hf(x) =

[
6 0
0 6

]

. When x̄ = (1, 1), then

f(x̄+ dx)− f(x̄)

= ▽f(x̄)dx+ 1
2dx

′Hf(x̄)dx

=
[
6 6

]
dx+ 1

2dx
′

[
6 0
0 6

]

dx

= 6
(
dx1 + dx2 + 1

2(dx
2
1 + dx22)

)

Notice that the entire Taylor expansion has exactly two terms, so that instead of an approximation
sign in the display above, you have an equality. That is, when k = 2, there is no remainder
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term. Next note that if v =

[
1
−1

]

, and dx = ǫv, for some ǫ ∈ R, then the first term in the

Taylor expansion is zero, while the second is 6ǫ2. Thus the first term in the Taylor expansion is
dominated in absolute value by the second, regardless of the length of ǫ. Fortunately, however, this
isn’t a counter-example to Local Taylor since in the direction v, the first order term in the Taylor
expansion is zero, so that when k = 1, the “first term nonzero caveat” is not satisfied.

Now fix an arbitrary δ > 0 and consider v =

[
1

−(1 + δ)

]

. With this modification, the first term

of the Taylor expansion in the direction v is −6δ < 0. Thus, the caveat in Taylor’s theorem is
satisfied for k = 1, and so the theorem had better work for this k. Indeed, we’ll show that there
exists ǭ > 0 such that if ǫ < ǭ and dx = ǫv, then | ▽ f(x̄)dx| > |12dx

′Hf(x̄)dx|, or, in other words,
the sign of f(x̄+ dx)− f(x̄) will agree with the sign of −6ǫδ.

Let dx = ǫv, for ǫ > 0. Observe that the first term in the Taylor expansion is negative (−6δǫ < 0),
while

f(x̄+ dx)− f(x̄) = 6

(

dx1 + dx2 +
1

2
(dx21 + dx22)

)

= 6

(

−ǫδ +
1

2
[ǫ2 + ǫ2(1 + δ)2]

)

= 6ǫ
(

− δ + ǫ[δ + 1 + δ2/2]
)

= 6ǫδ
(

− 1 + ǫ[1 + 1/δ + δ/2
︸ ︷︷ ︸

→∞ as δ→0

]
)

Note that if ǫ > 0 is, say greater than unity, then f(x̄+dx)− f(x̄) is positive. On the other hand,
provided that ǫ < ǭ = 1

1+1/δ+δ/2 then f(x̄+ dx)− f(x̄) will be negative, just like the first term in

the Taylor expansion!

I’ll now give an alternative, purely graphical, explanation of why it is impossible to pick an ǫ > 0
such that the first order Taylor expansion will give the correct sign for all vectors of length not
greater than ǫ. In Fig. 8, the circle centered at x is of radius ǫ. Note that if you consider a vector
of length ǫ that points into one of the two dashed cones emanating from dx (for example vbad),
then it will pass thru the lower contour set of f corresponding to x and out the other side into
the upper contour set. On the other hand, since vbad makes an obtuse angle with ▽f(x), the
differential ▽fxdx is negative, i.e., gives the incorrect sign. For a vector such as vgood, which lies
outside the dashed cones, the sign of the differential is the same as the sign of the actual difference
f(x+ dx)− f(x).
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f

x1

x2

▽f(x)

vbadvgood

Level set of f

Figure 8. No ǫ > 0 works for all directions


