
ARE201-Simon, Fall2015

CALCULUS2: THU, SEP 10, 2015 PRINTED: SEPTEMBER 9, 2015 (LEC# 5)

Contents

2. Univariate and Multivariate Differentiation (cont) 1

2.3. Partial, Directional and Total derivatives 2

2.3.1. Directional derivatives 2

2.3.2. Computing Directional Derivatives from Partial Derivatives 4

2.3.3. A nondifferentiable function whose partial derivatives exist 9

2.3.4. Second Partials vs Definiteness of the Hessian 9

2.3.5. Total Derivative 12

2. Univariate and Multivariate Differentiation (cont)

Key Points:

(1) Defn of a directional derivative: fh(x) = lim
|k|→∞

(

f(x0+h/k)−f(x0)
)

||h||/k (equation (1) on p. 3).

(2) Defn of a differentiable function: f : Rn → R is differentiable at x0 if ▽f(x0) exists and if
for all h ∈ R

n,

lim
|k|→∞

(

f(x0 + h/k)− f(x0)
)

− ▽ f(x0) · h/k
||h||/k = 0 (equation (3) on p. 4)

or equivalently

lim
|k|→∞

(

f(x0 + h/k)− f(x0)
)

||h||/k = ▽ f(x0) ·
h

||h|| (equation (4) on p. 4).

(3) A sufficient condition for differentiability of a function is that each of its partial derivatives
is a continuous function.

(4) Relationship between directional derivatives and total derivatives.

1
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Figure 1. Multiple slices of the “cake” in the top left panel

2.3. Partial, Directional and Total derivatives

2.3.1. Directional derivatives. Suppose we have a function f : Rn → R and we want to know how
it behaves as you move out in some direction starting from some given point in the domain x0. In
particular, want to know the slope of f in this direction.

Example: The directional derivative of f in the direction ei—i.e., the vector whose i’th component
is 1, and others are zeros—is just the i’th partial derivative of f .

Intuitively, imagine the graph of f is in fact a cake. Now “cut” the cake in the direction we’re
interested in, so that the cut passes through x0. Look at the cross-section of the cake you’ve
obtained. It’s just like the graph of a function from R to R, and, if the graph is smooth, it has a
slope. That slope is going to be the directional derivative in the direction you’ve selected. Fig. 1
illustrates: consider the edge of each “slice” to be the graph of a one-dimensional function. Having
said that, it’s not so straightforward to compute it. For computational purposes, it’s useful to
extrapolate from the following facts:

• if f : R → R is differentiable, then the slope of f at x equal to the differential of f at x,
evaluated at 1, i.e., f ′(x) = dfx(1).

• if f : Rn → R is differentiable, then the i’th partial derivative of f at x is equal to the

differential of f at x, evaluated at ei, the i’th unit vector, i.e., eik =

{

1 if k = i

0 if k 6= i
, i.e.,

fi(x) = dfx(ei).
• by analogy if f : Rn → R is differentiable, then the directional derivative of f at x in an
arbitrary direction h had better be equal to the differential of f at x, evaluated at the
(unique) unit length vector that points in the direction h. If this weren’t true, then partial
derivatives would not be special cases of directional derivatives!
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This observation motivates why there’s an ||h|| in the denominator of the definition below: note
that if the h in the numerator is of unit length, then that term disappears, if not, the norm makes
the necessary adjustment.

Definition: Given f : Rn → R and h ∈ R
n, the directional derivative of f at x0 in the direction h is

given by1

lim
|k|→∞

(

f(x0 + h/k)− f(x0)
)

||h||/k (1)

Notice that the directional derivative of f at x0 in the direction h has the same magnitude but the
opposite sign from the directional derivative of f at x0 in the direction −h.

The notation in (1) is shorthand for the following idea: there exists some scalar c ∈ R such that for
any sequence, {k(n)} with the property that |k(n)| increases without bound with n, the expression
in (1) must converge to c. To determine whether a directional derivative exists, it is instructive but
not sufficient to consider whether the limit (1) exists for the particular sequence k(n) = n. You
also have to worry about sequences that approach x0 from the opposite direction, e.g., k(n) = −n.

Almost everybody freaks out because they don’t see what the ||h|| is doing in the denominator.
It’s easy to see why it’s there if you compare this definition to that of a partial derivative, i.e.,

df(x)

dx1
= lim

|k|→∞

(

f(x1 + 1/k, x2, ..., xn)− f(x)
)

1/k
(2)

This is just the familiar: take the limit of rises over runs. Notice in both numerator and denomi-
nator, however, you are working with 1/k. Compare this to the definition of directional derivative:
in the numerator, you have an h of unspecified length. So you have to compensate for this in the
denominator. An alternative definition of directional derivative would have been to start with a
unit length vector h in the numerator, then in the denominator you could have written 1/k, (which
would of course been in this case the same as ||h||/k).

Here’s a computed example of why, if you didn’t divide by ||h|| you would get the wrong answer.
Let f = x1x2, x0 = (1, 1), First, let’s move in the direction h = ( 1√

2
, 1√

2
), i.e., h is already a unit

length vector, so that in the denominator ||h||/k = 1/k. We have

lim
|k|→∞

(

f(x0 + h/k)− f(x0)
)

1/k
= lim

|k|→∞

(

(

1 + 1
k
√
2

)2
− 12

)

1/k

= lim
|k|→∞

(

1 +
√
2
k + 1

2k2 − 1
)

1/k
= lim

|k|→∞
(
√
2 + 0.5/k) =

√
2

1 An alternative defn is lim
|k|→∞

(

f(x0+h/(k||h||)−f(x0)
)

1/k
. The difference is that in this alternative defn, the

the norm of h is moved into the numerator. For a proof that the two definitions are equivalent, see
/home/simon/teaching/classes/mathLectures/AltDirectionalDerivDefn.tex
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This calculation is done in the correct way, so
√
2 is the correct answer for the derivative of f at

x0 in the direction h. Next we’re going to take ηηη to be the non-unit vector (1, 1) pointing in the
same direction as h, but we’re going to divide by 1/k instead of ||ηηη||/k. I emphasize AGAIN this
this is the WRONG thing to do, I just am doing it to convince you of why you have to divide by
the norm of the η vector.

lim
|k|→∞

(

f(x0 + ηηη/k)− f(x0)
)

1/k
= lim

|k|→∞

(

(

1 + 1
k

)2 − 12
)

1/k

= lim
|k|→∞

(

1 + 2
k + 1

k2 − 1
)

1/k
= lim

|k|→∞
(2 + 1/k) = 2

I.e., I get the WRONG answer, by a factor of
√
2
2 , which is exactly the norm of ηηη. The point is

that if you don’t have the right denominator throughout the sequence, you get a sequence that’s
too big—in our example this sequence is {2 + 1/k} instead of {

√
2 + 0.5/k}, and hence converges

to something that’s too big, i.e., 2 instead of
√
2.

2.3.2. Computing Directional Derivatives from Partial Derivatives. Computing directional deriva-
tives can be a huge pain. It turns out, however, that provided the function f is differentiable, you
can infer any directional derivative just by knowing the partial derivatives of f . Specifically:

Definition: a function f : Rn → R is said to be differentiable at x0 if ▽f(x0) exists and if for all
h ∈ R

n,

lim
|k|→∞

(

f(x0 + h/k)− f(x0)
)

− ▽ f(x0) · h/k
||h||/k = 0 (3)

Note that (h/k)∞k=1 is a sequence of vectors, all pointing in the same direction, whose lengths shrink
to zero. Also, the sequence of k’s can change sign, just as in the primitive definition of the derivative
of a function defined on R.

This definition says, literally, that a function is differentiable at x0 if you can put a flat board up
against the graph of the function, so that it touches the graph vertically above/below x0, and if

nearby, the board is very close to the graph (cf what happens when you put a board on top of a
Hershey Kiss, or to the side of a pin-wheel). Fig. 2 illustrates how you put a flat board against a
graph. Note however, that the relationship between the graph and the board may be less pretty
than in this figure: the board could be above the graph on one side of x0 and below it on the other
side.2 The important thing is that the board and the graph are very close in a neighborhood of x0.
To get a feel for what it means for the board to be close to the graph, try putting a board near the
graph in Fig. 3 below, vertically above zero. You just can’t do it.

Since the second term on the left hand side of (3), i.e., ▽f(x0)·h/k
||h||/k , clearly does not depend on k,

we can rewrite definition (3) as:

lim
|k|→∞

(

f(x0 + h/k)− f(x0)
)

||h||/k = ▽ f(x0) ·
h

||h|| (4)

2 The board is a first order approximation to the function. Whether the board is above the graph, below it, or cuts through
it depends on the definiteness of the Hessian. If the Hessian is positive (negative) definite, the board will be above (below)
the graph. If it is indefinite, then the board will actually cut through the graph. It if is semi-definite, you have to check the
third-order terms in the Taylor expansion.
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Figure 2. Flat board against the graph

Since the length of the vector h
||h|| is unity, a verbal version of this definition is: f is differen-

tiable at x0 if for every direction h, the directional derivative of f at x0 in the direction h, i.e.,

lim
k→∞

(

f(x0+h/k)−f(x0)
)

||h|| is equal to the value of the differential function, when evaluated at the unique

unit length vector pointing in the direction h. Some times in class I have sloppily talked as if the

vectors h and −h “point in the same direction,” i.e., that all that matters is the angle of the line thru

the origin on which h lies, and this line stays the same when you flip h through 180 degrees. This was

bad sloppy talk, as this definition clearly indicates. From now on, I’ll try to consistently say that h and

−h “point in opposite directions.”

There is yet another way of saying what differentiability means, this time in terms of linear algebra.
Loosely, a function is differentiable at x0 if the directional derivatives of f at x0 live in the vector

space spanned by the partial derivatives. This statement is not precise: the following theorem
makes it correct. Recalling the definition above of ei, the unit vector pointing in the i’th direction,
we have

Theorem: a function f : Rn → R is differentiable at x0 iff ▽f(x0) exists and for every h ∈ R with
||h|| = 1, the pair (h, fh(x0)) belongs to the n dimensional vector subspace of Rn+1 spanned by
the set of vectors {

(

ei, fi(x0)
)

: i = 1, ...n}.

Note that this is exactly the same as the following:

Theorem: a function f : Rn → R is differentiable at x0 iff ▽f(x0) exists and for every h ∈ R

with ||h|| = 1, the pair (h, fh(x0)) can be written as a linear combination of the set of vectors
{
(

ei, fi(x0)
)

: i = 1, ...n}.

(Note that (h, fh(x0)) and
(

ei, fi(x0)
)

both live in R
n × R = R

n+1.)
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Letting I = [e1, ..., ei, ..., en] denote the n × n identity matrix, the above theorem is saying that f
is differentiable at x0 iff for every h ∈ R

n with ||h|| = 1,
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Thus, this theorem simplys restate the definition of differentiability in vector space language. The
span of the set of vectors {

(

ei, fi(x0)
)

: i = 1, ...n} ⊂ R
n+1 is precisely the tangent plane translated

back to the origin. The theorem says that a function is differentiable iff for each direction h in the
unit circle, the directional derivative fh(x0) is the height of the tangent plane vertically above h.

Take an example: f(x) = x1x2, x̄ = (1, 2), ▽f(x) = (x2, x1), ▽f(x̄) = (2, 1), h = ( 1√
2
, 1√

2
). Now
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On the other hand, consider the function graphed in Fig. 3 below. At the origin, both partials
for this function are zero, so that span of {

(

ei, fi(0)
)

: i = 1, 2} is the horizontal plane. However,
almost none of the (h, fh(0))’s live in this plane.

So far, we have been talking about differentiability at a point. We now define what it means for a
function to be differentiable.

Definition: a function f : Rn → R is said to be differentiable if it is differentiable at every point in
its domain.

Simon & Blume make a particularly egregious mistake when they say what differentiability is.
They don’t have a formal definition, but their very sloppy choice of words imply that a function is
differentiable at x0 if ▽f(x0) exists. They rarely make egregious mistakes, but in this case... This
illustrates the perils of using friendly wordy definitions (something I, of course, would never do)
rather than writing out the math.

Obviously, it could be a big pain to check that for every unit length vector h, the differential of
f at x0, evaluated at h, coincides with the directional derivative of f at x0 in the direction h.
Fortunately, we don’t have to do this, because of the following sufficiency theorem.

Theorem: Let f : Rn → R. Suppose that all partial derivatives of f exist and are continuous in a
neighborhood of x0 ∈ R

n. Then f is differentiable at x0.

A function f defined on an open set U is said to be continuously differentiable if▽f(·) is a continuous
function on U . (Notice that there’s an abuse of terminology here: the whole point of the definition of
differentiability is that it’s about much more than just the partials. Yet continuous differentiability, a
more stringent concept, concerns only the partials!) The above theorem establishes that continuous
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Figure 3. Graph of f : partials convey no information about other directional derivatives

differentiability is a sufficient condition for differentiability. It is not, however, a necessary condition

for differentiability. To see this, consider the function f(x) =

{

x2 sin(1/x) if x 6= 0

0 if x = 0
. As Fig. 4
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Figure 4. A differentiable function that is not continuously differentiable

suggests, the graph of f(·) (plotted the left panel) has a tangent plane at zero—you have to use your
imagination a bit to visualize it—but the derivative f(·) (given by f(x) = 2x sin(1/x) − cos(1/x)
and plotted in the right panel) oscillates increasingly wildly as you approach zero, and so is not
a continuous function at zero. The set of continuously differentiable functions is denoted by C

1.
More generally, the set of i-times continuously differentiable functions (i.e., each of the first partials
are continuously differentable, etc., etc) is denoted by C

i.

Returning to the relationship between directional derivatives and the gradient for well-behaved
functions, the following example illustrates that provided a function is differentiable, then comput-
ing a directional derivative in the primitive way—i.e., the left hand side of (4)—will yield the same
answer as computing it as a linear combination of partials, i.e., the right hand side of (4).

Example: Let f = x1x2, x0 = h = (1, 1). We’ll compute the directional derivative of f at x0 in the
direction h, both ways:

(1) The direct way:

lim
|k|→∞

(

f(x0 + h/k)− f(x0)
)

||h||/k = lim
|k|→∞

(

(

1 + 1
k

)2 − 12
)

√
2/k

= lim
|k|→∞

(

1 + 2
k + 1

k2 − 1
)

√
2/k

= lim
|k|→∞

2 + 1/k√
2

=
√
2

(2) The indirect way: (right hand side of (4))

▽f(x0) ·
h

||h|| =

[

1 1
]

·
[

1 1
]′

√
2

=
2√
2

=
√
2
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Figure 5. Graph of f1(·)

A question came up in class one year: Letting C denote the unit circle, consider the mapping
fx
h : C → R that maps each vector in the circle to the corresponding directional derivative, evaluated
at x. Is this mapping linear? Answer no, since as we’ve discussed, the definition of linear only
makes sense if both the domain and codomain of the function are vector spaces. What is true is
that the graph of f is a subset of the graph of a specific linear function, i.e., the differential of f
evaluated at x. In other words, if f : Rn → R is differentiable, then the graph of fh : C → R is
contained in a particular n-dimensional vector subspace of of Rn+1.

2.3.3. A nondifferentiable function whose partial derivatives exist. Consider the function

f(x, y) = − γ(x2 + y2) +

{

xy

sgn(x−y)
√

|x2−y2|
if |x| 6= |y|

0 otherwise

where γ > 0, is graphed in the top panel of Fig. 3. (sgn(·) is a function that is 1 if the argument
is positive, -1 if negative and zero if zero.) Look at the function in a neighborhood of zero. The
function is continuous at zero, indeed, has beautifully behaved cross sections in every direction,
which are strictly concave in every direction (a typical cross-section is graphed in the bottom panel
of Fig. 3). In particular, the partials w.r.t. x and y both exist and▽f(0) = 0. To see this, note that

for all α 6= 0, f(α, 0) = f(0, α) = 0/α = 0. Hence lim
|x|→0

(

f(0+(x,0))−f(0)
)

||x|| = lim
|y|→0

(

f(0+(0,y))−f(0)
)

||y|| = 0.

However, as Fig. 3 indicates, these partials provide no information about what the slope of f is
when you move in any direction other than parallel to an axis. To see that the requirement for
differentiability fails, note first from the graph that you clearly can’t put a tangent plane on top of
the graph at (0, 0). More precisely, note that the directional derivatives don’t live in the vector space
spanned by the the vectors {

(

ei, fi(x0)
)

: i = 1, ...n}. Also, observe that the sufficient condition for
differentiability fails, i.e., neither partial is a continuous function in a neighborhood of zero. (The
graph of the first partial is plotted in Fig. 5.)

2.3.4. Second Partials vs Definiteness of the Hessian.

Suppose f : Rn → R. The gradient ▽f : Rn → R
n is the vector-valued mapping that takes

each point in the domain of f to its vector of partial derivatives. If f is twice differentiable then
each partial derivative fi itself has a vector of partial derivatives, (fi1(·), ..., fii(·), ..., fin(·)), or,



10 CALCULUS2: THU, SEP 10, 2015 PRINTED: SEPTEMBER 9, 2015 (LEC# 5)

-0.5-0.4-0.3-0.2-0.10

x

0.10.20.30.40.5
-0.5

0

y

0.25

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

0.2

0.5

f

Figure 6. Negative second partials don’t imply a local maximum

more concisely, ▽fi(·). For now, we’ll just mechanically stack all of these n gradient vectors on

top of each other to construct the Hessian of f , i.e., Hf(x) =











▽f1(x)
▽f2(x)

...
▽fm(x)











. The Hessian of f ,

or, equivalently, the derivative of the gradient of f is an example of the derivative of a function
from R

n to R
n. We’ll talk more about these objects in the next lecture. For given x ∈ R

n, the
matrix Hf(x) is a point in R

n × R
n. Given a twice differentiable function, f , the hessian mapping

Hf : Rn → R
n ×R

n maps every point in R
n to the matrix of its second partial derivatives.

The best known use of the Hessian is that it enables us to distinguish between the maxima, the
minima and the “neither” of a function f : Rn → R.

Question: Suppose I know that the slope of f is zero at x∗. What additional information about
the slope of f at x∗ do I need to know that f attains a strict local maximum at x∗?

First shot at an answer:3 A first guess is that the slopes of all of the partial derivatives have to
be decreasing, i.e., the second order partials must all be negative. Turns out however that it isn’t
enough. Reason is that while the first partials of a differentiable function provide all the information
you need to compute directional derivatives (i.e., directionals live in the vector space spanned by
the partials, etc), the second partials give you no information whatsoever about the slopes of the
other directional derivatives. Imagine a graph where if you took circular cross-sections, i.e., sliced
the graph with a circular cookie-cutter, what you got when you laid out the cut was a sine curve,
with zeros corresponding to the points at the axes. Here you might think you had a weak local
maximum if you just looked at the second-order partials, but you can’t put the board on top. More
concretely, consider Fig. 6, which is the graph of the function f(x, y) = 1.5xy− (y2 +x2)/4.

To see what’s going on with this function, we’ll plot the second derivatives of the diagonal cross-
sections as we work our way around the unit circle. More precisely, for each angle θ ∈ [0, 360◦],
denote by fθθ(0, 0), the slope of the slope of the cross-section you get when you slice the graph of
the function plotted in Fig. 6 in the direction (sin(θ), cos(θ)). Observe that along the directions
parallel to the axes, i.e., when θ ∈ {0◦, 90◦, 180◦, 270◦, 360◦}, the slope of the slope of the diagonal

3 Many thanks to YoungDong Liu for help with this section.
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Figure 8. Cross sections of f

cross-section is negative, while along the direction parallel to the positive 45 degree line, i.e., when
θ ∈ {45◦, 225◦, }, it is positive. Note well that this picture is not a pathological one like Fig. 3. All of
the derivatives in sight are nicely continuously differentiable. So, we’ve established that negativity
of the second partials, i.e., fii < 0, for each i = 1, ...n, isn’t enough to guarantee fhh < 0, for each
direction h, and hence isn’t enough to guarantee a maximum.

So what do we need to guarantee a maximum at x
∗? A sufficient requirement is that the second

derivative of the function f evaluated at x∗ (which is a matrix) is negative definite. What does this
mean? As we saw in the linear algebra section, it means that as you move dx in any direction away
from x

∗, dxmakes an obtuse angle with its image under the linear mappingH(x∗). Diagramatically
it means that you can put a flat board on top of the graph of the function at x

∗ and this graph
will be everywhere below the board. Note that in figure 6, you can’t do this. Alternatively, if you
were to take a function whose second derivative were negative definite and repeat the exercise we
did to produce Fig. ??, the graph we would obtain would be weakly below the origin for all values
of θ.

Similarly, to establish that f attains a local minimum at x∗, need to show that you can put a flat
board below the graph of the function at x∗ and the graph is everywhere above the board.
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2.3.5. Total Derivative. This is a concept that’s widely used in economics, but it’s mis-named: it’s
not really a “derivative.” Specifically, it is “like” a directional derivative, but it’s not a directional
derivative. The “total” part of the name is also problematic, because people sometimes get con-
fused between the total derivative and the total differential. When people talk about the “total
differential,” they are really just talking about “the differential”.

Often, the arguments of a function depend on each other: we have a function f : R2 → R which
depends on x and w, but w itself depends on x, so we write f(x,w(x)). If we want to know how f
will change when x changes, we need to take into account that w will change too.

General defn: The total derivative of f : Rn → R with respect to xi is written
df(x)
dxi

(cf the partial

derivative sign “∂”) and is defined by

df(x)

dxi
= f1(x)

∂x1
∂xi

+ ...+ fi(x) + ...+ fn(x)
∂xn
∂xi

Economic example: the firm’s profit function π(p, q(p)) = pq(p), where q(p) is the optimal output

choice given p. In this case, dπ(p,q(q))
dp = ∂π(p,q(p))

∂p + ∂π(p,q(p))
∂q

dq
dp = q(p) + pq′(p).

Total derivative, directional derivative and differential: What’s the relationship between these three
concepts? I’ll answer this in the context of the example of the firm’s profit function π(p, q(p)) =
pq(p),

• the total derivative of π(p̄, q(p̄)) tells you how much π changes when you increase p by one

unit.
• the directional derivative of π(p̄, q(p̄)) in the direction (dp, q′(p)dp) tells you how much π
changes when you move one unit in length from (p̄, q(p̄)) in the direction (dp, q′(p)dp).

• but if you increase p by one unit, you don’t move one unit of length in the direction
(dp, q′(p)dp); in fact, you move || (1, q′(p)))| | units of length in this direction!

• hence the total derivative of π(p̄, q(p̄)) is the differential of π at (p̄, q(p̄)), evaluated at the
magnitude of the change, i.e., at (1, q′(p)).

• alternatively, the total derivative is the directional derivative in the direction (1, q′(p)),
multiplied by the length of the change, i.e., by || (1, q′(p)))| |.
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Example: The following example illustrates the above relationships. Consider a firm that supplies
the amount q(p) =

√
p and incurs no costs, so that the firm’s profit function is π(p, q) = pq(p).

Set p = 1 and note that q(p) = 1 while q′(p) = 0.5√
p so that q′(1) = 0.5. Note also that ▽π(1, 1) =

(q, p) = (1, 1). All four of the routes below tell you how much π goes up when you increase p by
one unit, and q then increases by q′(p). Happily all four routes give you the same answer.

(1) The derivative of π, viewed as a function of p only:

dπ(p, q(p))

dp

∣

∣

∣

∣

p=1

=
d

dp
(p
√
p)

∣

∣

∣

∣

p=1

=

(√
p+

0.5p√
p

)∣

∣

∣

∣

p=1

= 1.5

(2) The total derivative of π, viewed as a function of p and q(p):

dπ(p, q(p))

dp
=

∂π(p, q(p))

∂p
+

∂π(p, q(p))

∂q

dq

dp
= 1 + 1 ⋆ 0.5 = 1.5;

(3) The differential of π(p, q) at (1, q(1)), evaluated at h = (1, q′(1)):

▽π(1, 1) · h =
[

1 1
]

·
[

1 0.5
]′

= 1.5;

(4) The directional derivative of π(p, q) in the direction h = (1, q′(p)):

▽π(1, 1) · h

||h|| = (q(p), p) · h

||h|| =

[

1 1
]

·
[

1 0.5
]′

√
1.25

=
1.5√
1.25

Now if you add to (1, 1) a vector of length
√
1.25 that points in the direction h = (1, q′(p)) you

increase π by

1.5√
1.25

√
1.25 = 1.5;


