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Abstract

A substantial portion of the macroeconomics literature suggests that demand shocks

have noteworthy e↵ects on real output. One prevailing theory for rationalizing the

large e↵ects of demand shocks on output is that nominal prices are not perfectly

flexible. Our work aims to extend the empirical literature studying price stickiness

by using models and techniques from Bayesian statistics and machine learning. We

analyze a high-frequency scanner dataset and focus on algorithmically identifying

price setting periods for any given product and characterizing a set of regular prices

within price setting periods, given only the values of the price time series. Our work

departs from the existing literature in three important ways. For each product, we

flexibly identify price setting periods without making any assumptions on the length

of the periods or the number of periods. Additionally, we do not simply study one

regular, or reference, price. Instead, we identify several “modal” prices from the data

that correspond to the peaks of the price distributions for the identified price setting

periods. Finally, we develop highly clusterable and interpretable metrics for price

stickiness, which we demonstrate with an easily separable clustering of the products

into two clean groups of highly sticky and non-sticky products.
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including Professors Bo Honoré and Han Liu, who introduced me to the world of

econometrics and machine learning; Professor Ilyana Kuziemko for providing crucial

advice throughout my first ventures into research; Professors Benjamin Moll, Peter

Ramadge, and Emmanuel Abbe, from whom I learned the tools with which I tackled

this thesis; and Professor Harvey Rosen for inspiring me to become an economics

major in the first place.

Thank you to my dearest friends who have stood by my side all of these years.

You each mean so much to me, and I am excited to continue growing alongside you.

From my incredible roommates and pset buddies to the amazing women surrounding

and inspiring me: I am beyond proud to graduate with you.

Above all, I am fortunate to have the most supportive family in my mom, dad,

and brother, behind me every step of the way. I would not be here without your

confidence in me and your unwavering dedication.

iv



Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

1 Introduction 1

2 Background 7

2.1 Temporary Price Changes . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Regular Price Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Reference Prices . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Small Price Changes and Scanner Data . . . . . . . . . . . . . . . . . 11

2.4 Seasonality Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Cross-Sectional Heterogeneity . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Cost-Price Regression Analysis . . . . . . . . . . . . . . . . . . . . . 14

3 Data 15

3.1 Scanner Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Transactions in the Dataset . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Price Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



3.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Standardization of Data . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Calculating Prices and Costs . . . . . . . . . . . . . . . . . . . 21

3.5 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Price Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 Cost Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Methodology 26

4.1 Outline of Goals and Experiments . . . . . . . . . . . . . . . . . . . . 26

4.2 Learning Price Setting Periods . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Event-Based Hidden Markov Model . . . . . . . . . . . . . . . 28

4.2.2 Model Selection Procedure . . . . . . . . . . . . . . . . . . . . 30

4.3 Identifying Reference and Other Modal Prices . . . . . . . . . . . . . 31

4.3.1 Unsupervised Hidden Markov Model . . . . . . . . . . . . . . 32

4.3.2 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . 32

4.3.3 Dirichlet Process Gaussian Mixture Model . . . . . . . . . . . 33

4.3.4 Label Identification . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Measuring Price Stickiness . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Measures of Stickiness Within Price Setting Periods . . . . . . 42

4.4.2 Measures of Stickiness Across Products’ Trends . . . . . . . . 43

4.5 Predicting Price Trends with Cost Trends . . . . . . . . . . . . . . . 45

4.5.1 Ridge Regression Optimization . . . . . . . . . . . . . . . . . 45

4.6 Clustering Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.1 Clustering with Dimensionality Reduction . . . . . . . . . . . 48

4.6.2 Clustering with Price Stickiness Features . . . . . . . . . . . . 48

5 Results and Discussion 49

5.1 Discovered Price Setting Periods . . . . . . . . . . . . . . . . . . . . . 49

vi



5.2 Structure of Reference Prices and Other Modal Prices . . . . . . . . . 54

5.2.1 Performance of Hidden Markov Model . . . . . . . . . . . . . 54

5.2.2 Finding Price Setting Periods with Multi-Modal Price Distri-

butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.3 Modal Prices Within Price Setting Periods . . . . . . . . . . . 57

5.3 Analysis of Price Stickiness . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Durations of Price Setting Periods . . . . . . . . . . . . . . . . 60

5.3.2 Entropy Rates of Price Setting Periods . . . . . . . . . . . . . 60

5.3.3 Modal Prices Are Persistent . . . . . . . . . . . . . . . . . . . 63

5.4 How Well Do Costs Predict Prices? . . . . . . . . . . . . . . . . . . . 66

5.5 Product Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Clustered by Trends . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.2 Clustered by Price Stickiness . . . . . . . . . . . . . . . . . . . 68

6 Conclusion 72

6.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Further Analysis of Product and Price-Setting-Period Clusters 73

6.2.2 Fine-Tuning Our Probabilistic Methods . . . . . . . . . . . . . 73

6.2.3 Connections to Macroeconomic Theory . . . . . . . . . . . . . 74

A Statistical Methods 75

A.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . 76

References 80

vii



List of Figures

3.1 Distribution of the number of weeks that products are sold. . . . . . . 16

3.2 Distribution of the volume of transactions in which products are in-

volved, taken across the entire timeline of the dataset. . . . . . . . . . 17

3.3 Plot of the Laspeyres price index over time. The dashed red lines mark

the first week of a new year in the timeline. . . . . . . . . . . . . . . 18

3.4 Plot of the Paasche price index over time. The dashed red lines mark

the first week of a new year in the timeline. . . . . . . . . . . . . . . 19

3.5 Plot of the Fisher price index over time. The dashed red lines mark

the first week of a new year in the timeline. . . . . . . . . . . . . . . 19

3.6 Distributions of the standard deviations in raw price and cost trends

across all products. Notably, the standard deviations are generally less

than 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Distribution of the frequency of the mode across price trends for all

products, where the frequency of the mode is defined by the number

of weeks that the price equals the mode. . . . . . . . . . . . . . . . . 22

3.8 Distributions of the mean prices of products over all weeks, where the

mean price of each product is calculated by aggregating the gross sales

and quantities sold of all transactions involving the product over all

weeks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

viii



3.9 Distribution of Pearson correlation coe�cients for pairs of price trends

drawn from a set of 1,000 random products. Correlation matrix of

1,000 random products, organized by category. . . . . . . . . . . . . . 23

3.10 Distributions of the mean costs of products over all weeks, where the

mean cost of each product is calculated by aggregating the wholesale

costs and quantities sold of all transactions involving the product over

all weeks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.11 Distribution of Pearson correlation coe�cients for pairs of cost trends

drawn from a set of 1,000 random products. Correlation matrix of

1,000 random products, organized by category. . . . . . . . . . . . . . 25

4.1 The results of our methodology applied to an example price trend. We

first identify four price setting periods (PSPs), shown in the top visu-

alization, and then calculate the KL divergence of each PSP. The third

and fourth PSPs have a KL divergence over a significance threshold, so

we fit PSP 3 and PSP 4 each to a Dirichlet process Gaussian mixture

model. In PSP 3, we identify two significant Gaussians and, thus, two

modal prices. Prices close enough to the green Gaussian, which has the

highest significance, are labeled as modal prices of order 1 (reference

prices), prices close enough to the blue Gaussian are labeled as modal

prices of order 2, and the rest of the prices are non-modal. In PSP 4,

we identify one significant Gaussian, to which most prices are assigned. 41

4.2 Methodology for ridge regression. We first apply dimensionality reduc-

tion to the cost data X and to the price data Y and then form X̂ and

Ŷ . We aim to learn a map W such that WX̂ ⇡ Ŷ . . . . . . . . . . . 46
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Chapter 1

Introduction

One of the major questions that macroeconomists consider is understanding the ef-

fects of demand shocks on the economy. Under the assumptions made in a large

number of macroeconomic models, if the economy is able to swiftly reach an equilib-

rium in response to shocks, thus responding e�ciently, then demand shocks should

produce minimal e↵ects on output. However, a large portion of the empirical lit-

erature generally finds evidence that significant monetary non-neutrality ensues in

response to monetary shocks (Christiano, Eichenbaum, and Evans 1999 and Romer

and Romer 2004) and that shocks to government spending increase aggregate output

significantly (Ramey 2011 and Nakamura and Steinsson 2014).

A prevailing theory for rationalizing the large e↵ects of demand shocks on output is

that nominal prices are not perfectly flexible; rather, they adjust slowly to variations

in money supply, which e↵ectually allows aggregate output to deviate significantly

from e�cient levels. Assessing the adjustment speed of the aggregate price level to

exogenous shocks is thus critical to understanding the e↵ects of demand shocks on

output. While one major problem faced by researchers is how to identify exogenous

demand shocks in data, what economists can do is collect evidence on price stickiness

at the micro price level. The empirical objective, then, is twofold: research in this area

works on identifying and characterizing rigid price adjustment in the economy and,
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more fundamentally, understanding the important dynamics that drive the existence

of sticky prices in the first place (Nakamura and Steinsson 2013).

In the past, empirical research on price dynamics was limited in scope due to

the lack of micro data on prices; however, in recent decades, data with individual

prices have become more readily available, allowing a more wide-ranging examina-

tion of individual price settings. The disaggregated nature of these data poses new

issues, including the treatment of temporary price changes, seasonality trends, cross-

sectional heterogeneity, and interactions between retailers and manufacturers, that, if

not accounted for, skew analysis of the aggregate price level. Thus, much of the em-

pirical research on price stickiness has focused on the treatment of these issues and

on determining which dynamics governing price trends are the most significant in

measuring the rigidity of aggregate prices. Stickiness measures originally focused on

the extent to which prices varied, namely in terms of the frequency of price changes,

but a key modern idea is the notion of “regular prices,” which generally refers to

the standard price of a good during a given time interval. For specific intervals and

corresponding regular prices, several measures of stickiness can be constructed and

used in the calibration of macroeconomic pricing models such as multisector models

(Bils and Klenow 2004 and Carvalho 2006), the Calvo model (Kehoe and Midrigan

2015), and the menu-cost model (Eichenbaum et al. 2011 and Kehoe and Midrigan

2015). Then, the validity of the stickiness measures is analyzed by comparing model

outputs to the real economy.

Analyzing a scanner dataset, Eichenbaum et al. (2011) o↵er a new approach to

identifying regular prices by defining “reference prices” to be the most common price

within a fixed quarter of time. Eichenbaum et al. (2011) demonstrate that reference

prices are a good measure of price stickiness across quarters and, in fact, reveal

more about price rigidities than standard frequency measures of price change, since

reference prices are quite inertial, with an average duration of roughly one year,

despite the fact that weekly prices shift much more frequently. In order to also

2



understand price dynamics within quarters, Eichenbaum et al. (2011) estimate a two-

state Markov model for the weekly prices within a given quarter, where the two states

are given by a price being equal to the reference price and the price not being equal to

the reference price. The resulting transition matrices for all products are estimated

from data averaged across categories of goods.

We take a closer examination of four components governing the structure of

Eichenbaum et al. (2011)’s contributions. First, they examine price time series broken

into fixed time intervals (quarters), making a defining assumption that firms make

decisions on a quarterly basis. Next, they associate with each of these time intervals

a measure of the regular price throughout the interval (the reference price). Thirdly,

they calculate a price stickiness measure for product categories across the intervals

(frequency of reference price changes). Finally, they analyze within-interval price

stickiness by calculating a stickiness measure for each quarter (namely, the transition

matrix of the Markov model and the frequency and duration of weekly price changes).

Using a similar dataset to the one studied by Eichenbaum et al. (2011), we extend

the study of price stickiness further by building upon these existing methods, with

the objective of understanding the fundamental trends that occur in these micro

price data. In particular, several modern techniques from statistics and machine

learning are useful for analyzing this dataset and providing insights. Importantly,

we are consequently able to separate ourselves from presumptions regarding price

dynamics to focus on extracting insights from the data. Our ultimate goal is to use

these findings to update the existing approach toward empirical pricing analysis in

economic literature.

Identifying Price Setting Periods

We extend the work of Eichenbaum et al. (2011) by developing new methods to

algorithmically detect the periods of time over which prices are set for each individual

product, which frees us from making any assumption of fixed quarters. The fact that
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we can learn the periods of time over which firms make price decisions also allows

us to bypass having to make assumptions about the costs of changing prices (as in

the menu-cost model) or any notions of randomized ability to change prices (the

Calvo model). Furthermore, learning price setting periods allows for the possibility

of further investigating price variation within price setting periods. For instance,

we could ask whether di↵erent classes of products go on sale at di↵erent times. By

looking at the broad trends outlined by the standard prices for di↵erent price setting

periods, we can also investigate product properties like seasonality.

Finding a Set of Regular Prices

In the previous section, we outlined our goal of automatically identifying price setting

periods. Our objective now is to detect a set of interesting prices within the identified

price setting periods. We justify our separation of these two goals since regular price

decisions and sale price decisions may be made orthogonally to each other (Anderson

et al. 2016). Eichenbaum et al. (2011) suggest that some non-reference prices might

not correspond to sale prices, but their model does not explain what these non-regular

prices might be nor further try to distinguish between them; thus, our work extends

the depth of their analysis.

Our approach is to, given a price setting period, identify price clusters with sig-

nificant prices to capture the most frequently visited, and thus likely to be the most

important, prices. We achieve this goal by applying a Gaussian mixture model within

a Bayesian framework to identify the interesting prices within a price setting period.

Metrics of Price Stickiness

For any given product, we want to be able to capture two sets of measures of how

sticky its price trend is: (1) how frequently and how much the regular prices fluctuate

from one price setting period to another and (2) how much prices within price setting

periods fluctuate. The first set of measures are comparable with the existing measures
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of frequencies in price changes and durations of rigidity used commonly throughout

the price stickiness literature (Nakamura and Steinsson 2013), though we make some

adjustments. The second set of price stickiness measures extends the simple two-state

Markov model that Eichenbaum et al. (2011) use to characterize the price stickiness

of all products. We use a larger transition matrix, taking into account the entire set

of interesting regular prices, and we also use the entropy rate of the transition matrix

to characterize overall stickiness with a single number. Our measures of stickiness

are also able to decompose the price stickiness of product price trends into a set of

measures corresponding to the kinds of interesting regular prices. Consequently, we

provide a more thorough characterization of what it means for a product to be sticky.

Price-Cost Relations

We fit a ridge regression model to estimate a linear relationship between cost data

and price data. The point of this analysis is to identify the links between costs and

prices, as previously examined by Eichenbaum et al. (2011).

Clustering

Eichenbaum et al. (2011)’s analysis focuses on the aggregate nature of the product

categories found in their dataset. We would like to consider more fine-grained patterns

at a product level. Given the price setting periods, the set of significant regular prices

for each price setting period, and the stickiness measures for each product (both across

and within price setting periods), how can we identify patterns across the products?

Our hypothesis is that there is a set of common types of trends that can be found

in our data, and the goal is to identify these shared dynamics. It turns out that

our models are able to identify fine-grained clusters of the dynamics of price setting

periods. Furthermore, our measures of price stickiness are able to stratify products

into categories corresponding to various degrees of stickiness.
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Organization

The remainder of this paper proceeds as follows. Chapter 2 reviews the empirical liter-

ature on price stickiness and, in particular, research analyzing scanner data. Chapter

3 summarizes the dataset we use, preprocessing steps we take, and results from ex-

ploratory data analysis. Next, Chapter 4 provides an overview of the methods that

we use to explore price dynamics. Chapter 5 provides an overview and interpretation

of the results from our analysis, and finally, Chapter 6 concludes with some remarks

on possible future directions for research on this scanner dataset and price stickiness

in general. Included at the end of the paper is an appendix that goes into detail

about some of the theory behind the methodology. The code for this paper can be

found at https://github.com/amyhhua/princeton-thesis.
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Chapter 2

Background

Until recently, empirical research on price rigidity was limited in quantitative scope as

large micro price datasets were di�cult to secure. However, new sources of price data

containing large amounts of information on individual products are becoming more

readily available to researchers. In particular, scanner data have provided new op-

portunities to extract insights from high-frequency price dynamics for a wide-ranging

array of consumer goods. These datasets bring several new issues into consideration

that were not as relevant in the previous era of empirical research on parsimonious

macroeconomic pricing models. We can roughly categorize the empirical literature

into studying price stickiness and the treatment of the following key issues: temporary

price changes such as sales; regular price changes, including reference prices; small

price changes in scanner data that might not represent price changes due to discounts;

seasonality trends; cross-sectional heterogeneity across products; and regression anal-

ysis of costs and prices. Nakamura and Steinsson (2013) provide a comprehensive

overview of the literature on price stickiness that we draw upon throughout this

section.
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2.1 Temporary Price Changes

One research area of significance concerns the treatment of temporary sales and other

short-term price fluctuations. The increased accessibility to scanner data over the

past few decades has introduced new opportunities to study demand and competitive

strategy models. As retailers have begun to analyze scanner data more, some pricing

power potentially has shifted from manufacturers to retailers. Dutta et al. (2002),

for instance, analyze price flexibility using a dataset with actual retail transaction

prices, wholesale transaction prices, and a measure of manufacturers’ costs. Their

results indicate that retail prices respond not only to their direct costs, but also to

the upstream manufacturer costs. In particular, temporary retail store promotions

have been shown to greatly impact brand and store substitution (Kumar and Leone

1988 and Walters 1991).

Measuring price stickiness can be highly sensitive to how these temporary sales

and other short-term price fluctuations are treated. The median implied duration for

all posted prices is roughly half of that for regular prices in isolation (Nakamura and

Steinsson 2013), so the empirical literature considers the decision regarding whether

sales should be excluded when measuring price stickiness to be critical.

Before we can address how to treat sales in constructing a measure of price stick-

iness, we must first be able to accurately identify sales, even if price data are not

labeled with sale markers. If no such indicators to identify sales are included in the

data, researchers often turn to other methods of detecting temporary prices, such as

asserting that sale prices have a particular shape. A common identifier of sales is

V-shaped temporary discounts, or large temporary drops in prices followed by prices

returning exactly to their former levels, with only few other types of price changes

(Campbell and Eden 2014 and Guimaraes and Sheedy 2011). One major implication

of this trend is that though a product might experience high-frequency price flexibil-

ity, it can simultaneously exhibit a low-frequency price stickiness in the regular price.

Kehoe and Midrigan (2015) develop a model that attempts to extend the Calvo model
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and the standard menu cost model by allowing firms to temporarily deviate from a

sticky preexisting price.

However, not all datasets contain such well-defined sale price behavior, and con-

structing a dependable algorithm for identifying sales has proven challenging for re-

searchers. Other authors (Nakamura and Steinsson 2008 and Kehoe and Midrigan

2015, for instance) consider more complex sale filter algorithms that encode modifi-

cations to the basic notion of a sale filter. Kehoe and Midrigan (2015)’s algorithm

categorizes each price shift as either temporary or regular, based on each price’s rel-

ative position to the mode price over a given window of time within a particular

time series; notably, the algorithm di↵erentiates between price increases and price

decreases. The filter used by Eichenbaum et al. (2011) sets the non-sale price for a

given product to be the most commonly observed price in a particular quarter.

Chahrour (2011) compares many of these di↵erent filters applied to the same

dataset—the Dominick’s Finer Food dataset—and demonstrates that though several

pricing facts are robust to the type of sale filter or identification algorithm used, impli-

cations for price stickiness depend on filter specification. He proposes an alternative

sale filter that determines non-sale prices based on a 13-week (plus or minus 6 weeks)

window, instead of fixed, non-overlapping periods. Chahrou finds two major trends

in temporary price changes: he captures large decreases in prices, as the other papers

also accomplished, but additionally, he finds small increases in price that are far less

common and significantly smaller than sales. We return to such small fluctuations

in prices later in this chapter. In general, however, we recognize the necessity of

developing a sound algorithm that identifies price fluctuations with high accuracy, to

which we return in our methodology chapter.
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2.2 Regular Price Changes

In the price stickiness literature, there is an ongoing debate on whether temporary

prices and regular prices should be treated symmetrically. One advantage of working

with regular prices, for the purpose of estimating stickiness across time, is that we do

not need to form prior assumptions on whether sales are special events that should

be treated di↵erently.

Another rationalization of using regular prices is that sets of regular prices make

sense in the context of a menu cost model, where firms can choose a pricing setting

from a small, fixed menu of prices between which they are free to move. Furthermore,

Kehoe and Midrigan (2015) find that regular price changes contribute to aggregate

price level considerably more than temporary prices. Finally, menu-cost models may

be a decent way to think about regular price changes (though not temporary price

changes). In fact, the processes for deciding regular and temporary prices may be

orthogonal (Eichenbaum et al. 2011 and Anderson et al. 2016).

2.2.1 Reference Prices

Eichenbaum et al. (2011) define a “reference” price to be the most common regular

price found in a fixed window of time (a quarter). Thus, they group all prices into

two clusters: (1) reference prices (defined for a certain quarter) and (2) non-reference

prices. They find evidence that while actual prices are quite flexible, experiencing a

median duration of three weeks, nominal rigidities take the form of reference prices

that experience significantly more inertia with a duration of nearly two quarters.

One important observation that the researchers make concerns their assumption

of fixed intervals of quarters, over which they define each quarter’s reference price.

They find that non-reference prices do not necessarily correspond to sale prices, and

in fact, 21 percent of non-reference prices are higher than the corresponding reference

price.
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2.2.2 Markov Model

In order to understand price dynamics across weeks within quarters, Eichenbaum

et al. (2011) use a single two-state Markov process to estimate the likelihoods of

products’ prices returning to and deviating from their reference prices, a modal mea-

surement of price adjustments. A Markov model is a linear, memoryless process that

describes how a particular quantity transitions between various states. At each point

in time, a price can either be the reference price or a “non-reference” price, and the

model estimates the probability distribution over these two states. By examining

the resulting transition matrix (describing probabilistic transitions between states),

Eichenbaum et al. (2011) conclude that prices are sticky. Notably, they estimate the

transition matrix for each item in every quarter and then average these transition

matrices over all quarters. With this average in hand, they then compute the average

transition matrix for items within categories and, lastly, compute the average tran-

sition matrix across categories. Specifically, by examining the first diagonal entry of

the average transition matrix (the probability that a reference price state will return

to itself), the authors of Eichenbaum et al. (2011) claim price stickiness.

2.3 Small Price Changes and Scanner Data

An important finding in the empirical literature over the past decade is that firms

often appear to make small price changes (Klenow and Kryvtsov 2008, Midrigan

2011, and Bhattarai and Schoenle 2014). Eichenbaum et al. (2014) use a scanner

data similar to our dataset and to the dataset that they used in Eichenbaum et

al. (2011)—though their data span only one year and a few states in the U.S.—

and micro data from the Consumer Price Index to measure the prevalence of small

price changes. They propose that the majority of small price changes are due to

a type of measurement error that arises from the lack of explicitly recorded prices

in many scanner data and the subsequent use of price measures constructed as the
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ratio of sales revenue from a product to the quantity sold of that product. Indeed,

suppose that a range of consumers buy the same good at di↵erent prices; a small

change in the breakdown of consumers could lead to a misleading small price change,

though the true price might not have changed. This measurement error is particularly

pronounced with supermarket transactions since some products are sold at a discount

to customers with loyalty cards, and some products are discounted with coupons or

qualify for specific promotions.

Other scanner datasets come with labeled prices, in the sense that each price

is marked as a regular price or as a sale price (Anderson et al. 2016). The nice

property that these datasets have is that they have a ground truth that is discernable

independent of noise.

Our scanner dataset does not contain exact pricing information and also does not

contain price labels, which makes our task more di�cult: we must sift through the

noise and find signal. Eichenbaum et al. (2014) study price changes that are smaller,

in absolute terms, than 1, 2.5, and 5 percent and find that their conclusions hold

irrespective of which of these values is used to define a small price change; thus, we

assume that there is not too much noise in the scanner data.

2.4 Seasonality Trends

While there is considerable evidence of some price changes—such as sales for par-

ticular products—following a regular pricing schedule, micro data often exhibit a

significant amount of seasonality. Chevalier et al. (2003) examine a dataset with re-

tail and wholesale prices covering over seven years, finding that, on average, prices fall

during peaks in seasonal demand for a given product, due in large part to decreases in

retail margins, which is consistent with “loss-leader” pricing models of retailer com-

petition. Furthermore, trends of seasonality motivated by factors including weather

conditions, production cycles, and holidays can a↵ect price shift distributions.
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Nakamura and Steinsson (2008) also find notable seasonality trends in the United

States: for consumer prices, they observe a median frequency of regular price change

of 11.1% in the first quarter, which drops monotonically to 8.4% in the fourth quarter,

and for producer prices, the median frequency of price change in the first quarter is

15.9%, which falls by an even greater magnitude to 8.2% by the fourth quarter.

This demonstration of seasonality in price variations indicates that monetary non-

neutrality might be more significant for shocks that occur earlier in the year rather

than later.

2.5 Cross-Sectional Heterogeneity

There is a significant amount of heterogeneity across sectors of consumer goods. Naka-

mura and Steinsson (2013) generate a histogram of the frequencies of non-sale price

changes across di↵erent product categories in the Consumer Price Index (CPI). They

find that the mean frequency of non-sale price changes is roughly double the weighted

median frequency of non-sale price changes across sectors.

Bils and Klenow (2004), among the earlier work analyzing the newly-available

micro data that catalyzed a shift in the conventional belief of the twentieth century

that prices changed roughly once a year (Blinder 1998), study a component of the

U.S. Consumer Price Index (CPI) with 350 categories of goods and services covering

roughly 70 percent of consumer spending. Bils and Klenow (2004) find a median

duration of price stickiness of merely 4.3 months and, importantly, find evidence that

the frequency of price variations di↵ers wildly across di↵erent goods. Carvalho (2006)

develops a model that introduces sectoral heterogeneity in terms of nominal rigidities

into an otherwise standard sticky price model. He finds that heterogeneity in price

stickiness amplifies both the magnitude and the persistence of the real e↵ects resulting

from monetary shocks, as compared with parallel e↵ects in identical-firm economies

with more homogeneous sectors in terms of price rigidities. Ceteris paribus, sectors
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in which prices change frequently should experience a swifter response of inflation,

as compared to sectors with stickier prices, in response to an expansionary demand

shock. Since cross-sectional heterogeneity in the frequency of price variations across

sectors has testable implications regarding price changes and relative inflation rates

across sectors, the cross-sectional distribution of sectoral relative adjustment prices

merits further empirical analysis.

2.6 Cost-Price Regression Analysis

Eichenbaum et al. (2011) study the relations between reference prices and reference

costs, finding a distinctive form of state dependence in reference prices—namely, that

the duration of reference prices is chosen by the retailer to limit markup variation.

Moreover, they find that prices do not change unless there is a motivating change in

costs, and they do not discover a significant lag or lead in the relation between cost

changes and price changes. Other papers have also explored the relations between

producer prices and consumer prices (Nakamura and Zerom 2009 and Anderson et

al. 2016) and generally find swift pass-through of changes in retail costs to the prices

of the goods.
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Chapter 3

Data

3.1 Scanner Dataset

We use a similar dataset to the scanner dataset used by Eichenbaum et al. (2011). The

scanner data that we analyze is well-suited for our research due to its high frequency

and information it includes about quantities sold and wholesale prices that cannot

be found in all scanner datasets. Specifically, we analyze scanner data provided by a

large grocery store retailer operating in nearly 2,200 stores, mostly across the United

States but also in Canada. We focus on the U.S. dataset, which contains about 2.5

million transactions for each week from the beginning of 2004 to mid-2007, with over

a million unique products covered and about 50,000 unique products sold weekly.

3.2 Transactions in the Dataset

We define a valid transaction to be a transaction involving both a positive amount

of gross sales and a positive quantity sold of the product. In particular, transactions

that are returns or sales in non-positive quantities, which constitute less than 0.5

percent of the total set of transactions, are excluded from our analysis in this paper.

Figure 3.1 illustrates the distribution of the number of weeks that products are
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sold. The distribution implies two significant clusters of products: products that are

consumed at least every week throughout the duration of the dataset and products

that are purchased very sparsely over this timeline. While we will focus our work

on the first cluster, there may be a di↵erent set of price dynamics governing each of

these two groups, which may be an interesting area to explore for future work.

Figure 3.1: Distribution of the number of weeks that products are sold.

For the remainder of this paper, we apply the following filter for transactions that

we analyze: we include only products that are sold in at least one valid transaction for

every week throughout the entire dataset’s timeline. This selection of products still

consists of over 18,500 unique products, and restricted to this subset of products, the

dataset contains approximately 1.6 million valid weekly transactions for each week.

We also select this group of products because we are interested in duration measures,

in addition to frequency measures, characterizing price stickiness. Since our products

show up every week, we do not need to account for issues stemming from product

dropout, as suggested by Nakamura and Steinsson (2014).

Figure 3.2 illustrates the volume of transactions in which each product is involved.
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A significant majority of products partake in high numbers of transactions throughout

the dataset.

Figure 3.2: Distribution of the volume of transactions in which products are in-
volved, taken across the entire timeline of the dataset.

3.3 Price Indices

To explore how an aggregate price measure of the goods in our dataset changes over

time, we examine several constructions of a mean price over all transactions or goods.

We first track the Laspeyres and Paasche price indices, defined, respectively, as
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(3.1)

where i indexes products and t indexes weeks. As a result of potential item sub-

stitution bias, the Laspeyres price index tends to overstate the price level, while

the Paasche price index tends to understate the price level. Thus, we also analyze
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the Fisher price index, defined as the geometric mean of the Laspeyres and Paasche

indices:

P
Fisher

(t) =
q

P
Laspeyres

(t) · P
Paasche

(t). (3.2)

Figures 3.3, 3.4, and 3.5 illustrate how the Laspeyres price index, the Paasche

price index, and the Fisher price index, respectively, change across the timeline of

the dataset. Not surprisingly, each of these price indices displays a gradual upward

trend across time, with the exception of a few spikes in the price indices, particularly

the Paasche index, which generally occur right after the start of a new year in the

timeline. We can also interpret these figures in terms of seasonality. We note that

there are drops in January of each year, which could be explained by the possibility

that wages are more likely to change in January rather than in other months of the

year—especially since we see these drops in aggregate price levels and not for any

specific kind of product (Nakamura and Steinsson 2014).

Figure 3.3: Plot of the Laspeyres price index over time. The dashed red lines mark
the first week of a new year in the timeline.

18



Figure 3.4: Plot of the Paasche price index over time. The dashed red lines mark
the first week of a new year in the timeline.

Figure 3.5: Plot of the Fisher price index over time. The dashed red lines mark the
first week of a new year in the timeline.
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3.4 Preprocessing

3.4.1 Standardization of Data

For each product’s trend of prices and trend of costs, we calculate the mean and

the standard deviation of each trend. We then “z-score” the data by subtracting

the mean from each point and dividing each point by the standard deviation. This

preprocessing step has the e↵ect of setting the mean of the empirical distribution to

be 0 and the standard deviation to be 1. Thus, we are now able to compare products’

trends on the same scale. As shown in Figure 3.6, most of the standard deviations of

both raw price trends and raw cost trends are less than 1. Thus, a potential downside

of this preprocessing is that small deviations are amplified if the standard deviation

of the raw trend is very small. For instance, consider a trend where all values are the

same except one point, which is only slightly di↵erent from the rest of the points. Our

standardization will exaggerate this di↵erence. This property may not be desirable if

the deviation was due to noise. However, if we assume that small deviations are not

significantly due to noise, then standardization avoids the problem of mistaking true

deviations for noise solely due to scale issues.

Figure 3.6: Distributions of the standard deviations in raw price and cost trends
across all products. Notably, the standard deviations are generally less than 1.
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3.4.2 Calculating Prices and Costs

Since our dataset does not contain direct information on prices or costs, we construct

a measure of prices and costs based on the following formulas, for product i and week

t.

Price
i,t

=
Total revenue involving product i in week t

Total quantities sold of product i in week t
.

Cost
i,t

=
Total wholesale costs for product i in week t

Total quantities sold of product i in week t
.

(3.3)

3.5 Summary Statistics

3.5.1 Price Trends

Unprocessed Modes

Figure 3.7 displays the distribution of the number of weeks that the mode of price

trends shows up. We observe that the actual mode does not appear to capture the

notion of repeated regular prices, as outlined in the literature described in Chapter

2.

Mean Prices

Figure 3.8 illustrates the distribution of mean prices of products, where the mean

price of each product is calculated by aggregating the gross sales and quantities sold

of all transactions involving the product over all weeks.

Correlations between Products using Price Vectors

Given two products’ price time series, where each point in a product’s time series is

the average price of the product across all transactions involving the product during

a particular week, how can we measure the similarity between these two price data

vectors? In the following analysis, we use the pairwise Pearson correlation metric

to measure the correlation between two particular products’ price time series, where
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Figure 3.7: Distribution of the frequency of the mode across price trends for all
products, where the frequency of the mode is defined by the number of weeks that
the price equals the mode.

⇢
X,Y

, the Pearson correlation coe�cient between two vectors X and Y , is defined as

⇢
X,Y

=
cov(X, Y )

�
X

�
Y

. (3.4)

We compute the pairwise Pearson correlation coe�cient for pairs of products

drawn from a set of 1,000 random products. As shown in Figure 3.9, a fair number of

pairs of products are positively correlated, while fewer pairs of products are negative

correlated. Of particular interest are the pairs of products with correlations beyond

some threshold � (for instance, product pairs (i, j) such that
��⇢{ti},{tj}

�� � �), which

might aid in clustering products that are not obviously related but share highly similar

or dissimilar price trends.

Figure 3.9 illustrates the correlation values c(i, j) between pairs (i, j) of 1,000

random products. Before calculating the correlation values, we first sort the products

by the category to which they belong, with the hope that products belonging to the

same category will have similar correlation metrics. We note an interesting block-like
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Figure 3.8: Distributions of the mean prices of products over all weeks, where the
mean price of each product is calculated by aggregating the gross sales and quantities
sold of all transactions involving the product over all weeks.

structure in the correlation visualization, which indicates that significant correlation

exists across di↵erent categories of products.

(a) Distribution of correlations (b) Correlation matrix

Figure 3.9: Distribution of Pearson correlation coe�cients for pairs of price trends
drawn from a set of 1,000 random products. Correlation matrix of 1,000 random
products, organized by category.
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3.5.2 Cost Trends

In this section, we apply the previous analysis on prices to costs.

Mean Costs

Figure 3.10 illustrates the distribution of mean costs of products. We see a sim-

ilar shape for the distribution of mean costs as we did for mean prices and small

magnitudes of costs than we saw with prices.

Figure 3.10: Distributions of the mean costs of products over all weeks, where
the mean cost of each product is calculated by aggregating the wholesale costs and
quantities sold of all transactions involving the product over all weeks.

Correlations between Products using Cost Vectors

Figure 3.11 plots the distribution of Pearson correlation coe�cients for pairs of cost

trends drawn from a set of 1,000 random products, alongside a correlation matrix

for the same set of pairs, where the products are organized by category. While fewer
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correlations in Figure 3.11(a) are highly positive, the distribution still has most of its

mass above a Pearson correlation of 0.

(a) Distribution of correlations (b) Correlation matrix

Figure 3.11: Distribution of Pearson correlation coe�cients for pairs of cost trends
drawn from a set of 1,000 random products. Correlation matrix of 1,000 random
products, organized by category.

We repeat the exploratory analysis for markups and do not observe products that

are significantly correlated based on their markup vectors.
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Chapter 4

Methodology

4.1 Outline of Goals and Experiments

Our goal in this section is to describe our methodology for (1) learning periods of time

over which price setting decisions are made and (2) learning interesting regular prices

for each price setting period (PSP). The first task is a generalization of Eichenbaum et

al. (2011)’s ad-hoc choice of fixed-size quarters for price setting periods. The second

task explores a generalization of Eichenbaum et al. (2011)’s reference price measure,

which refers specifically to the mode of the prices in a given quarter. As demonstrated

in Chapter 3, modes by themselves are not a good measure of reference price due to

noisy measurements. We replace the exact definition of reference price by a similar

notion: instead, we learn a Gaussian mixture model over the trend of each price

setting period in a manner that tends to align cluster centers with modes of di↵erent

orders. That is, we learn an approximation of the mode of order 1 (the most common

price), the mode of order 2 (the second most common price), and so on up to the

mode of order k (where k is the number of clusters learned by the mixture model).

It is important to note that we are truly using a mixture of the notion of mode and

mean when we learn our “modal prices.” Then, we are able to define measures of

cross-PSP and within-PSP stickiness using the models we have previously defined.
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We define notions similar to price duration, examine the total absolute deviation

between regular prices, and fit Markov models to each price setting period. We also

use the entropy rate of the Markov transition matrix as a single-dimensional value for

characterizing the internal stickiness of price setting periods. Finally, we are able to

use these stickiness metrics as well as trend data to cluster the products according to

price stickiness. Along the way, we also check the linear relationships between costs

and prices by fitting a linear regression and examining the e↵ect of using previous

time steps to learn the model, allowing us to test if there is a significant delay in

response between changes in costs and changes in prices.

We thus address the following questions:

1. Can we automatically identify price setting periods for any product?

2. Do “reference prices” exist? Can we characterize and identify reference prices?

3. How do we measure price stickiness?

4. Can we capture the e↵ect of costs on prices?

5. Which products are similar in general, and which products are similar with

respect to price stickiness?

4.2 Learning Price Setting Periods

Eichenbaum et al. (2011) define the reference price of a product to be the most com-

monly observed price within a business quarter. One weakness of this methodology

is that this approach assumes that these segments of time are fixed in length across

products and are aligned with quarters. This assumption may not hold since some

products experience more frequent price changes than others. Furthermore, we gen-

erally observe in the data that prices do not change according to fixed quarters of

time.
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Instead of assuming fixed quarters, we aim to infer a set of time periods for a given

product’s price trend in which the prices found in any particular time period remain

relatively fixed within that period. Thus, our first objective is to systematically

identify potentially uneven time periods over which prices remain within a relatively

fixed range. In the remainder of the paper, we refer to these variable-length time

periods that we identify for each product as price setting periods (PSPs).

4.2.1 Event-Based Hidden Markov Model

We apply the model developed by Baldassano et al. (2016) to our scanner dataset.

Originally, this model was created by neuroscientists studying how the human brain

changes state over time in response to stimulus in the form of a movie, which is easy

to segment into di↵erent scenes or “events.” Baldassano et al. (2016) investigate a

particular question: when an input stimulus has shifts in context, is it possible to

recover the boundaries between the scenes of the movie from the brain data? Their

methods are able to successfully infer the appropriate scene boundaries, given time

series data collected from participants in their experiments.

From Neuroscience to Economics

Given the time series of prices for a product, our goal is to infer the various price

setting periods such that the prices in any particular PSP remain relatively fixed

within that PSP. Our objective applied to scanner data is thus quite similar to the

goal of identifying movie events from brain data. However, there is a key di↵erence

between the neuroscience and economic settings: brain data are high-dimensional in

nature, typically on the order of thousands of dimensions, while our price data are

one-dimensional. Due to the brain’s division into separate structures for di↵erent

tasks, the high-dimensional time series carry multi-timescale information (in other

words, the data are a superposition of many frequencies). While it is possible that

economic price data can be decomposed into multiple frequencies as well, we hypoth-

28



esize that the trends are much simpler. Another di↵erence between the neuroscience

and economic contexts lies in the number of time segments that we expect the brain

data and the economic data to have. Throughout a movie, there are a relatively

large number of scenes (approximately 50). Over the course of nearly three and a

half years, the timeline spanned by our scanner data, we expect there to be far fewer

changes in price, based on the literature (Eichenbaum et al. 2011). As we describe

in the next chapter, it turns out that these di↵erences are su�ciently insignificant in

terms of performance of the model.

Model

The model is very similar to a hidden Markov model (summarized in the Appendix),

with a key additional assumption. Here, the hidden states correspond to the price

setting periods. Instead of allowing positive transition probabilities between any pair

of hidden states, this model allows only the transition between state i and itself and

the transition between state i and state i + 1 to have nonzero probability. This fact

can also be expressed by a restriction of the transition matrix to be upper bidiagonal.

We are required to provide as input a parameter N
states

indicating the number of

events, or in our context, price setting periods.

Baldassano et al. (2016) model the HMM as having isotropic Gaussian outputs

and restrict the transmission matrix to be upper bidiagonal to enforce the constraint

that, given a current state, the process can only stay in the same state or transition

to the next state. The actual model is as follows: given that the process is current in

state k at time t,

P(output
t
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k
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1p

2⇡�2
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k
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2
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(4.1)

where z(·) is a function denoting the z-score (mean of 0, standard deviation of 1)

representation over the data, where output
t

is the output price at time t and mean
k

is the mean price of cluster k. Note that in the model by Baldassano et al. (2016),
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they make the assumption that brain outputs are high-dimensional. In our model,

the k · k2
2

term is replaced by a simple one-dimensional squared term. They optimize

the log likelihood as is standard.

The transition matrix and output distribution are learned using an annealed ver-

sion of the Baum-Welch algorithm, where the variance is scheduled to decay at the

following rate, where i indexes the iteration: �2(i) = 4 ⇤ 0.98i. This technique is

standard in optimization, the intuition being that for high values of the variance, we

want to explore the parameter space, and for low values of the variance, we want to

focus on optimizing a certain part of parameter space. In practice, this procedure is

helpful for obtaining solutions of higher likelihood.

To fit the model, we use code provided by the authors of Baldassano et al. (2016),

which can be found at https://github.com/IntelPNI/brainiak. Their approach

is essentially a modified version of the Baum-Welch algorithm, which is a standard

technique used in fitting hidden Markov models.

4.2.2 Model Selection Procedure

Our model is unsupervised in the sense that we do not see hidden state labels (the

PSPs) for the prices. Since the number of total hidden states j is a fixed input to the

model, we need to tune this value for each product trend. Thus, the necessity of a

procedure for automatically determining j arises.

We solve the following optimization problem to determine j:
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J
max

is a fixed input parameter to limit the number of hidden states that our model

can possibly identify. µ
i

is the mean of the prices contained in a given PSP i, and �

is a parameter for penalizing the identification of an additional price setting period.
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The term 1

j

P
PSP i

P
t2PSP i

(p(t)�µ
i

)2 measures the sum of the squared residuals of

price points within a given PSP i from µ
i

, the mean price in PSP i, averaged across

all j PSPs. Finally, A
max

and J
max

are included in the objective function to normalize

the first and second terms so that they can be directly comparable with each other.

This model selection procedure captures a couple of goals that we have. First, for

each identified PSP, we want to minimize the aggregate amount of deviation of prices

in the PSP from the average price of the PSP, so we use the mean squared error.

On the other hand, we do not wish to identify too many PSPs: we want to avoid

potential overfitting, and we do not expect there to be a significant number of PSPs

in a period of less than four years. Finally, we want to balance these goals against

each other equally, subject only to paramter �. For that reason, we normalize each

term to take value in [0, 1]. Thus, the two terms in the objective, together, find an

optimal ĵ for our purposes.

4.3 Identifying Reference and Other Modal Prices

Our goal in this section is to determine the “modal prices” of a product. We define a

modal price of order i to be the price that appears the ith most frequently over some

period of time. The reference price is defined as the modal price of order 1.

There are now several ways in which we can proceed to identify these modal prices.

First, we can completely ignore the price setting periods that we previously learned

for each product and attempt to evaluate the modal prices over the whole timecourse

for each product. Second, we can use the previously identified price setting periods as

the periods over which we identify the modal prices. We now discuss the methodology

for each procedure.
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4.3.1 Unsupervised Hidden Markov Model

We use the Baum-Welch algorithm to find the unknown parameters of a hidden

Markov model (HMM), which we describe in more detail in the Appendix. Notably,

we fit the HMM both across the entire time trends and within price setting periods.

We use the unsupervised HMM implementation by Stratos, Collins, and Hsu (2016),

with the code available at https://github.com/karlstratos/anchor.

4.3.2 Kullback-Leibler Divergence

For a given PSP, we want to be able to characterize how “close” its distribution of

prices is to a uniform distribution over the same set of prices—that is, we would like

to estimate how much randomness that the data trend seems to exhibit. We can

calculate the Kullback-Leibler (KL) divergence between the price distribution P of a

given PSP and a uniform distribution U over the set of prices in the PSP, where the

KL divergence is defined as the following:

D
KL

(PkU) =
X

i

P (i) log
P (i)

U(i)
. (4.3)

The KL divergence is nonnegative, attaining the lower bound of 0 if and only if

P = U . Additionally, we note that the KL divergence is not symmetric; in other

words, generally, D
KL

(PkU) 6= D
KL

(UkP ). We choose to use D
KL

(PkU) since we

want to take the expectation over the distribution of P and not over the uniform

distribution: it is more informative to weight by more probable prices rather than

treat all prices equally.

We can use the KL divergence to identify PSP trends that are less random and

therefore more likely to have interesting, multi-modal distributions over prices. As

we will discuss in the next chapter, we can find an appropriate cuto↵ such that PSPs

higher than this cuto↵ have modal prices that merit further analysis.
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4.3.3 Dirichlet Process Gaussian Mixture Model

After applying the methods from the previous section, each product’s price trend

is now split into distinct price setting periods. Here, our goal is to determine the

number of modal prices in each price setting period that passes the KL divergence

threshold that we previously discussed.

The purpose of using these quantities is to identify the reference price (the modal

price of order 1) and further extend the work of Eichenbaum et al. (2011), who stop

after identifying reference prices and group all other prices as “non-reference prices,”

by analyzing the set of non-reference prices for economic significance. For instance, a

low modal price with a high order might indicate a temporary sale. Furthermore, Ke-

hoe and Midrigan (2015) suggest that other temporary prices that do not correspond

to sales might exist and would be interesting to examine. Identifying the number

of useful modes also provides an additional lens into understanding price stickiness:

Eichenbaum et al. (2011) analyze price stickiness by only examining the reference

price, whereas with our model, we can now investigate the persistence of prices at

multiple modal levels. We set out to identify these modal prices by using a clustering

technique: Gaussian mixture models.

Model Specification

A one-dimensional K-Gaussian mixture model approximates the true distribution

of a dataset by assuming that it can be represented as a weighted combination of

Gaussian densities. Thus, the parameters of this model that we seek to learn are

a set of nonnegative weights, means, and variances (w
k

, µ
k

, �2

k

), for each of the K

Gaussians, such that the weights are on the probability simplex. Our estimation

of the distribution D(K,w, µ, �2) of a price setting period using a mixture of K

Gaussians can thus take the following form:

D(K,w, µ, �2) ⇡
KX

k=1

w
k

· N (µ
k

, �2

k

). (4.4)
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This formulation can be fit using the Expectation-Maximization (EM) algorithm,

which optimizes the log-likelihood of the parameters. We observe that in this formu-

lation, we are required to decide on K, the number of Gaussian clusters we want to

use, prior to fitting the model.

However, we would like to avoid choosing K. Thus, we replace the finite K-mixture

model with an infinite mixture model of Gaussians and incorporate a distribution

over weight distributions into the model. Based on our observations of the data, we

expect that there are only a few modal prices; thus, we want to impose a constraint

on the values of the weights. Namely, only a small fraction of the weights should be

significantly large. We can encode this belief by assuming a Dirichlet process prior

distribution on the weight distribution. Thus, our formulation of the model can be

summarized as an infinite mixture model with a Dirichlet process prior on the weights.

In practice, we still have to approximate the Dirichlet process prior, and so we

need to set a parameter governing the maximum number of components that we are

willing to use. However, we find empirically that we can set this maximum value low

enough and still ensure that the Dirichlet process never uses the maximum number

of components when drawing simplex distributions.

We now outline the updated model and refer the reader to Frigyik et al. (2010)

and Görür and Rasmussen (2010) for a more detailed presentation. Let p
n

denote

the nth data point, an observed price in a PSP, and let µ refer to the mean of a

Gaussian and �2 refer to the variance of a Gaussian. We define our cluster parameter

distribution prior (the base distribution) H((µ, �2)) jointly over parameters µ and �2

by

H((µ, �2)) ⇠ N (µ̄, �̄2)⇥ �2(1), (4.5)

The part of the joint distribution focusing on the mean is initialized as a normal

distribution with mean µ̄, the empirical average of the price data, and with variance

�̄2, the empirical variance of the price data. The distribution over variances is a �2

distribution initialized with the degrees of freedom of the data, which is taken to be
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1, the dimension of the price data. Many other choices of priors are possible here;

however, our particular choices are simple and make computation easier.

Now, we define the Dirichlet process DP(H((µ, �2)),↵), a distribution over distri-

butions, with ↵ denoting the “concentration parameter.” Using a larger ↵ means that

we tend to draw distributions that are closer to uniform, and using a smaller ↵ means

that we draw distributions that put most of their mass on a few points. Consider a

draw P ⇠ DP(H((µ, �2)),↵). Let ✓ denote the paired mean and variance parameters

(µ, �2). We have that for any finite partition of the parameter space (⇥
1

, · · · ,⇥
m

) of

⇥ = {✓}, the distribution P has the property that

(P (⇥
1

), · · · , P (⇥
m

)) ⇠ Dirichlet (↵H(⇥
1

), · · · ,↵H(⇥
m

)) . (4.6)

It turns out that we can write P as the distribution

P (·) =
1X

k=1

w
k

�
✓k

(·), (4.7)

where the positions of the mean-variance pairs are ✓
k

and are drawn from H randomly,

and where the w
k

are probability weights associated with each Gaussian (µ
k

, �2

k

). It

remains to define a sampling procedure for the w
k

such that we satisfy the condition

outlined above (namely, that any realization of P is a Dirichlet distribution). Then, we

can sample the ✓
k

from H and the w
k

from our procedure to generate a distribution

P , from which we can finally draw (µ
i(n)

, �2

i(n)

) for each data point n, where i(n)

denotes the identity of the cluster for data point n.

So far, the way that we have described the process assumes draws of an infinite-

length vector w from the infinite-dimensional probability simplex. However, the res-

olution is simple: it turns out we can draw w
k

one at a time until we reach a point

when we decide to stop. We draw parameters �
1

, �
2

, . . . from a “stick-breaking” dis-

tribution, where each �
j

⇠ Beta(1,↵). It turns out that if, after sampling �
1

, �
2

, . . .
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and ✓
1

, ✓
2

, . . ., we set the weights to be

w
1

= �
1

,

w
2

= �
2

⇤ (1� �
1

),

w
3

= �
3

⇤ (1� �
1

) ⇤ (1� �
2

),

...

(4.8)

then each of these weights is part of a true draw w from the infinite-dimensional

probability simplex.

Now, we can define our model in its entirety, describing precisely the process we

assume that the data is drawn from. We assume that prices are normally distributed

and formulate the following:

p
i(n)

| µ
i(n)

, �2

i(n)

⇠ N (µ
i(n)

, �2

i(n)

)

(µ
i(n)

, �2

i(n)

) ⇠ P =
1X

k=1

w
k

�
✓k

✓
k

⇠ H(µ, �2) i.i.d.

w
k

⇠
 
�
k

·
k�1Y

j=1

(1� �
j

)

!
| {�

j

}
j2[k]

�
j

⇠ Beta(1,↵).

(4.9)

Note that P is in fact a discrete distribution over the list of cluster parameters

✓
1

, ✓
2

, . . .. We use i(n) to denote the cluster label.

We now summarize by clarifying the data generation process:

1. Draw �
k

| ↵ ⇠ Beta(1,↵) for k = 1, 2, . . .. Use these to form the w
k

.

2. Draw ✓
k

| H ⇠ H for k = 1, 2, . . .. These are the Gaussian mixture parameters

✓
k

= (µ
k

, �2

k

).

3. Now, P , the distribution over clusters, can be formed.

4. For the nth data point,
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(a) Draw the cluster label Z
n

| w
1

, w
2

, . . . ⇠ Multinomial(w
1

, w
2

, . . .). All that

we are doing here is drawing the class to which the current data point

belongs. In the specification above, i(n) ⇠ Z
n

.

(b) Draw the price realization for the class from the (Gaussian) price distribu-

tion for the class: p
n

| i(n) ⇠ N (µ
i(n)

, �2

i(n)

).

Variational Inference for Fitting the DPGMM

Given the data generation process outlined above, we seek to compute the poste-

rior distribution P(V |p, ✓) = exp (log P(p, V |✓)� log P(p|✓)) for our Dirichlet process

Gaussian mixture model (DPGMM) with latent variables V , price outputs p, and

Gaussian cluster parameters ✓, for which no direct computation exists due to the

intractability of evaluating the log marginal probability log
R

P(p, V |✓)dV . However,

we can approximate likelihoods and the posterior distribution using the procedure of

variational inference. We summarize the key concepts behind variational inference

and refer the reader to Blei and Jordan (2004) for a detailed treatment.

Essentially, the idea is that we parameterize a tractable class of “variational distri-

butions” q
⌫

(Ṽ ) as an approximation to the true posterior, with variational parameters

⌫ and variational latent variables Ṽ . Then, we minimize the KL divergence over ⌫

D
⇣
q
⌫

(Ṽ ) k P(V |p, ✓)
⌘

= E
q

h
log q

⌫

(Ṽ )
i
� E

q

[log P(V |p, ✓)] + log P(p|✓), (4.10)

trying to bring the true posterior and our approximation q(Ṽ ) as close together as

possible.

In our model, we are trying to learn the �-parameters, the µ-parameters, and the

�2-parameters, as well as the class labels. The concentration parameter ↵ and the �2

parameter ⌘ are parameters that must be decided upon by the user. We must now find

a family of variational distributions {q
⌫

}
⌫

that approximate the infinite-dimensional

distribution P . We achieve this goal by truncating the number of �
k

, ✓
k

, and �2

k

:

we cap the value of k at K
max

. We also must set q(�
K

max

= 1) = 1, ensuring that
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mixture proportions w
k

for k > K
max

will be set to zero. Notably, we do not truncate

the true model—the model is still an untruncated Dirichlet process Gaussian Mixture

Model—as we only truncate the approximation to the true model that we are trying

to learn. In our experiments, we fix K
max

= 6 and find that we never actually find

that 6 clusters are necessary.

We use the following tractable class for our variational distribution family for q,

supposing that there are N data points in our dataset:

q
⌫

(�
1

, . . . , �
K

max

, ✓
1

, . . . , ✓
K

max

, i
1

, . . . , i
N

) =
K

max

�1Y

k=1

q
�k

(�
k

)
K

maxY

k=1

q
⌧k

(✓
k

)
NY

n=1

q
�n(in),

(4.11)

where q
�k

are beta distributions with parameters �
k

, q
⌧k

are normal distributions with

parameters ⌧
k

, and q
�n are multinomial distributions with parameters �

n

.

This class (known as a “mean-field approximation”) is tractable since it assumes

independence between the parameters. Here, we have a di↵erent variational parame-

ter in ⌫ = (�
1

, . . . , �
K

max

�1

, ⌧
1

, . . . , ⌧
K

max

,�
1

, . . . ,�
N

) for every single variational latent

variable Ṽ = (�
1

, . . . , �
K

max

, ✓
1

, . . . , ✓
K

max

, i
1

, . . . , i
N

) from the variational distribution

q.

To optimize the KL divergence loss function, a standard coordinate descent al-

gorithm is used. In practice, we use a pre-existing implementation of the Dirichlet

process Gaussian Mixture Model from the scikit-learn Python module.

4.3.4 Label Identification

After fitting the Dirichlet process Gaussian mixture model for each PSP with modal

prices, we need to identify which Gaussians are significant enough for their means to

be marked as modal prices within the PSP. Moreover, we aim to formalize the notion

of “modal prices of order i” in the context of the DPGMM.

The algorithm that we use to identify labels for each price in a given PSP follows;

notably, we require the specification of �, a threshold factor to test the significance
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of an identified Gaussian. For each PSP with modal prices, we run the following

algorithm.

1. Fit the Dirichlet process Gaussian mixture model to the PSP. Identify the set

of weights, means, and variances, {(w
k

, µ
k

, �2

k

)}Kmax

k=1

.

2. Sort {(w
k

, µ
k

, �2

k

)}Kmax

k=1

in decreasing magnitude of w
k

. Let w
max

be the maxi-

mum value over all weights.

3. Calculate �w
max

.

4. For each (w
k

, µ
k

, �2

k

), 1  k  K
max

, we have two cases:

(a) If w
k

� �w
max

, then we label µ
k

as a modal price.

(b) If w
k

< �w
max

, then we label µ
k

as a non-modal price.

We note that the modal prices have a natural ordering: the modal price of order

1 is the first modal price in the sorted list of triples (in other words, the mean

price of the cluster with highest significance), the modal price of order 2 is the

second modal price in the sorted list of triples, and so on.

Now that we have identified a set of significant Gaussians, we need to assign

labels to each price in the PSP. Specifically, since we have now identified a set of

modal prices, each of which has its own associated label, we can now identify a price

as a modal price with a certain order or a non-modal price. We outline the algorithm

that we use to identify the label for each price in a specific PSP. In this procedure, we

require another thresholding parameter ⌘ for determining if a price is close enough

to the mean of a significant Gaussian. For each price p
t

in a given PSP with modal

prices, we run the following algorithm.

1. Let {w
s

, µ
s

, �2

s

}Smax

s=1

denote the parameter set for the Gaussians that we iden-

tify to be significant in the last algorithm, where the Gaussians are sorted in

decreasing order of w
s

. We now iterate through {w
s

, µ
s

, �2

s

}Smax

s=1

.
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2. For the current Gaussian s, calculate d = kp
t

� µ
s

k2
2

, the distance between the

price and µ
s

.

3. We have two cases:

(a) If d  ⌘�
s

, then we check if the current Gaussian is the first Gaussian in

the ordered list that satisfies this threshold. If so, we label p
t

with the

label of {w
s

, µ
s

, �2

s

}. If we have previously found a Gaussian—in other

words, if we have found a Gaussian with higher weighting that is close

enough—then we keep the previous Gaussian’s label. This check ensures

that if a price is close enough to more than one significant Gaussian, we

choose to assign the price to the most significant Gaussian.

(b) If d > ⌘�
s

, then p
t

is not close enough to the current Gaussian, and we

move to the next Gaussian in the ordered list.

4. After iterating through the entire list of significant Gaussians, if we do not

find that p
t

is close enough to any significant Gaussian, then we assign p
t

a

non-modal price label.

4.3.5 Summary

To recap our models, we first identify price setting periods with the event-based

hidden Markov model. We then calculate the KL divergence of each PSP, and if the

PSP has a KL divergence over a significance threshold, we fit its prices to a Dirichlet

process Gaussian mixture model, from which we learn the significant Gaussians. We

then assign prices to corresponding modal prices of certain orders, if the prices are

close enough to a mean of a significant Gaussian, and if not, label them as non-modal.

If the PSP does not satisfy the KL divergence cuto↵, then we do not need to fit the

DPGMM and simply estimate the reference price with the mean price of the PSP.

We provide an example product’s price trend and how we tackle its analysis in Figure

4.1.
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Figure 4.1: The results of our methodology applied to an example price trend. We
first identify four price setting periods (PSPs), shown in the top visualization, and
then calculate the KL divergence of each PSP. The third and fourth PSPs have a KL
divergence over a significance threshold, so we fit PSP 3 and PSP 4 each to a Dirichlet
process Gaussian mixture model. In PSP 3, we identify two significant Gaussians and,
thus, two modal prices. Prices close enough to the green Gaussian, which has the
highest significance, are labeled as modal prices of order 1 (reference prices), prices
close enough to the blue Gaussian are labeled as modal prices of order 2, and the rest
of the prices are non-modal. In PSP 4, we identify one significant Gaussian, to which
most prices are assigned.

4.4 Measuring Price Stickiness

After finding price setting periods and identifying a set of modal prices, we can

explore several measures of the rigidity of the prices for a given product. We first

note that the upper bidiagonal matrix found during the identification of PSPs is not

particularly interesting in terms of the entropy rate (to be defined in this section) due
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to the nature of the matrix. Instead, we discuss a set of measures that we define for

calculating price stickiness within PSPs and across entire trends for products.

4.4.1 Measures of Stickiness Within Price Setting Periods

Duration of PSP

We define the duration of a PSP to be the number of weeks included in the PSP. If

the prices in a given PSP are sticky, we expect the duration of that PSP to be long,

since the PSP is optimized to have a set of prices that do not vary significantly. Thus,

duration is a simple measure of the price stickiness for the prices in a PSP, which is

slightly di↵erent from the typical measure that uses the inverse of frequency of price

changes across time points.

Entropy Rate

For a given PSP, we can use the labels learned from the Gaussian mixture model to

fit a Markov model M to the PSP. We construct a transition matrix P of the Markov

model by estimating each entry P
i,j

with the following formula:

P
i,j

=
Number of occurrences of state i after state j

Number of occurrences of state j
. (4.12)

Note that this construction enforces the columns to be probability distributions.

We can then calculate the entropy rate H(M), defined as

H(M) =
X

j

µ
j

H(P
j

) = �
X

i,j

µ
j

P
i,j

logP
i,j

, (4.13)

where H(P
j

) is the entropy of the distribution over transition states for state j, and

µ
j

is the jth entry of µ, the stationary distribution of M .

The key intuition behind using the entropy rate as a measure of stickiness stems

from the definition of entropy. Distributions that have a significant amount of ran-

domness have higher entropy than nearly deterministic distributions; thus, we expect

highly sticky trends to be nearly deterministic and thereby have a lower entropy.
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The second aspect to the formulation of entropy rate as a price stickiness measure

comes from the weights µ
j

. A transition matrix has a probability density P
j

over

output states for each state j, and we can calculate the entropy for each density. We

combine these entropies by weighting each H(P
j

) according to µ
j

, the limit of the

proportion of time that the Markov chain spends in state j.

As a result, we can view the entropy rate as the expected entropy of the output

probability distribution over possible states. The intuition behind why lower entropy

implies stickier prices thus transfers to the entropy rate.

4.4.2 Measures of Stickiness Across Products’ Trends

Translating Per-PSP to Per-Product Stickiness Measures

For each PSP in a given product’s price trend, we can calculate the duration. We

can also calculate the entropy rate for PSPs that have a KL divergence that is high

enough (modal PSPs), as we previously discussed. For the PSPs that do not have a

large enough KL divergence (non-modal PSPs), we can approximate the stickiness of

the prices in the PSP with the following method. For a given product, we can do one

of the following calculations:

1. If there are other PSPs that are modal, we define N to be the maximum num-

ber of states across the modal PSPs and construct a Markov transition matrix,

M 2 RN⇥N , such that each output distribution is uniform over all states. Con-

sequently, since Mµ = µ, the stationary probability distribution is uniform, so

the entropy rate is logN , the entropy of the uniform distribution over N states.

2. If there are no other PSPs that are modal, we let the entropy rate be log Ñ ,

where Ñ is the number of time points in the PSP.

If the product does have modal PSPs, we expect to be able to extract some information

from these PSPs about typical fluctuation trends. Therefore, we can approximate the
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entropy rate of the non-modal PSPs by assuming that the distribution over states is

completely random and, moreover, that there are no more states found in the non-

modal PSPs than the ones found in any of the modal PSPs. Thus, our measure in

case 1 allows us to fill in the missing entropy rates with a “maximal” entropy rate.

In case 2, we do not have any information on the number of states, so we simply

estimate the entropy rate using the number of time points, the maximal number of

possible states.

`
2

-Norm of Per-PSP Duration Vector and of Per-PSP Entropy Rate Vector

From here, we can form v
durations

, a vector of durations over a product’s PSPs, and

v
entropy rates

, a vector of entropy rates over the PSPs. We can then calculate the

`
2

-norms of v
durations

and v
entropy rates

:

kv
durations

k
2

=

 
X

PSP i

(v
durations

(i))2
!

1/2

kv
entropy rates

k
2

=

 
X

PSP i

(v
entropy rates

(i))2
!

1/2

.

(4.14)

Note that our formulation incorporates both the dimension of the vectors, or the

number of PSPs, and the magnitudes of the durations and entropy rates.

k�k
1

-Measures of Mean and Modal Prices

We define the k�k
1

-measure of a vector of prices to be the sum of the absolute values

of the di↵erences between the sequential pairs of prices. (� in the name refers to the

vector of di↵erences between prices.) For a given product, we have several relevant

price vectors: we can construct a vector of the mean prices for each PSP, a vector

containing the modal price of order 1 (the reference price) for each PSP, a vector

containing the modal price of order 2 for each PSP, a vector containing the modal

price of order 3 for each PSP, and so on. Note that if we do not have the relevant

modal price—in other words, if the Gaussian mixture model finds only k modal prices
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for the PSP, and we are trying to calculate the k�k
1

-measure for the modal price of

order greater than k—then we use the mean of the PSP as a substitute measure.

The point of this construction is to test if we can identify di↵erent levels of stick-

iness by looking at mean prices and at modal prices of di↵erent order. If we notice

that modal prices of a certain order have a lower k�k
1

-measure, we can conclude that

the modal prices of that particular order are stickier than the other sets of prices with

which we are comparing the k�k
1

-measure.

4.5 Predicting Price Trends with Cost Trends

Eichenbaum et al. (2011) suggest that prices shift as a result of changes in costs.

We set out with a more complicated regression technique to verify that costs indeed

do have predictive power. We also attempt to learn a time lag by utilizing the k

previous values of costs to predict prices. To make this procedure tractable, we first

apply dimensionality reduction on both the price data and the cost data and repeat

the analysis for a range of values for k. We also attempt this analysis on the full,

high-dimensional price and cost data for a fewer number of values for k. Finally, we

repeat our procedure using k previous values of prices to predict costs to test for

potential reverse correlations.

4.5.1 Ridge Regression Optimization

Our procedure is explained visually in Figure 4.2. We define the number of products

to be N . We then define a cost data matrix X 2 RN⇥T and a price data matrix

Y 2 RN⇥T , where T is the number of time points. We now apply dimensionality

reduction with principal component analysis (summarized in the Appendix) to X

and Y , choosing the minimum number of principal components that are need to

capture 95 percent of the variances for each of X and Y . Let n
cost

and n
price

denote

the new dimensions of the cost matrix and the price matrix, respectively. We denote
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Figure 4.2: Methodology for ridge regression. We first apply dimensionality reduc-
tion to the cost data X and to the price data Y and then form X̂ and Ŷ . We aim to
learn a map W such that WX̂ ⇡ Ŷ .

by Ŷ 2 Rn

price

⇥T the dimension-reduced version of Y .

Now, we define X̂ 2 R(k+1)n

cost

⇥T as follows, recalling that k is the number of

previous time points we use in our prediction.

1. First, for each n
cost

⇥1 time point t in X, consider the previous k time points at
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locations t� 1, . . . , t� k. If t� k < 0 (zero-indexing), then set that time point

to be the all-zeros vector of dimension n
cost

. Now, we have a n
cost

⇥ (k + 1)

matrix subset of the dimension-reduced cost matrix.

2. Concatenate the columns of the subset defined in the previous step so that they

form a (k + 1)n
cost

dimensional vector.

3. The resulting vectors form a matrix X̂ 2 R(k+1)n

cost

⇥T , which represents the

temporal dynamics of cost over the past k+1 time points (including the current

point).

We want to learn W 2 R(k+1)n

price

⇥n

cost such that WX̂ ⇡ Ŷ . We seek to find the

optimal ŵ
i

, for each dimension of data in Ŷ . To solve this problem, we formulate the

ridge regression objective in terms of each row w
i

of W :

ŵ
i

= argmin
wi

kwT

i

X � Y
i

k2
2

+ kw
i

k2
2

. (4.15)

Here, we penalize the reconstruction loss kwT

i

X � Y
i

k2
2

with an `
2

-penalty term,

which encourages solutions w
i

with smaller norm. This penalty is for the purposes

of regularization⇤ as well as to make the problem identifiable. Standard least squares

regression does not necessarily have a unique solution due to a mismatch in rank

between X̂ and Ŷ ; adding the `
2

ridge penalty ensures that a unique solution exists.

Now, we can build the full matrix of weights W by stacking the w
i

vectors:

W =

0

BBB@w
1

w
2

. . . w
n

cost

1

CCCA

T

. (4.16)

Note that we train on the first 80% of the data and test upon the last 20% of the

data. We measure reconstruction error, namely,

Reconstruction Error =
1

n
price

���WX̂ � Ŷ
���
2

2

, (4.17)

⇤
Regularization is a term we use when we deliberately introduce model mismatches in order to

avoid overfitting—that is, cases when the model fits nearly exactly to the training data but performs

poorly on testing data.
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where we normalize by the number of entries in the matrix. This metric captures the

goodness of W ’s fit and measures the average mean squared error over the elements

of the reconstructed data matrix.

4.6 Clustering Products

We summarize two types of analyses for clustering products that we use on our

dataset. First, we cluster products based on their time series of prices, using a

dimensionality reduction method. We then cluster products based on the measures

of price stickiness that we have defined.

4.6.1 Clustering with Dimensionality Reduction

Clustering with Price Trends

One method of clustering products lies in identifying similarity between products

based completely on their time series of prices. We use principal component analysis

(PCA), a method for dimensionality reduction, to identify a small subset of “principal

components” that capture a significant amount of the total variance across the price

data for all products. More details about the theory behind PCA can be found in

the Appendix.

4.6.2 Clustering with Price Stickiness Features

Our second objective in clustering products is to be able to identify clusters of prod-

ucts with highly sticky price trends and clusters of products with less persistent prices

found throughout the timeline of our dataset. We define each product in terms of

(k�k
1

-measure for reference prices, `
2

-norm of entropy rates for PSPs), a vector of

two of the price stickiness metrics, noting that the two-dimensional nature of this

vector makes it highly interpretable and easy to visualize.
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Chapter 5

Results and Discussion

We summarize the key insights gained from applying our methodology to our scanner

dataset.

5.1 Discovered Price Setting Periods

We evaluate the performance of the key models to which we fit our price trends.

Notably, the event-based hidden Markov model is able to confirm that significant

price setting periods exist and, moreover, is able to identify PSPs with reasonable

success. The event-based HMM generally performs well across di↵erent kinds of

trends, finding varying numbers and shapes of PSPs across products. Furthermore,

the identified PSPs capture interesting internal dynamics, which we analyze to present

additional results discussed in the subsequent sections of this chapter.

Figure 5.1 illustrates the distribution over all products of the number of PSPs

identified by fitting each product’s price trend to the event-based HMM. The distri-

bution captures a range of small numbers of identified PSPs, so the model selection

procedure that we covered in the previous chapter is successful in helping us avoid

overfitting from the identification of too many PSPs.

Figure 5.2 displays the PSPs identified using the event-based HMM for several
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Figure 5.1: Distribution over all products of the number of price setting periods
identified by fitting each product’s price trend to the event-based hidden Markov
model.

di↵erent products, with each color denoting a di↵erent PSP in the product’s trend.

We generally see that each PSP includes a set of prices that have reasonably low

variance and that merging a PSP with the preceding PSP would, for the most part,

increase the variance of prices included. In other words, for each example in Figure

5.2, if more PSPs were identified, then we likely would be overestimating the number

of periods.

We also observe from Figure 5.2 that the shapes of many PSPs can be described as

“clouds” of points and “lines” of points, where clouds of points have higher variances

but generally trend in a stabilized manner around a fixed price level. Lines are the

low-variance version of clouds: we often notice that the prices over PSPs with this

shape do not change at all, or if they do, only vary in small amounts. One surprising

observation is that three broadly-defined types of products exist: (1) products with

PSPs that are all shaped as lines, (2) products with PSPs that are all shaped as
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clouds, and (3) products with a mix of these two PSP shapes.

Figure 5.2: Examples of the price setting periods identified from fitting price trends
to the event-based hidden Markov model, with each color denoting a di↵erent PSP.

Figure 5.3 illustrates the PSPs identified for examples corresponding to four key

types of trends that we encounter frequently throughout the dataset. Each example
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presents an issue with our PSP identification model that we address in subsequent

steps of our methodology—namely, we describe how we address noisy data, steadily

increasing or decreasing trends, and trends with prices that rarely repeat from one

week to the next week, and how we can consolidate PSPs when we identify too many

PSPs.

(a) Noisy data trend (b) Steadily increasing trend

(c) Violently fluctuating data (d) Too many price setting periods identified

Figure 5.3: Examples of the price setting periods identified from fitting price trends
to the event-based hidden Markov model, with each color denoting a di↵erent PSP.
Each example presents an issue with our PSP identification model that we address
with subsequent steps of our methodology—namely, we are able to address noisy data,
steadily increasing or decreasing trends, and trends with prices that rarely repeat from
week to week, and we can consolidate PSPs when we identify too many PSPs.
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Noisy Data

In Figure 5.3(a), we plot an example of noisy data, which we encounter frequently

in our scanner dataset. Our event-based HMM identifies eight PSPs, which is high

compared against other products. The main issue, however, is that within each

identified PSP, the variance of the prices is quite high. We will later account for this

aspect of the data by essentially determining whether each PSP has prices too close

to uniform noise. In the case where the prices are too uniformly distributed, the best

option for getting an idea of the typical price of the product is to simply take an

average (since the mode is not a useful measurement in this kind of data).

Steadily Increasing or Decreasing Trends

In Figure 5.3(b), we plot an example of a steadily increasing trend. For these trends,

either the notion of price setting periods does not apply (in other words, price is,

generally, steadily increasing) or the price setting periods are very short in length, in

which case, a large number of PSPs is more appropriate. In either case, analyzing

a set of uniformly increasing time segments separately is equivalent to analyzing the

entire trend.

Violently Fluctuating Data

In Figure 5.3(c), we plot an example of a trend with prices that alternate through

a set of prices with a high frequency. We find that our model is unable to realize

that the pattern of price activity remains relatively constant across all time points,

likely due to the fact that the pattern in examples like this trend is highly oscillatory

across a small set of fixed prices. The weakness of our model is that it also assumes

that prices within the same price setting period will be close together, an assumption

that examples like this trend violates. However, the same pattern of price behavior

is present in all splits of the timeline, so breaking up the timeline into di↵erent PSPs

will not a↵ect the analysis much.
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Too Many Price Setting Periods Identified

In Figure 5.3(d), we plot an example of a trend for which we identify too many PSPs.

Specifically, the last three PSPs that the model identifies should be consolidated,

which is an error in the identification of the number of price setting periods. However,

splitting up the timeline into multiple PSPs does not a↵ect our examination of the

internal dynamics of PSPs at all.

5.2 Structure of Reference Prices and Other Modal

Prices

Now that we have identified price setting periods, we present the results of our models

that uncover modal prices, including reference prices (modal prices of order 1). We

are able to identify PSPs that have relevant modal prices, and within those PSPs,

we can identify specific reference prices and other modal prices. We find that only

11.2 percent of PSPs have modal prices and that among these PSPs containing modal

prices, most PSPs have only one or two orders of modal prices.

5.2.1 Performance of Hidden Markov Model

Figure 5.4 plots example results from fitting a hidden Markov model on the entire

price trend of a product and on a price setting period from the price trend of a

di↵erent product. Each price is labeled with a color corresponding to a certain state

learned from the HMM. Debatably, the HMM is able to detect broad bands of prices,

apparent in the figure on the left: roughly, red corresponds to prices between 0 and

2, green corresponds to prices between �0.5 and 0.5, and blue corresponds to prices

between �1 and 0, though there are errors. The figure on the right, however, does

not seem to convey any useful information on modal prices.
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(a) Entire trend (b) Price setting period

Figure 5.4: Example results of fitting a hidden Markov model on the entire price
trend of a product and on a price setting period from the price trend of a di↵erent
product. Each price is labeled with a color corresponding to a certain state learned
from the HMM.

5.2.2 Finding Price Setting Periods with Multi-Modal Price

Distributions

Figure 5.5 plots the distribution over price setting periods of KL divergences, where

each measures how close the price distribution in each PSP is to the uniform dis-

tribution over the set of prices found in that price distribution. The closer a KL

divergence of a price distribution is to 0, the closer the distribution is to uniform. We

can interpret this feature of the metric in terms of the number of modes of the price

distribution (in other words, modal prices): A uniform distribution has the property

that every value drawn from the distribution is a mode. The other extreme is a

deterministic distribution, where there is only one value (in other words, the mode).

Relaxing these conditions, we get that increasing values of KL divergence between

the price distribution and the uniform distribution correspond to fewer and fewer

modes of the price distribution and thus fewer and fewer modal prices. We want to

choose a cuto↵ such that we capture the interesting situation where there are a few

(for instance, fewer than six) modal prices.
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Empirically, we examine random PSPs with KL divergences from every band

capturing 10 percent of the distribution and find that a KL divergence threshold

of 1.2 is appropriate to ensure that we only examine PSPs with potentially multi-

modal price distributions. We find that 11.2 percent of price setting periods meet the

KL divergence threshold criterion. PSPs below this threshold tend to be completely

random, in which case, an average value summarizes the “modal” price behavior

relatively well. Thus, after setting this threshold, we treat every PSP less than this

threshold as though it has zero modal prices and summarize the price behavior in the

PSP with the average price value. In practice, this procedure causes us to miss on on

a few PSPs which may have a mode—however, in these cases, there tends to be only

one mode that we miss out on due to the noise of the price distribution, which makes

the distribution appear more random than it truly is. In these cases, summarizing the

price distribution in the PSP by its average also gives us essentially the information

we want from the PSP.

Figure 5.5: Distribution of KL divergences, each measuring how close the price
distribution in each price setting period is to the uniform distribution over the set of
prices found in that price distribution.
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5.2.3 Modal Prices Within Price Setting Periods

Figure 5.6 plots the distribution of the numbers of modal prices found in “modal

PSPs,” or price setting periods with modal prices. We observe that most of the PSPs

with modal prices have exactly one or two modal prices, with a significant dropo↵ in

the number of modal PSPs having any more modal prices, which is consistent with

the assumptions we previously made and trends we see from this dataset. We also

see that no more than six modal prices within a single PSP are identified.

Figure 5.6: We find that 11.2 percent of price setting periods have at least one modal
price. For these PSPs with modal prices, we plot the distribution of the number of
modal prices found in each PSP.

We now fit the Dirichlet process Gaussian mixture model to all PSPs with modal

prices, as described in Chapter 4. Figure 5.7 depicts an example price trend fit to the

Dirichlet process Gausian mixture model. Prices in the trend that the model identifies

to correspond to the modal price of order 1 are plotted in blue, prices corresponding

to the modal price of order 2 are plotted in green, and non-modal prices are shown

in red.
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Figure 5.7: Example price trend fit to the Dirichlet process Gausian mixture model.
Prices in the trend identified to correspond to the modal price of order 1 are plotted in
blue, prices corresponding to the modal price of order 2 are in green, and non-modal
prices are in red.

Figure 5.8 tracks the distributions of the fractions of modal PSPs that have modal

prices of order i for i = 1, 2, 3, 4. For each product, the modal fraction of order i is

calculated by dividing the number of PSPs that have a modal price of order i by the

total number of PSPs for that product. As expected, a significant portion of modal

PSPs have modal fractions of order 1 equal to exactly 1. In other words, the PSPs

for a large number of these products that have modal PSPs all have a modal price of

order 1. This trend also holds for modal prices of order 2, though to a considerably

lesser extent. Furthermore, the fractions of modal PSPs with modal prices of order i

decreases with increasing i.
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Figure 5.8: Distributions over products of the fractions of price setting periods with
modal prices of order i for i = 1, 2, 3, 4. For each product, the modal fraction of order
i is calculated by dividing the number of PSPs that have a modal price of order i by
the total number of PSPs for that product.

5.3 Analysis of Price Stickiness

Our main insights from this section stem directly from analysis of our three price

stickiness measures: (1) durations, (2) entropy rates, and (3) k�k
1

-measures for

modal prices of di↵erent orders. We summarize our key findings below.

1. We find that the durations of most price setting periods are longer than a

quarter. In fact, half of the price setting periods have a duration of at least 27

weeks. Nearly 15 percent of PSPs have a duration of at least one year.

2. We find that the entropy rate works well as a measure of price stickiness. The

entropy rate has several appealing properties: (a) it successfully identifies clus-

ters of price distributions for price setting periods of di↵erent shapes, (b) it is a

one-dimensional measure and is thus easily visualizable, and (c) it is easily in-

terpretable as a measure of the amount of randomness in the price distribution.
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3. Modal prices are stickier than mean prices.

5.3.1 Durations of Price Setting Periods

Figure 5.9 plots the distribution of durations of price setting periods, where the

duration of a PSP is the number of weeks that the PSP spans. We find that half of

PSPs are at least half a year in duration, which is significantly longer than the use

of quarters by Eichenbaum et al. (2011) and others in which to analyze the internal

dynamics of segmented time periods. Eichenbaum et al. (2011) find that the duration

of reference prices is nearly a year, while we find that nearly 15 percent of price setting

periods are a year or longer in duration. We note that our measure of the duration

of a PSP is in fact a lower bound estimate of the true duration of modal prices. As

discussed in the first section of this chapter, our model sometimes identifies too many

PSPs, and so the true duration would be the sum of the durations for multiple PSPs.

Thus, we find evidence supporting a high level of rigidity at the micro price level.

5.3.2 Entropy Rates of Price Setting Periods

Figure 5.10 illustrates the distribution of the entropy rates over all PSPs along with a

few representative examples with entropy rates from di↵erent parts of the distribution.

As expected, the PSP with prices that do not change at all has an entropy rate of

0, while the PSP with prices that oscillate between a small set of prices has one of

the highest entropy rates found across all PSPs. Furthermore, the number of modes

is increasing in the entropy rate: the example with an entropy rate of 0 naturally

has one modal price. Notably, over 3, 500 price setting periods have an entropy rate

that is close to 0, suggesting that these PSPs have very well-defined reference prices.

The example trends with entropy rates of 0.36, 0.78, and 1.34 have two modal prices.

We observe a bump in the distribution of entropy rates across PSPs around 0.8 to

1.0, which suggests that a high number of PSPs are multi-modal in nature. Finally,

the PSP with an entropy rate of 1.91 has four modal prices. In these examples, the
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5.3 Analysis of Price Stickiness

Our main insights from this section stem directly from analysis of our three price stick-

iness measures: (1) durations, (2) entropy rates, and (3) persistences. We summarize

our key findings below.

1. We find that the durations of most price setting periods are longer than 13

weeks (a quarter).

2. Entropy rate as stickiness measure. Also also is really good at identifying

clusters of di↵erently shaped trends. Extremely convincing that we find one-

dimensional measure corresponding to di↵erent kinds of trends; completely un-

supervised.

3. Modal prices are stickier than mean prices.

5.3.1 Durations of Price Setting Periods

Percentile Weeks
50.0 27
75.0 40
85.0 51
90.0 58
95.0 71
97.5 85
99.0 104

Table 5.1: Statistics of the distribution of the durations, or lengths, of price setting
periods, in weeks ***.
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Figure 5.9: Distribution of the durations of price setting periods in weeks.

reference price, or modal price with order 1, generally shows up throughout the length

of the PSP.

Clustering Using Entropy Rate

Figures 5.11 and 5.12 show several example results from fitting price setting periods

to a Dirichlet process Gaussian mixture model, where the first cluster of results all

have low entropy rates between 0.31 and 0.34 and the second cluster of results all

have high entropy rates between 1.90 and 1.99. We observe that the first cluster is

entirely characterized by a small set of modal prices, with only a small number of

points that are not found elsewhere in the trend. Furthermore, we note that each

example from the second set is a violently fluctuating trend that we discussed in the

first section of this chapter—in other words, each example in this cluster oscillates
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Entropy Rate = 0.00 Entropy Rate = 0.78

Entropy Rate = 0.36 Entropy Rate = 1.34

Entropy Rate = 1.91

Figure 5.10: Distribution of the entropy rates over all price setting periods. We
illustrate a few examples of price setting periods, each with the entropy rate of its
price distribution.

from week to week between a set of four or five modal prices.
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Figure 5.11: The results of fitting various price setting periods to a Dirichlet process
Gaussian mixture model. These examples each have a low entropy rate between 0.31
and 0.34.

5.3.3 Modal Prices Are Persistent

Figure 5.13 plots the distribution of the k�k
1

-measures for mean prices along with

the distribution of the k�k
1

-measures for modal prices of order 1, both across all

PSPs. We observe that the distribution of k�k
1

-measures for modal prices of order

1 has more mass in the range of low values than the distribution of k�k
1

-measures

for mean prices. Since k�k
1

sums the magnitudes of changes between the modal or

mean prices for each PSP from PSP to PSP, this result suggests that modal prices

are stickier than mean prices.

63



Figure 5.12: The results of fitting various price setting periods to a Dirichlet process
Gaussian mixture model. These examples each have a high entropy rate between 1.90
and 1.99.
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Figure 5.13: Distributions of k�k
1

-measures for mean prices and for modal prices
of order 1 across price setting periods. Modal prices appear to be stickier than mean
prices.
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5.4 How Well Do Costs Predict Prices?

Figure 5.14 plots the reconstructions errors for predicting costs from prices and for

predicting prices from costs, where the reconstruction error is a measure of the average

mean squared error over the elements of the reconstructed data matrix. Plots (a) and

(b) illustrate the results from when we fit the model on only the principal components

identified for the price data and for cost data, while plots (c) and (d) are results from

fitting the model on all trends. We observe that the reconstruction errors generally

decrease in k, the number of previous time steps that we use in the model. We also

note that k is a measure of model complexity: the larger k is, the more parameters

we need to fit the model, since the matrix W of map weights increases linearly in k.

Our result implies that using more time steps tends to improve the model, suggesting

that a delay exists between costs and prices. Furthermore, the reconstruction errors

for using our model to predict training data are generally lower than the errors for

predicting testing data. Surprisingly, the models for predicting prices from costs seem

to perform slightly better than the models for predicting costs from prices.

A possible reason for these results may be due to the relative variance of the price

and cost values. We refer back to Figures 3.8 and 3.10, the plots of the distributions

of the mean prices and mean costs, respectively, over all weeks. We can see that the

distribution of costs over all products is much more peaked and is thus lower variance

than the price distribution; thus, price may better predict cost simply because the

cost values have less variance than the prices. Empirically, this statement seems to

be true.

Overall, we can see that the learned maps generalize (the testing errors decrease

alongside the decreasing training errors). The exception is with plot (b), where the

reconstruction errors for testing data do not improve with increasing k, while recon-

struction errors for training data decrease slightly. This result could be a sign of

overfitting in this case: model complexity increases, but only training errors improve.
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(a) Predicting costs from prices using principal

components

(b) Predicting prices from costs using principal

components

(c) Predicting costs from prices using all data (d) Predicting prices from costs using all data

Figure 5.14: Reconstruction errors of the models predicting costs from prices and
prices from costs, plotted against k, the number of previous time steps used in pre-
diction. Plots (a) and (b) depict the results of fitting the model to only the principal
components for costs and for prices. Plots (c) and (d) depict the results of fitting the
model to all data.

5.5 Product Clusters

We discuss the results that we obtain by clustering products by two di↵erent measures:

according to time trends and according to price stickiness. In both cases, we find that

products naturally cluster.

5.5.1 Clustered by Trends

One method of clustering the products is to perform principal component analysis

on all of the price trends. We find that d = 102 principal components are su�cient
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for capturing 95 percent of the variance in the price data across all products (nearly

20, 000 products in total).

We then perform d-nearest neighbor clustering, where the d clusters are deter-

mined based on Euclidean distance to the d principal components. In other words,

each product is assigned to the closest principal component. Figure 5.15 displays

correlation matrices after sorting by the assigned category and sorting by the closest

principal component, respectively—notably, we label each cluster with the rank of

its associated principal component and then sort the products by increasing cluster

label order. We observe higher correlation among clusters formed by the top principal

components and, in general, more clustered products. We also find that 137 principal

components are su�cient for capturing 95 percent of the variance in the cost data

across 1,000 random products, as shown in Figure 5.16.

(a) Sorted by category (b) Sorted by principal component

Figure 5.15: Matrix of correlations between the price trends for pairs of products
from a set of 1,000 random products, first organized by category and then by principal
component. Sorting by principal component identifies similar products better than
sorting by product category.

5.5.2 Clustered by Price Stickiness

Figure 5.17 displays two clusters that are identified when we use price stickiness

measures to characterize products. We observe a clear distinction in the magnitudes

68



(a) Sorted by category (b) Sorted by principal component

Figure 5.16: Matrix of correlations between the cost trends for pairs of products
from a set of 1,000 random products, first organized by category and then by principal
component. Sorting by principal component identifies similar products better than
sorting by product category.

of the products’ `
2

-norms of entropy rates for di↵erent price setting periods—namely,

products that are colored red in Figure 5.17 have `
2

-norm values of higher than 6,

while products corresponding to the blue cluster have `
2

-norms that are less than 6.

Figure 5.18 plots two examples, one drawn from the red cluster and the second

drawn from the blue cluster. Both of these trends have a small k�k
1

-measure for the

reference price; however, the `
2

-norm of entropy rates is drastically contrasted.

It is important to keep in mind that the `
2

-norm measure is more of an internal

metric to characterize price distributions within PSPs than the k�k
1

-measures for

reference prices. Thus, we are able to capture both internal and cross-PSP expres-

sions of stickiness. Interestingly, a few products have high reference price stickinesses

but low `
2

-norms of entropy rates. This result suggests that a distinction exists be-

tween measures of stickiness applied to entire trends and measures based on internal

dynamics of PSPs.

We find that the k�k
1

-measure for reference prices is highly sensitive to outliers

that sometimes occur in trends. For instance, there are trends that remain at a single

price through all weeks except a small number of weeks. Since we standardize our
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data, these outliers are amplified, and the distances between these outliers and the

mode price become large. These examples generally show up in the right half of 5.17.

This problem is mitigated by the fact that we, nevertheless, see that most products

are highly concentrated around small values for k�k
1

-measure for reference prices.

Importantly, even though most of the mass in the distribution of k�k
1

-measures

for reference prices is uniformly concentrated, roughly between 0 and 10, there is

an easily detectable split between the two clusters, identifiable using a threshold for

the entropy rate. Furthermore, the two clusters that are identified have roughly

equal mass. This result confirms that prices are sticky indeed, but critically: our

methodology helps us distinguish products with highly sticky prices from products

with less sticky prices by looking at internal dynamics of price setting periods.

Both the k�k
1

-measure for reference prices and the `
2

-norm of enropy rates for

PSPs inform us of the stickiness of products. Nevertheless, the `
2

-norm of entropy

rates is a stronger measure: we can distinguish very sticky products from less sticky

products simply by examining this one metric, which captures the internal dynamics

of price setting periods.
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Figure 5.17: Product features are defined as (k�k
1

-measure for reference prices,
`
2

-norm of entropy rates for PSPs). We identify clusters of products by thresholding
the entropy rate feature.

(a) Example from the red cluster (b) Example from the blue cluster

Figure 5.18: Example trends drawn from the clusters identified using price stickiness
measures. Both trends have a low k�k

1

-measure for reference prices, but trend (a)
has a significantly higher `

2

-norm of entropy rates over price setting periods.
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Chapter 6

Conclusion

6.1 Implications

Our paper has focused on algorithmically identifying price setting periods for any

given product and characterizing a set of various regular prices within price setting

periods, given only the values of the price time series. Our work departs from the

existing literature in three important ways. For each product,

1. We flexibly identify price setting periods without making any assumptions on

the length of the periods or the number of periods.

2. We do not simply study one regular, or reference, price. Instead, we identify

several “modal” prices from the data that correspond to the peaks of the price

distributions for the identified price setting periods.

3. We develop highly clusterable and interpretable metrics for price stickiness,

which we demonstrate with an easily separable clustering of the products into

two clean groups of highly sticky and non-sticky products.

Thus, we succeed in answering the questions that we laid out in Chapter 4.

72



6.2 Future Work

There are many possible extensions and continuations of our work.

6.2.1 Further Analysis of Product and Price-Setting-Period

Clusters

Future research in this area can extend our work by attempting to identify well-known

macroeconomic trends such as price seasonality by examining price setting periods.

Furthermore, products that behave seasonally could also potentially be uncovered

using our methodology as a starting point. We could further analyze the set of

interesting prices that we learn for each PSP and try to identify which of those prices

are sales; we can generally attempt to explain the source of each of the interesting

prices we discover with our Dirichlet process Gaussian mixture model.

We could also attempt to characterize products and price setting periods by in-

cluding costs in the equation, thus using both price and cost trends in the modeling.

6.2.2 Fine-Tuning Our Probabilistic Methods

Our Bayesian models work quite well at identifying an interesting set of regular prices

found over PSPs. However, we can tweak our setup to potentially improve perfor-

mance even more.

We essentially use two separate probabilistic models over the course of this the-

sis: an event-segmentation hidden Markov model and a Dirichlet process Gaussian

mixture model. We use the models for two separate tasks—identifying price setting

periods and finding regular prices. Yet, there is no reason to do these tasks separately;

We could instead build a probabilistic model, where the event-segmentation HMM

is another layer on top of the DPGMM. Essentially, we could condition on the state

of the event-segmentation HMM before outputting a price from the DPGMM model

and have one complete model to encapsulate both parts of our analysis.
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Another modification that we might consider adding to our probabilistic model is

a layer that allows us to share information across products; namely, our model could

additionally condition on the product that it came from. Since we empirically know

that products cluster well, we could insert assumptions into the model that products

come from di↵erent clusters, and we could potentially implement something similar

to a Chinese Restaurant Franchise: a hierarchical extension of the DPGMM (also

known as a Chinese Restaurant Process) that we use in this thesis. This step would

allow us to introduce more information into the model, while potentially making it

more complicated to fit.

6.2.3 Connections to Macroeconomic Theory

In the vein of most papers in the literature, we could try to integrate our probabilistic

models more thoroughly in an established macroeconomic price model framework such

as the menu-cost, Calvo, flexible price, or multisector model. We could then compare

the predictions of our theoretical model with actual macroeconomic price trends to

see how well we perform at predicting true aggregate price movements. One potential

di�culty would be that our dataset covers a relatively uninteresting and short period

of time, macroeconomically speaking (2004—2007). Thus, performing this kind of

analysis on a larger dataset of similar flavor could potentially produce more interesting

intuition into the macroeconomic trends underlying price dynamics.
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Appendix A

Statistical Methods

A.1 Hidden Markov Model

A hidden Markov model (HMM) is a model of a probabilistic process that evolves

over discrete time steps. At any given point in time, an HMM outputs a value

conditioned upon the current unobserved “hidden” state that it is in. Learning the

output distribution of values given the hidden states and learning the probabilistic

transition matrix between hidden states fully characterizes the model.

In the simpler Markov models, such as the Markov chain generated by Eichen-

baum et al. (2011), the states are directly visible—{price = reference price, price 6=
reference price}; thus, the state transition probabilities are the only parameters to

learn. Note that we cannot directly encode any information about sales in this type

of model. However, in a hidden Markov model, the states are not directly visible,

though the output states, which depend on the states, are visible. For example, we

cannot tell directly from the data that at a given time, a given product is on sale,

but we are able to learn this unobserved information with an HMM.

Figure A.1 demonstrates an example hidden Markov model, where outputs are

weekly prices. T denotes the transition matrix and O denotes the output probability

matrix. In this diagram, there are four hidden states: A, B, C, and D.
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Generally, T 2 Rm⇥m is the transition probability matrix, and O 2 Rm⇥n is the

output probability matrix, where m is the number of hidden states and n is the

number of output states. (In the toy example, m = 4 and n = 4.) For instance, our

hidden states here could correspond to “being in a sale,” “at a regular price,” or “at

a temporary price increase.”

A B C D

Week 1

T

O

Hidden

Output Week 2 Week 3 Week 4

…T T

O O O

Figure A.1: An example hidden Markov model, where outputs are weekly prices. T
denotes the transition matrix and O denotes the output probability matrix. In this
diagram, there are four hidden states: A, B, C, and D.

A.2 Principal Component Analysis

We cover the dimensionality reduction technique of principal component analysis

(Ramadge 2016). We ask: given data {x
j

2 Rn}p
j=1

, is there some subspace U , with

dimension q < n, such that if we orthogonally project each data point down to this

subspace, then the errors we incur will be quite small? In other words, we want to find

the “best” subspace U with dimension q with the minimum sum of squared norms of

the error residuals over all possible subspaces of the vector space.

We form an orthornomal basis {u
1

, . . . , u
q

} for U and form U =
h
u
1

u
2

. . . u
q

i
2

Rn⇥q with UTU = I
q

. We have two cases:

1. q = n: U 2 O
n

.

2. q < n: U 2 O
n⇥q

.
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The projection of x
j

, the jth (centered) data point, onto U is given by x̂
j

= UUTx
j

2
Rn; while this projection does not reduce the dimension of the data, it maps data

points onto a q-dimensional subspace in Rn. The error residual of this projection is

given by x
j

= x̂
j

+ r
j

. We aim to replace x
j

with x̂
j

and su↵er the loss of information

via r
j

. Note that instead of working with x̂
j

, we can equivalently work with its

coordinates c
j

2 Rq with respect to the basis U , since x̂
j

= Uc
j

. There is no loss of

information when we work with c
j

instead of x̂
j

since c
j

= UT x̂
j

= UTx
j

. So now we

have x̂
j

= Uc
j

, c
j

2 Rq. To summarize:

x
j

2 Rn

UU

T
xj����! x̂

j

2 Rn

U

T
x̂j���! c

j

2 Rq.

x
j

rj+x̂j ��� x̂
j

Ucj �� c
j

.

This technique is referred to as linear dimensionality reduction. Other methods exist

for selecting the subspace U in di↵erent ways.

We now discuss how to go about choosing q and its corresponding subspace. Our

first step is to center the data. We subtract the sample mean µ = 1

p

P
p

i=1

x
j

from

each x
j

to form z
j

= x
j

� µ. In matrix form, we have, prior to centering,

X =
h
x
1

x
2

. . . x
p

i
2 Rn⇥p.

The sample mean is

µ =
1

p
(X1

p

),

where 1
p

2 Rp is a vector of all 1’s. The new matrix of centered data points is

Z =
h
z
1

z
2

. . . z
p

i
= X � µ1T

p

= X

✓
I
p

� 1

p
1
p

1T

p

◆
= X(I

p

� uuT ).

From this point forward, we assume that the data have been centered.

Now, we need to parametrize U ; in other words, we now fix q. Pick an orthornomal

basis U =
h
u
1

u
2

. . . u
q

i
2 O

n⇥q

. Note that this orthonormal basis representation

is not unique, since there are infinitely many orthonormal bases for U . Take U
1

, U
2

2
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O
n⇥q

, which both span U . We can write U
1

= U
2

Q since they span the same subspace,

where Q 2 Rq⇥q. Thus, UT

2

U
1

= Q.

QTQ = UT

1

(U
2

UT

2

)U
1

= I
q

,

QQT = UT

2

(U
1

UT

1

)U
2

= I
q

,

since U
2

UT

2

and U
1

UT

1

are projection matrices, so U
1

UT

1

= U
2

UT

2

. Thus, Q 2 O
q

,

and any two orthonormal basis representations U
1

, U
2

of U are related via a q ⇥ q

orthogonal matrix Q: U
1

= U
2

Q and U
2

= U
1

QT .

We examine how the data are spread around 0. Select a unit norm vector u 2 Rn

and project x
j

onto the line through 0 in the direction u, yielding x̂
j

= uuTx
j

, j =

1, . . . , p. Since the direction is fixed to be u, the projected data are specified by the

set of scalars uTx
j

with zero sample mean. The sample variance in direction u is

�2(u) =
1

p

pX

j=1

(uTx
j

)2

=
1

p

pX

j=1

uTx
j

xT

j

u

= uT

 
1

p

pX

j=1

x
j

xT

j

!
u

= uTRu,

where we define the sample covariance matrix as R := 1

p

P
p

j=1

x
j

xT

j

, a symmetric

positive semidefinite n⇥ n matrix. Thus, the variance of the data in direction u is

�2(u) = uTRu.

It may be interesting to observe the directions of largest variance of the data, for they

capture most of the variability in the data. The direction of maximum variance is

u
1

= arg max
kuk=1

uTRu,

where u
1

is a unit norm eigenvector corresponding to the largest eigenvalue �
1

of

R. Let us suppose that we want to find a second direction with the second largest
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variance. We do not want it to be arbitrarily close to u
1

, so we can constrain the

second direction to be orthogonal to the first. For q orthogonal directions, then, we

want to find U =
h
u
1

. . . u
q

i
2 O

n⇥q

to maximize
P

q

j=1

uT

j

Ru
j

= Tr(UTRU). The

solution is attained by taking the q directions to be unit norm eigenvectors u
1

, . . . , u
q

for the largest q eigenvalues of R. Generalizing, we can see that we obtain n orthonor-

mal directions of maximum variance in the data: these directions v
1

, . . . , v
n

and the

corresponding variances �2

1

� �2

2

� · · · � �2

n

are eigenvectors and corresponding eigen-

values of R, with Rv
j

= �2

j

v
j

, j = 1, . . . , n. The vectors v
j

are called the principal

components of the data, and this decomposition is called principal component analysis

(PCA). Let V be the matrix with the v
j

’s as its columns and ⌃2 = diag(�2

1

, . . . , �2

n

).

PCA is an ordered eigendecomposition of the sample covariance matrix R = V ⌃2V T .

We can quickly see that this interpretation of PCA is the same as the previous

approach of finding a subspace that minimizes the sum of squared norms of the

residuals. We can write

R =
1

p

pX

j=1

x
j

xT

j

=
1

p
XXT =

1

p
U⌃V TV ⌃UT =

1

p
U⌃2UT .

So the principal components are simply the eigenvectors of XXT listed in order of

decreasing eigenvalues, and in particular, the first q principal components are the first

q eigenvectors of XXT , which define the orthonormal basis U⇤ and, thus, an optimal

q-dimensional projection subspace U⇤. Thus, the leading q principal components give

a particular orthonormal basis for an optimal q-dimensional projection subspace.

We can form V
q

=
h
v
1

. . . v
q

i
, which defines a subspace capturing the q direc-

tions of largest variance. We can project the data onto the span of the columns of V
q

:

x̂
j

= V
q

(V T

q

x
j

), where c
j

= (V T

q

)x
j

gives the coordinates of x
j

with respect to V
q

, and

V
q

c
j

synthesizes x̂
j

using these coe�cients to form the appropriate linear combina-

tion of the columns of V
q

. Thus, PCA is essentially looking around to find orthogonal

directions of maximum variance, assuming that maximum variance is important.
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