Evolution of Biofuels

Chris Somerville Carnegie Institution, Stanford University, LBNL. EBI

Current and predicted energy use Current use 13 TW

Global Primary Energy Supply by Fuel*:

* - excludes traditional biomass Source: IEA 2004, Jim Breson BP

Potential of carbon-free energy sources

From: Basic Research Needs for Solar Energy Utilization, DOE 2005

Combustion of biomass provides carbon neutral energy

90,000 TW of energy arrives on the earths surface from the sun

Land Usage

AMBIO 23,198 (Total Land surface 13,000 M Ha)

Types of biofuels

- Solid, burned directly
- Diesel
- Sugar to ethanol
- Cellulose to ethanol

Overview of Brazil sugarcane

- 2007-08 harvest 528 MMT
- ~8 M Ha planted by 2008
- ~20 B liters ethanol, 2007
- ~80-120 T/Ha
- ~6400 L ethanol/Ha
- ~333 mills, 100 planned
- Plantings last 5 y, cut one per year
- Large mill
 - 22,000 tons/day
 - 1500 truck loads/day

Biofuel yields of various feedstocks

Worldwatch 2006

US Biofuel Production has Expanded Rapidly

US Biomass inventory = 1.3 billion tons

From: Billion ton Vision, DOE & USDA 2005

Effect of 50% stover removal on corn grain yields in eastern NE. (120kg N/ha)

K. Vogel et al., unpublished

Perennials have little or no erosion

From Oliveira et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001

Some plants accumulate oil

Biodiesel has been expanding rapidly

Figure 2. World Biodiesel Production, 1991–2005

Worldwatch 2006 & Louise Fresco

Limited potential of biodiesel

65 biodiesel companies in operation, 50 in construction 2006

Use of algae could enable saline cultivation

Greenfuel bioreactor

http://news.com.com/Photos+Betting+big+on+biodiesel/2009-1043_3-5714336.html?t

Cellulosic fuels are expected to become the dominant source of biofuels

Modified from Richard Bain, NREL

How Much Ethanol Could the Municipal Solid Waste from a City With 1 Million People Produce?

The average person in the United States generates approximately 1.8 kilograms of municipal solid waste (MSW) every day. Of this, typically about 75 percent is predominantly cellulosic organic material, including waste paper, wood wastes, cardboard, and waste food scraps. Thus, a city with 1 million people produces around 1,800 tonnes of MSW in total, or about 1,300 tonnes per day of organic material. Using technology that could convert organic waste to ethanol, roughly 330 liters of ethanol could be produced per tonne of organic waste. Thus, organic waste from a city with 1 million people would be enough feedstock to produce about 150 million liters per year. This is enough fuel to meet the needs of more than 58,000 people in the United States; 360,000 people in France; or nearly 2.6 million people in China at current rates of per capita fuel use.

>2% yield is feasible

Yield of 26.5 tons/acre observed by Young & colleagues in Illinois, without irrigation

Perennials have more photosynthesis

Courtesy of Steve Long, University of Illinois

Locations of European Miscanthus Trials

Figure 4.6. Geographical distribution of the trials in the European Miscanthus Productivity Network. See Preface for key to acronyms

From: Clifton-Brown et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001

Yield comparison of two energy crops

Heaton and Long, submitted

Potential bioenergy crops tested in the US

English name	Latin name	Photo- synthetic pathway	Yields reported [t DM ha ⁻¹ a ⁻¹] ^a
Crested wheatgrass	Agropyron desertorum	C ₃	16.3
C	(Fisch ex Link) Schult.		
Redtop	Agrostis gigantea Roth	C_3	Not available
Big bluestem	Andropogon gerardii Vitman	C_4	6.8-11.9
Smooth bromegrass	Bromus inermis Leyss.	C_3	3.3-6.7
Bermudagrass	Cynodon dactylon L.	C_4	1.0 - 1.9
Intermediate wheatgrass	Elytrigia intermedia [Host] Nevski	C_3	Not available
Tall wheatgrass	Elytrigia pontica [Podp.] Holub	C_3	Not available
Weeping lovegrass	Eragrostis curvula (Schrad.) Nees	C_4	6.8-13.7
Tall Fescue	Festuca arundinacea Schreb.	C_3	3.6-11.0
Switchgrass	Panicum virgatum L.	C_4	0.9-34.6
Western wheatgrass	Pascopyrum smithii (Rydb.) A. Love	C_3	Not available
Bahiagrass	Paspalum notatum Flugge	C_4	Not available
Napiergrass (elephant grass)	Pennisetum purpureum Schum	C_4	22.0-31.0
Reed canary grass	Phalaris arundinacea L.	C_3	1.6-12.2
Timothy	Phleum pratense L.	C_3	1.6-6.0
Energy cane	Saccharum spp.	C_4	32.5
Johnsongrass	Sorghum halepense (L.) Pers.	C_4	14.0 - 17.0
Eastern gammagrass	Tripsacum dactyloides (L.) L.	C_4	3.1-8.0

 $^{a}t = Mg.$

From Lewandowski et al., Biomass & Bioenergy 25,335

Theoretical yield of cellulosic ethanol from various feedstocks

Feedstock	Theoretical Yield in gallons per dry ton of feedstock			
Corn Grain	124.4			
Corn Stover	113.0			
Rice Straw	109.9			
Cotton Gin Trash	56.8			
Forest Thinnings	81.5			
Hardwood Sawdust	100.8			
Bagasse	111.5			
Mixed Paper	116.2			
Ves Herman, GCEP				

High yield decreases transportation and land costs

Richard Hamilton, Ceres

Soil carbon increases in perennial crops with all aboveground biomass removed

Tilman, Hill & Lehman Science 314,1598

Perennials have little or no erosion

From Oliveira et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001

Harvesting Miscanthus

http://bioenergy.ornl.gov/gallery/index.html

Ecological niches in Miscanthus vs corn in Germany

From Oliveira et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001 More extensive analysis in Semere & Slater (2007) Biomass & Energy 31,30

Annual precipitation

Annual Average Precipitation

United States of America

Geographic distribution of biomass

Wright et al DOE-ORNL-EERE

Limiting factors for global NPP

Baldocchi et al. 2004 SCOPE 62

Economics of Perennials are Favorable

CROP	Yield	Value	Cost	Profit
	per Acre	\$	\$	\$
Corn (\$4.2/bu)	160 bu	672	193*	479
(\$150/†)				
Switchgrass	10 tons	500	138**	362
(\$50/†)				
Miscanthus	15 tons	750	138**	612
(\$50/†)				

*USDA economic research service 2004 **50% as much fertilizer, no chemicals

Steps in cellulosic ethanol production

From: Breaking the Biological Barriers to Cellulosic Ethanol

The challenge is efficient conversion

- Burning switchgrass (10 t/ha) yields 14.6-fold more energy than input to produce*
- But, converting switchgrass to ethanol calculated to consume 45% more energy than produced

Energy consumption

*Pimentel & Patzek, Nat Res Res 14,65 (2005)

Pretreatment - Example **Reactor Solids Cost Impact:**

Prehydrolysis Solids Concentration Sensitivity

Prehydrolysis Solids Concentration inside Reactor

NREL Analysis

Plants are mostly composed of sugars

Section of a pine board

Lignin occludes polysaccharides

Sheep prefer low lignin

Clint Chapple, Purdue

Humphreys and Chapple, Curr Opin Plant Biol 5,224

A cleavable lignin precursor would fundamentally alter preprocessing

rosmarinic acid

Enzymatic hydrolysis of cellulose is slow

Skopec, Himmel, Matthews, Brady Protein Engineering 16, 1005

Possible routes to improved catalysts

- Explore the enzyme systems used by termites (and ruminants) for digesting lignocellulosic material
- Compost heaps and forest floors are poorly explored
- In vitro protein engineering of promising enzymes
- Develop synthetic organic catalysts (for polysaccharides and lianin)

Dissolution of cellulose in an ionic liquid

(novel pretreatment methods may create fundamental changes)

Cl-

1-Butyl-3-methylimidazolium chloride

Untreated

Treated

Swatloski, Spear, Holbrey, Rogers J. Am. Chem. Soc., 124 (18), 4974 -4975, 2002

Fermentation of all sugars is essential

🖌 Xor

🖌 Xid

Xks

Jeffries & Shi Adv Bioch Eng 65,118

Saccharification & Fermentation

Fermentation Yield Cost Impact

NREL

Steps in cellulosic ethanol production

From: Breaking the Biological Barriers to Cellulosic Ethanol

Nature offers many alternatives to ethanol

- Plants, algae, and bacteria synthesize alkanes, alcohols, waxes
- Production of hydrophobic compounds would reduce toxicity and decrease the energy required for dehydration

Microbial synthesis of artemisinin

Jay Keasling

Conversion of sugar to alkanes

Huber et al., (2005) Science 308,1446

The "hydrogen economy"

The Sleipner Experiment

1 million tons/y; capacity 600 B tons 7000 such sites needed

www.agiweb.org/geotimes

1000 M

Summary of priorities

- Develop energy crops and associated agronomic practices
- Identify or create more active catalysts for conversion of biomass to sugars
- Develop industrial microorganisms that ferment all sugars
- Develop new types of microorganisms that produce and secrete hydrophobic compounds

A vision of the Future

http://genomicsgtl.energy.gov/biofuels/index.shtml

HISTORY OF US FEDERAL GOVERNMENT R & D

Source: National Science Foundation, Federal R&D Funding by Budget Function, Fiscal Years 2001-03. * 2002 figures are preliminary, 2003 figures are proposed. M. Hoeffert

Federal Research Budget 2006

Global grain production with and without yield enhancements

Data from worldwatch

Risks: Historical Price of Oil

The 1.3 Billion Ton Biomass Scenario

