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General Overview

Renewable resources are resources that grow.  Unlike the case of
nonrenewable resources in which a fixed stock is depleted over time,
renewable resources are natural resources that can reproduce, grow, and die.

Economically important renewable resources include:
• Forests
• Fisheries
• Grasslands (used for grazing)
• Underground water (groundwater) fed by rainfall and surface water
percolation

Issues for analysis
• Growth functions and equations of motion for renewable resource
systems.
• Steady-state behavior of renewable resource systems.
• Open access, inefficient market outcomes, and policy corrections.
• Dynamic behavior of renewable resource systems.

A steady-state is a permanent level of stock that is maintained
throughout time.  An Equation of Motion is a formula that defines what
happens to the stock over time.  For example, when St denotes the resource
inventory at period t:

• If S St t+ −1  > 0, then the resource stock is growing over time
• If S St t+ −1  < 0, then the resource stock is shrinking over time
• If S St t+ −1  = 0, then the resource stock is in a steady state ( St = St+1

= S t+2….)
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For clarity, we will consider only one stock variable (for example,
only one species of fish) in each of our renewable resource models.  More
complex models consider multiple stock variables.  Models with multiple
stock variables may be required if, for example, two species interact in a
predator-prey relationship.

We will also use a single indicator variable for the resource, which is
Stock.  Many times having only one indicator variable of a species is not
effective.  For example, when the renewable resource is trout in a lake:

• Need to know the number of fish (Stock)
• Also need to know the number of juvenile fish
(Cohorts)

Yet, the use of a single indicator variable allows us to formulate
tractable models that give us information about how we should manage the
resource.  These models can get quite complicated with multiple stock
variables and more than one indicator variable.

For now, let us focus our analysis on biological renewable resources.
We will consider non-biological renewable resources (e.g., groundwater)
later in the course.

Economic models of biological resources combine biological models
and economic models. For this reason, such combined models are called
bioeconomic models.  Shaefer's (1954) Biomass Model is a classic example
of a biological model used in bioeconmic models.  The following discussion
of growth functions, steady-state, carrying capacity and equations of motion
is based on Shaefer's model.

A Biological Model of A Fishery

Growth Functions
Let St represent the stock of a renewable resource at time t.  For

example, let St represent the biomass of a fish population at time t.  Let
g(At, St) represent the growth function of the stock during time period t,
where growth is a function of the level of the stock at the beginning of
period t, St, and an exogenous parameter At, which represents factors other
than stock which might affect growth in period t.  This simple growth
function neglects other biologically-important determinents of stock growth
(e.g.'s: age distribution, sex distribution, size distribution), but its simplicity
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allows us to concentrate on the dynamic interaction of economics and
biology in renewable resource models.  As previously mentioned, ore
complex models take additional factors into account.

Carrying Capacity and MSS
Notice that growth is influenced by the level of the stock St, which

represents fish biomass in our example.  If the level of the stock is low, the
number of births is greater than the number of deaths of fish so that the fish
population grows.  Yet, the growth of the fish population will be low,
because few fish exist to reproduce.  If the stock is high, food scarcity,
predation, territorialism, and/or an increased incidence of disease may limit
the growth of fish stock.  If the stock is very high, growth may be negative
for a period of time, that is there are fewer births than deaths, until the
stock level falls to the carrying capacity of the environment.  

The carrying capacity of an environment is the maximum level of
stock that the environment can sustain indefinitely.  Carrying capacity is
also called the maximum sustainable stock.  At the maximum sustainable
level, births equal deaths, and the growth rate of the stock is zero (i.e., the
fish population is constant, or in a steady-state).  Without human
intervention, the stock of fish will reach the carrying capacity of the lake
and the population of fish will stay at the maximum sustainable stock
indefinitely.  

Steady-States
At the carrying capacity, the growth of the fish population is zero and

the stock is in a steady-state.  A steady-state is a situation in which the
level of the stock is constant over time.  There can be more than one steady-
state.  For example, a stock level of zero is also a steady-state, because at
zero the stock level cannot rise (i.e., there are no fish to reproduce) and the
stock level cannot fall below zero stock.  Note that although the growth of
the stock can be negative, the level of the stock cannot fall below zero.

The preceding discussion is often illustrated by using a graph like the
one presented in Figure 13.1 below.  For now, let's assume for simplicity
that At does not influence growth, so we can drop At from the growth
function.
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Figure 13.1
Fisheries growth function g(St).

St = stock of fish (or other resource) at time t
g(St) = biological growth rate of fish at time t

There are two steady-states in Figure 13.1: the origin and Smss.  To
the right of the origin, the growth of the stock at first increases with the
level of the stock (e.g., point S1), but then food scarcity, disease, etc. cause
growth to decline with further stock increases (e.g., point S2).  Eventually,
carrying capacity Smss is reached and growth falls to zero.  To the right of
Smss (e.g., point S3), the stock is at an unsustainably high level, and growth
is negative (e.g., g(S3) ).  To the right of Smss, stock will fall until carrying
capacity is reached.  In order to conceptualize growth rate, think of it as
fertility of a pool of fish over a period of time, minus the number of deaths
in the pool of fish over that period.

Equation of Motion
If we were to harvest an amount greater than the growth of the

resource in a period, if Xt > g(St), then the stock would be lower in the
following period.  Depending on the level of the stock, such a harvest could
either decrease growth (e.g., if the level of the stock were S1) or increase
growth (e.g., if the level of the stock were S2).

We can express the relationships between stock level, growth and
harvest in an equation of motion for the renewable resource:
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St+1 = S t + g(St) - Xt

which states, in words, that "stock next period equals stock this period plus
growth this period minus harvest this period."  For example, a pond with
five fish may each give birth to two more fish in a year.  If five fish are
caught by a fisher, ten fish will remain in the next year. It is important to
note that in this formulation of the equation of motion, we are assuming
that growth occurs before harvest in each time period.

We can rearrange the equation of motion as follows:
St+1 - St = g(St) - Xt

In this form we see that the equation of motion says that "the change
in the stock equals growth minus harvest."

If we are in steady-state, then we know that the change in the stock is
zero:

St+1 - St = 0 = g(St) - Xt

or, rearranging,
g(St) = Xt

Hence, in steady-state, growth equals harvest.  Of course, if we are in
steady-state and harvest equals zero, then growth g(St) must equal zero,
which is consistent with our earlier discussion about steady-states.

Sustainable Yields and MSY
We have yet to discuss the optimal harvest of fish.  A sustainable

yield of fish refers to the level of harvest which will result in a steady-state
fish population.  Every point on the curve in Figure 13.1 represents a
sustainable yield.  Of course, t is possible to harvest fish off the curve.  Say
we harvest a larger amount of fish than the growth of the fish stock, i.e., at
a point above the curve.  What happens then is that the overall stock
decreases by the amount of the additional harvest and the system is not in a
steady-state.  The optimal policy, as we will show, is to maintain a steady-
state, or sustainable, level of harvest through time.

Notice that if an amount of the stock Xt is harvested each period such
that Xt = g(St), then the stock will remain at level St.  In this case the owner
would be "harvesting only the growth" and leaving the stock at its original
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level each period.  Because the owner could then harvest Xt = g(St)
indefinitely, such a harvest level is termed a sustainable yield.  There are
many possible sustainable yields.  In fact, each point on the g(St) curve to
the left of Smss could be a sustainable yield if harvest were carried out such
that Xt= g(St).  Note that the level of sustainable yield depends on the level
of the stock St.  That is, every sustainable yield is associated with a
steady-state stock of fish.

The highest possible sustainable yield is called the maximum
sustainable yield, denoted Xmsy.   In Figure 13.1, Xmsy = g(Smsy).  The
level of the stock associated with Xmsy is called "the stock level that
supports maximum sustainable yield," denoted Smsy in Figure 13.1.

When biologists were first analyzing fishery dynamics, they noted
that the largest level of sustainable harvest would be at the level Xmsy.   At
last, they thought, we do not need economists to tell us what the optimal
harvest level is for fish!  The reasoning was that we would obviously be
better off at the steady-state level associated with the highest annual harvest
of fish.  Needless to say, this reasoning was wrong.

Optimal Fish Harvest in Steady-State with Interest Rate of Zero

Before we develop a full, dynamic, economic model of a fishery, let's
examine an example of fish harvest in steady-state.  In this example, we
will maximize the benefits minus the costs of fish harvest subject to the
constraint that we maintain a steady-state.  Note that this may not be
socially optimal, because we still have not shown that it is socially optimal
to be in a steady-state or described the conditions under which this premise
holds.  Thus, the problem we are about to solve is a second-best problem.
Nonetheless, it is an important second-best problem because policy-makers
and their constituents often want steady-state solutions due to the economic
stability and predictability that they provide.  Steady-state solutions are
important to policy-makers because steady-state solutions are sustainable
over the long run, i.e., the fish species do not become go extinct.

In steady-state, the fish stock is not changing, thus harvest must equal
growth:

g(At,St) =  Xt
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When we examine a fishery in steady-state, the steady-state equation
above serves as a constraint.  Let's assume that our objective is to maximize
the total benefits, B(Xt), derived from fish harvest minus the total cost
associated with fish harvest.  Suppose that the total cost of fish harvest is
C(Xt, St).

• C(Xt, St) depends on the level of fish harvest, Xt, and on the stock
of fish, St (this is because the fewer the number of fish, the more
expensive it becomes to locate and catch them in the lake).

  If Cx > 0  (the more you fish, the more it costs, i.e., positive MC)
  If Cs < 0  (the cost of fishing declines as the level of stock increases)

Our choice variables are:
• the level of harvest Xt, and
• the stock of fish St.  

We indirectly control St by changing Xt.  To keep the example
simple, let's assume a zero interest rate, so that we do not need to
discriminate between different periods in time.  Our problem is now:

max B(Xt) - C(Xt ,St), subject to:  g(At, St) = Xt

Xt,St

Because we will be in steady-state, the fish stock and the harvest level
will not be changing, hence the (second-best) levels of Xt and St will be the
same for every time period.  Thus, we only need to examine one of the time
periods.  So, the dynamic problem above becomes the following static
problem:

max B(X) - C(X, S), subject to: g(A, S) = X
X,S

where we have dropped the time subscripts because we only need to
examine one of the time periods if we are in steady-state.

The Lagrangian expression for this problem is:
L = B(X) - C(X, S) + λ[g(A, S) - X]

and the FOC's are:

(1)
dL

dX

dB X

dX

dC X S

dX
= − − =

( ) ( , )
0
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(2)
dL

dS

dC X S

dS

dg A S

dS
= − + =

( , ) ( , )
0

(3)
dL

d
g A S X= − =( , ) 0

FOC (1) says that price (price = MB = BX(X)) equals the marginal
cost of changing the harvest level plus the user cost of changing the harvest
level.  

FOC (2) says that the value of marginal product of the stock (λgS)

equals the marginal cost of changing the stock level.  The marginal cost
associated with changing the stock level is the change in the cost of finding
the fish in the ocean as the stock level declines.

In such a problem, how does the steady-state stock level, Sss,
compare with maximum sustainable yield stock level, Smsy?  From FOC (1),
λ = price - marginal cost with respect to X.  Hence, FOC (2) can be

rewritten as:
 (P - Cx)gS = CS

Now, because C(X, S) falls as S increases, (i.e., CS < 0), we know
that (P - Cx)gS must be negative for FOC (2) to hold.  Given P - Cx ≥ 0 in

steady-state (which must hold for λ ≥ 0), then it follows that gS < 0 in

steady state.  Look at Figure 13.1:
if gS < 0, then SSS > SMSY.  

Thus, the steady-state (second-best) level of fish stock, SSS, is greater
than the level of fish stock that supports the MSY, SMSY.  This is because
maintaining a larger stock of fish has the additional benefit of reducing the
cost of fishing.  Note that the steady-state (second-best) level of fish
harvest, XSS, is less than XMSY.

Were the Biologists wrong?
The factor that biologists did not take into consideration is the

economic reality that the cost of fishing decreases as the fish population
becomes larger.  We can reconcile the biologists’ notion in the case where
CS = 0 (i.e., no stock effects in the cost of fishing).
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         When CS = 0, FOC (2) is revised to read λgS = 0, which implies gS =

0 since λ > 0.  As we can see, the harvest associated with the maximum

growth rate of fish, gS = 0, is XMSY.

Open Access and Competitive Behavior

Without barriers to entry, competitive fishermen will not consider the
future implications of today’s fishing.  Instead, they will maximize profit
and, if there is a steady state, will harvest the resource according to:

Price = Bx = Cx price = MC
g(A,S) = X steady-state

Competitive industry members will not recognize that their
harvesting depletes the resource, thus increasing production cost.  When a
resource has open access, each fisher believes that any fish he does not catch
will simply be caught by another fisher, so that the gains to keeping higher
stocks will not be realized anyway.  Therefore, under competition:

(1) Stock is smaller than optimal.
(2) Output may be greater or smaller than is optimal.
(3)  Social cost associated with extra harvesting will outweigh benefits

from extra fish in cases where open access output is greater than
optimal output.
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Figure 13.2: There can be more than one steady state.

Referring to Figure 13.2, under competition, if Cx is relatively small

and demand is big, there may be a period when Xc > Xx and the resource
can be depleted, for example, when Xc= Xc1.  The marginal cost may be
increasing as S declines and the possible output stock combinations under
competition will follow the line AB and the steady stock with X = S = 0 is
at B.  

When the open access outcome does not involve a steady state, the
fish stock can be sent to zero through extinction.  This has come very close
to occurring in ocean resources where many countries have competed
against each other to catch certain species and have driven many of them
near extinction.  Under open access, each fisher seeks to extract every
profitable unit he can, but is immizerated by the entry of new fishers that
always drive the profits of fishing to zero.  Hence, the fisher is always
trying to reduce the costs of extracting the resource in order to gain
temporary profit (private individuals are price-takers and only care about
costs).   The best way to lower extraction costs is to simply catch
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everything, then trash unwanted fish species, and this is largely what we
have seen:

- Drag Netting is often used to dredge up all fish in an area
- Clear-cutting of forests is another example

If the marginal harvesting cost approaches infinity as the stock
approaches zero, a steady state may be reached with a very small stock
level.  The elimination of buffalo from the American West between 1860-
1870 is an example of when open access and low Cx lead to extinction.

If Cx is substantial and under the optimal solution /Cx  is small,
competitive outcomes will not be far away from optimal outcome.  Several
intervention policies alter the open-access outcome including:

• Standards limiting the catch.  This can be performed by:
- Exhaustive capacity restrictions (i.e., limited the number of
fish per boat)
- Time restrictions.

• An output tax of λ. Recall that the only difference between open

access and the socially optimal solution is that open access fishers do
not recognize the shadow value of maintaining the stock.
• Tax on fishing effort placed on labor or on the number of boats
• Moratorium on Fishing
• Change Length of Fishing Season (only encourages highly

concentrated effort)
• Regulations on Technology (i.e., no gill-netting; no using “fish

finders”, etc.). Regulating technology, of course, is incredibly
inefficient.

The Need For International Agreement
One of the things that is necessary to control open access problems is

an International Authority to Monitor and Enforce controls on fishing so
that fish populations are not unsustainably harvested by open access.

Renewable Resource Management in Steady-State

A Simple Bioeconomic Model of a Steady-State Fishery
Consider a price-taking fishing industry with:

Fish Stock (in biomass units):  S
Growth Function of Fish Stock:  g(m, n, S) = mS - nS2/2.
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Note that m and n are two parameters which we represented with
parameter A in the last lecture. In this case:

• m might represent availability of food in the ecosystem
• n might represent the number of predators,  but is constant,   i.e., n
≠ n(S)

Fish Harvest (in biomass units): X
Total Benefits of Harvest: B(X) = P*X

Total Costs of Harvest: C(X, S) = 
bX

S

We need to keep in mind that the larger the fish stock, the lower the
cost of fish harvest.  Assuming that the fishery will be in steady-state, the
fishery's economic problem can be stated as:

max B(X) - C(X, S), subject to: g(m, n, S) = X
X,S

First, note that we can find several important quantities without solving the
optimization problem.

Maximum Sustainable Stock
Maximum sustainable stock Smss occurs where g(m,n,S) = 0, hence:

Smss = 2m/n

Of course, Smss will only be achieved if the harvest X = 0.

Stock Level that Supports Maximum Sustainable Yield
The stock level that supports maximum sustainable yield, Smsy, occurs

where dg/dS = 0:
Smsy = m/n.

Maximum Sustainable Yield
In steady state, X = g(m,n,S).  So, to find maximum sustainable

yield, substitute Smsy into g(m,n,S):
Xmsy = g(m,n,Smsy) = m2/2n

Optimal Steady-State Stock and Harvest Levels
To find the optimal steady-state stock and harvest levels, we need to

solve the optimization problem outlined above.  The optimal choice
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problem can be solved using the Lagrange multiplier method. The
Lagrangian expression for the problem is:

L = B(X) - C(X, S) + λ[g(m, n, S) - X]

The FOC's are:

(1) dL
dX

= dTB(X)
dX

− dTC(X,S)
dX

−λ = 0  

or by substituting, P - b/S - λ= 0

FOC (1) says:  price  -  marginal cost of harvest  -  user cost =  0

(2)
dL
dS

= − dTC(X,S)
dS

+λ dg(m,n,S)
dS

= 0

or, substituting, -(-bX)/S2 + λ[m - nS] = 0

FOC (2) says:  marginal benefit of  - marginal cost of          =  0
     decreased harvest  decreased growth

costs due to overcrowding

(3)
dL
dλ

= g(m,n,S) − X = 0

or, substituting, [mS - nS2/2] - X = 0

FOC (3) says:  growth - harvest = 0, which is simply the condition for a
steady-state.

Solving for Steady-State Stock Level
We can solve the system of  FOC's for the optimal steady-state stock,

S*, as follows:
Solve FOC (3) for X.  Plug the resulting expression for X into FOC
(2) to get:

(4) -[-b(m/S - n/2)] + λ [m - nS] = 0

Putting aside expression (4) for the moment, solve FOC (1) for λ:
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(5) λ = P - b/S

Now plug λ into (4) and solve for S* to get:

(6) S* = m/n + b/2P

Solving for Steady-State Harvest Level
To find the steady-state harvest level, X*, plug the expression for S*

into FOC (3) and simplify:

(7) X* = m2

2n
− nb2

8P2

Notice that the optimal harvest level X* increases with price P,
decreases with the harvest cost parameter b, decreases with growth function
parameter n, and increases with growth function parameter m.  That is:

• As the price of fish increase, the optimal harvest level increases
towards XMSY

• As the cost of harvesting decreases through improved technology,
X* increases

• As the number of predators increases, the fish stock decreases,
which implies that the optimal harvest, X* decreases

• As the available food in the ecosystem increases, X* increases

If we attempt to increase our fish harvest we can use several means:

• Subsidize investment in new technology

• Remove predator species (this may lead to other, unintended
consequences)

• Add fish food into the ecosystem.
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Solving for Steady-State User Cost

The user cost in steady-state, λ*, can be found by substituting S*

back into FOC (1):

(8) * = P −
b

m

n
+ b

2P
 
  

 
  

Numerical Example

Suppose P = 1, b = 10, g(S) = .2S -.002 S2 (m = .2  and  n = .004)
Maximum sustainable stock is Smss

 = 100.
The stock level that supports MSY is Smsy = 50.
Maximum sustainable yield is Xmsy

 = 5.
Optimal steady-state stock S* = 55.
Optimal steady-state harvest X* = 4.95

Notice how changing the parameters would affect S* and X*.  For
example, if harvesting cost parameter b were to increase to b= 50,  then the
optimal steady-state stock would increase to S* = 75 and the optimal steady-
state harvest would fall to X* = 3.75.

A common policy goal of fishery managers for many years was to attain
steady-state stock Smsy and to set steady-state harvest equal to Xmsy.  This
policy maximizes biological growth and steady-state harvest.  However, we
often wish to maximize the value of the biological growth and harvest.  S*
and X* maximize the value of the biological growth and harvest.  Notice
that S* > Smsy and X* < Xmsy, i.e., the value of the biological growth and
harvest is maximized by harvesting less and leaving a larger stock in the
ocean.  Note:  this conclusion may not hold in cases where the interest rate
is non-zero.

Open Access Market Failure

Suppose we have a competitive fishery with open access to the fish
stock.  Under open access, each fisherperson will ignore user cost, and the
resulting steady-state will occur at an inefficiently low stock level.  Under
open access competition, fishers ignore the user cost component of FOC (1)
and instead harvest until:
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(9) P - dTC/dX = 0

or, substituting and rearranging,

(10) P = b/S

This implies that the steady-state stock under open access competition,
Sc, is:

(11) Sc = b/P

Given growth function g(m,n,S) = mS - nS2/2 and the fact that we are
in steady-state (i.e., X = g(m,n,S)), we know that:

(12) X = mS - nS2/2

Substituting equation (11) into equation (12), we get an expression
for the harvest level under open access competition, Xc:

(13) X c = mb
P

− nb2

2P2[ ]

In terms of our numerical example, Sc = 10 and Xc = 1.8.  Hence, open
access competition results in too little stock (i.e., Sc < S*), and too little
harvest (i.e., Xc < X*).  If the stock were allowed to increase, then larger
harvests could be supported.  However, under open access competition, no
fisher has the incentive to reduce current harvest in order to allow the stock
to increase and harvests to be larger in the future.  This is because, under
open access competition, if a given fisher reduces her current harvest, then
some other fisher would harvest the fish in the current period and the
“tragedy of the commons” result occurs.

A Harvest Tax to Correct Open Access Market Failure

From FOC (1) we know that "price = extraction cost + user cost" at the
optimal steady-state harvest level.  However, if open access competition
exists, market failure will occur because private firms will have no
incentive to consider user cost when setting harvest levels.  
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A policy to correct this market failure is a tax per unit of harvest equal
to the user cost at the optimal harvest level.  In our case:

(14) tax per unit = λ* = P −
b

m

n
+

b

2P
� 
� � 

� 
� � 

.

Shifting the Growth Function: Fish Feeding

Various management activities can be undertaken to influence the
growth of resources.  For example, the growth function of a fishery may be
shifted upwards by feeding the fish, or the growth function of a forest may
be shifted upwards by fertilizing the forest.  Private firms may undertake
these activities, as in the case of salmon raised in pens off the coast of
Norway, or Christmas trees grown by farmers in the mountains of North
Carolina.  Alternatively, when the resources are public goods, it may be
efficient for these activities to be undertaken by the government.  Indeed, in
many countries, government-financed fish hatcheries feed and raise fish in
order to maintain high commercial or recreational fishing levels.  In either
case, the economic issue is to find the optimal level of feeding.

Let the growth equation for a renewable resource be denoted g(S, A),
where ‘A’ is a variable representing the level of feeding.  We assume that
feeding increases growth, i.e., dg/dA > 0.

Assuming that the price per unit of feed is denoted by v, total cost
becomes:

(15) C(X,S,A) = C(X,S) + vA

And the optimization problem is:

(16)
max

X,S,A
B(X) − C(X, S)− vA

subject to:  g(S, A) =  X

The Lagrangian expression for this problem is:

(17) max
X,S,A,λ

L = B(X) − C(X, S)− vA + λ g(S, A) − X[ ]

The first-order conditions include the familiar conditions:
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(18)
dL

dX
= dB

dX
− dC

dX
− λ = 0

(19) dL
dS

= − dC
dS

+ λ dg
dS

= 0

(20)
dL

dλ
= g(S,A) − X = 0

but we also have a new first-order condition:

    (21)
dL
dA

= λ dg
dA

− v = 0 .

This new condition says that we should increase feeding until the
value of marginal product of feeding (λdg/dA) is equal to the price of feed

v.  FOC equations (18)-(21) represent a system of four equations in four
unknowns that can be solved for the optimal levels of X, S, A, and λ in a

similar fashion as in the last example.

Although the preceding steady-state models are elegant, they ignore
several important issues.  For example:  

• Resource populations can be driven to extinction (not just to a
lower steady-state stock level) under open access competition.

• Interest rates play a very important role in the management of
renewable resources and should be included in dynamic model

• Managers are often interested in what stock and harvest levels will
be on the way from current conditions to an eventual steady-state.
The way the stock or harvest level changes from one state to
another in a dynamic system is referred to as transition dynamics.

In the next lecture we investigate a more general model that can
address these issues.


