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General Overview

Resource Economics addresses the allocation of natural resources
over time.  It does so using models of dynamic systems. A model is
collection of variables and parameters and the equations that show how the
variables and parameters are related to one another.  A system of equations
is a model containing two or more interrelated equations.  

A dynamic system is a system that contains time as one of the
variables.  A dynamic system is a model that attempts to capture the
important changes in, and changing interrelationships among, variables and
parameters over time.  We will use simple models of dynamic systems to
study the inter-relationships among markets, natural resources, and the
environment over time.  The reason why it is important to do this is that
there are some important types of market failure that only show up over
time in a dynamic system.

But before we jump into modeling dynamic systems, let's review
what we have done so far in this course from a modeling perspective.  So
far, we have conducted our analyses using static models.   A model that
addresses how variables interrelate at a single point in time is called a static
model.  In economics, we often use static models to examine a special point
in time, namely the point in time during which an economic system is in
equilibrium.  These models are often called equilibrium models.  The
basic model of competitive supply and demand is an equilibrium model,
because it predicts market price and market quantity when the market is in
equilibrium.  

We have used static models to determine the market equilibrium of
an economic system, to determine the socially optimal equilibrium of the
economic system and then to compare the two equilibria.  When the two
equilibria did not coincide, we explored some of the policies that could be
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used to move the equilibrium from the inefficient market equilibrium to the
socially-optimal equilibrium.  As we have seen, static models can be quite
useful in determining equilibria, comparing equilibria, and suggesting ways
to achieve a more efficient equilibrium.

However, some types of market failure occur "between" equilibria,
i.e., "on the way" from one equilibrium to the next.  Resource economics
uses models of dynamic systems to develop policies that can be used to
correct such market failures, market failures that manifest themselves over
time.  Often, these market failures exist because private markets extract or
harvest natural resources either too quickly or too slowly relative to the
socially optimal rate of use.

Key Terms and Components of Dynamic Systems

Variable: Recall that a variable is an item of interest that may take on
different values.

Parameter: Recall that a parameter is a quantity that is constant at the
location of interest, or over the time interval of interest.  Examples include
the interest rate, supply and demand elasticities in econometric equations.

System: A collection of variables and parameters linked together through
two or more equations.

Static Systems: Systems that do not contain time as a parameter; such
systems do not evolve over time, rather, they usually represent equilibrium
situations.

Dynamic Systems: Systems that contain time as a parameter; such systems
"evolve" over time.

State Variable: A state variable describes the status, or "state of being," of
one of the variables in the system.  There may be one or more state
variables in a system.

Initial Conditions: Values that the state variables take on at the beginning
of the time period of interest.
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Control Variable: A control variable is a variable that is under the control
of some individual or group.  There may be one or more control variables
in a system.  Conceptually, individuals (or groups) manipulate control
variables in an attempt to meet objectives (in the case of profit
maximization, one control variable is quantity produced).

Random variables (noise variables): Uncontrolled variables (for example,
weather) which can assume several values with certain probabilities.

Constraints:  Equations (or inequalities) which limit the values that state
variables or control variables can take on.

Equation of Motion: An equation in a dynamic system that describes the
relationship between time and the variables in the system.  An equation of
motion can be thought of as a constraint on the system.  It constrains the
variables in the system to interact with time in a particular way.  The
equation of motion describes how a variable changes over time.

Solution of a System: The solution of a static system is a set of values for
the state variables, where the values are expressed in terms of the system
parameters, such that all equations in the system are satisfied.  The solution
of a dynamic system is a set of equations, where the equations are in terms
of the system parameters, including time, such that all of the original
equations in the system are satisfied.  Thus, a dynamic system may have
many solutions, depending on the specific initial conditions of the resource.

Objective Function: An objective function is an equation that measures
how well the system is attaining some goal or objective, usually a
maximization or minimization objective.  The objective function is
expressed in terms of the state variables, control variables, and parameters
of the system.  For example, a policy objective might be to maximize the
NPV of expected benefits generated by a dynamic resource system.
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Example of a Dynamic System

Figure 11.1: Irrigation water system

State variables:
(St):  Denotes the level of a stock at time t (e.g., the quantity of

water stored in the reservoir behind the dam at time t).
(Ut): Uncontrolled inputs; inputs affecting the system but outside of

our control, (e.g., rain, snow).  Uncontrolled inputs may be
random and vary over time.

(Yt): Outputs; outcome of systems at time t;  (e.g., crops produced
through a production system using irrigation water).

Control variables:
(Xt): Inputs whose magnitudes we can choose in our attempt to reach

our objectives (e.g., the amount of water used for irrigation).

Parameters:
 (P): Items of interest that can be taken as constant with respect to

the problem at hand.  Example: coefficients that measure the
performance of some part of the system (e.g., the production
elasticity of irrigated water, the type of production system S,
that farmers use).

Equation of motion:
Next period water stock; this period water stock + rainfall - irrigation
water:
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St+1 = St + Ut - Xt
This equation would be a constraint on irrigation system operations.

Objective Function:
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Dynamic Models of Nonrenewable Resources

Nonrenewable resources are resources that have a finite stock and
that do not grow naturally.  For example, oil and minerals are
nonrenewable resources, but trees and fish are renewable resources (because
they grow/reproduce relatively quickly).

Key Issues:
• Determining optimal resource allocation and pricing.
• Sources of market failure and policies to correct market failure.

Figure 11.2: A Two-Period Model of Nonrenewable Resources

                                 
t = time (the initial period is denoted by t = 0;  the future
period is denoted by t = 1)
r = interest rate
S0  = initial stock of nonrenewable resource
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Xt = control variable, the amount of the resource consumed in
period t
B(Xt) = benefit of consuming Xt  

The extractable resource problem is an exercise in the economics of
scarcity:

• Scarcity:  Imposes an opportunity cost on using resources today.
In a natural resource system, we refer to dynamic opportunity cost
as a user cost.

• User Cost: The Present Value of foregone opportunity (e.g., if you
use a unit of a natural resource today, you forego the opportunity to
use it tomorrow)

The User Cost thus decreases as r increases:
• The higher the interest rate, the less valuable tomorrow’s benefits

and the smaller the opportunity cost of using more of the resource
today.

• at r = infinity, resources left for tomorrow are worth nothing and
user cost = 0.

• Similarly, when there is enough of the resource to go around, so
that scarcity is not an issue, the user cost = 0 (demand is said to be
satiated when resource scarcity is not an issue).  In this case, the
dynamic model yields the same outcome as two separate static
models for period 0 and 1.

The use of discounting is important in determining the optimal
extraction rate of a nonrenewable resource, because the revenue a resource
owner receives in period 1 is not worth as much as the revenue received in
period 0.  Instead, the NPV of benefits in period 1 in terms of the current
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Dynamic Efficiency:  The Two Period Case

An allocation of resources is said to be dynamically efficient when it
maximizes the NPV of benefits.  This is really the same idea as in the static
Lagrange problem:

Max. L = B(X) - C(X),

except that we now have the new twist:
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• B(X) is now a stream of benefits through time,
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• C(X) is now a stream of costs through time

For now, we assume zero costs are associated with consuming the
resource.  The objective function is:

Max
X0 ,X1

NPV =  B X0( ) + 1
1+ r

B X1( ) .

Equation of motion (constraint):

 S0= X0 + X1.  (all resource stock is used up).

Note: by assuming X0 + X1 exactly equals S0, we are implicitly
assuming unsatiated demand, i.e., that demand would exists for additional
S, S > S0, if it were available.  We will consider the case of satiated
demand later.

Let’s consider the energy of the sun to be a non-renewable resource.
At some point in time, the sun explodes.  The economic perspective is that
it is a waste to have not used all of the energy of the sun before it exploded.
For our purposes, we will assume the sun explodes at the end of two
periods.

To find the optimal X0 and X1 (quantity use of sun’s energy in
period 0 and 1), we need to combine the objective function with any
relevant constraints to form the optimization problem:

Max
X0 ,X1

NPV =  B X0( ) + 1
1+ r

B X1( )

subject to: S0= X0 + X1

The Lagrangian expression for this problem is (where λ is the

Lagrange multiplier):

L = B X0( ) + 1
1 + r

B X1( ) + ⋅ S0 − X1 − X0( ) .
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To maximize the Lagrangian expression we find the FOC's:

(1)

dL
dX0

= Bx X0( ) − = 0

(2)

dL
dX1

= Bx X1( ) 1
1 + r

 
 
  

 
 − = 0

(3)

dL

dλ
= S0 − X1 − X0 = 0

This is a system of three equations (1), (2), and (3) in three
unknowns X0, X1 and λ.  The system can be solved for X0, X1 and λ in

terms of the parameters of the system.  An often useful step in this process
is to set FOC (1) = FOC (2) and eliminate λ to obtain:

(4) Bx X0( ) = 1
1 + r

Bx X1( )
• Then use (3) and (4) to solve for X0 and X1, and, finally,

• Substitute X0 back into (1) to find λ

We can find P0 and P1 by recalling that:
(5) Bx(Xt) = MB of X at time t = Pt

Rearranging (4), we get: (1 + r) ⋅Bx(X0 ) = Bx(X1)

Substituting P0 for Bx(X0) and P1 for Bx(X1), we find:   
     (1 + r) P0 = P1, or

P P

P
r

1 0

0

−
=

Thus, we find that when dynamic efficiency is met (i.e., the
optimal quantities are being consumed in each period), the price increases
at the rate of interest.  In addition, from (1) and (5) we see that the
shadow price of S0, λ, is equal to P0.  From (2) and (5) we see that the

shadow value is also equal to the present value of P1.  In other words, λ =

P0 = P1/(1+r).  Thus, the solution to the nonrenewable resource problem
equates  the NPV of benefits across all time periods in the horizon, which
must be the case:
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• If P0 > P1/(1+r), the owner should extract more today;  invest the
money at r.
• If P0 < P1/(1+r), the owner should leave more in the ground to
extract tomorrow.  The rate of return of holding resource stock in the
ground is IRR > r.
• Therefore, in equilibrium, it must be the case that P0 = P1/(1+r);
produce today until MB0 = PV(MB1)

Remember, the intuition for λ is that  is the user cost of the

resource.  The solution to the dynamic problem equates the user cost of
extracting the resource across all time periods.

We’ll try the following numerical example:

Suppose B(X) = a X

then Bx(X) = a

2 x
.

noting that X1 = S0 - X0 from (3),

X0 can be found by using Bx(X) with eqn's (3) and (4) :

a

2 X0
=

a

2(1+ r) S0 − X0
⇒

S0 − X0
X0

=
1

(1 + r)2
⇒

(6) X0 = S0
(1 + r)2

1+ (1 + r)2

Substitute X0 back into eqn (3) to find X1 :

(7) X1 =
S0

1 + (1 + r)2

Substitute X0 back into Bx (X0 ) to find :

(8)

P0 =
a

2

1 + (1+ r)2

S0(1+ r)2
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From (6) and (7) we see that if S0 increases, then both X0 and X1
increase.  If r increases, then X0 increases and X1 decreases.  From (8) we
see that if r increases, then P0 decreases.  

•  Suppose r = 0.1, S0 = 100 and a = 10, then:

X0 = 54.75,  X1 = 45.25, P0 = 0.68  and  P1 = 0.74

•  If r increases to r = 0.5, then:

X0 = 69.3, X1 = 31.7, P0 = 0.6  and  P1 = 0.9

•  If r increases to r = 1, then:

X0 = 80, X1 = 20, P0 = 0.56  and  P1 = 1.12
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Figure 11.3: Two-Period Non-renewable Resource Model with
Unsatiated Demand

•  For P's:  superscript = discount rate;   subscripts = time period.
•  For I's, M's, subscripts = discount rate.
•  r2 > r1 and I1 < I2.
•  A lower discount rate implies:

i) P0
1 > P0

2 Higher price in the initial period.

 ii) P1
1 < P1

2 Lower price in the second period.

  iii) M1 < M2 Less resource is used in the initial period.
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Figure 7.4 - Two-Period Non-renewable Resource Model with Satiated
Demand

When S0 is so large that Bx0
and

1
1+ r

Bx1
 do not intersect at positive

P, then:
• X0 is solved for by setting Bx(X0) = 0
• X1 is solved for by setting Bx(X1) = 0

This solution is identical to the solution of two individual static
maximization problems, performed separately, in period 0 and period 1.
Note that there is no user cost here, because the MB curves fail to intersect.
That is, there is no scarcity in a nonrenewable resource model with satiated
demand.


