Key Terms and Components of Dynamic Systems:

Dynamic Systems: Systems that contain <u>*time*</u> as a parameter; such systems "evolve" over time.

State Variable: A state variable describes the status, or "state of being," of one of the variables in the system.

Initial Conditions: Values that the state variables take on at the beginning of the time period of interest.

<u>Control Variable</u>: A control variable is a variable that is under the control of some individual or group.

Random variables (noise variables): Uncontrolled variables which can assume several values with certain probabilities.

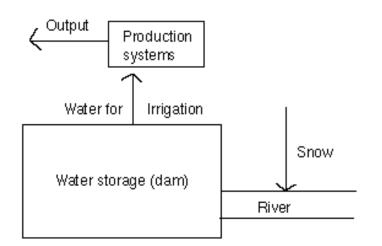
<u>Constraints</u>: Equations (or inequalities) which limit the values that state variables or control variables can take on.

Equation of Motion: The equation of motion describes how a variable changes over time.

Solution of a System: The solution of a dynamic system is a set of *equations*, where the equations are in terms of the system parameters, *including <u>time</u>*, such that all of the original equations in the system are satisfied. Thus, a dynamic system may have many solutions, depending on the specific initial conditions of the resource.

Objective Function: An objective function is an equation that measures how well the system is attaining some goal or objective, usually expressed in terms of the *state variables, control variables*, and *parameters* of the system.

Example: Set-up for Natural Resource Dynamic System



State variables:

(St): Denotes the level of a stock at time t; (e.g., the quantity of water stored in the reservoir behind the dam at time t).

(Ut): Uncontrolled inputs, (e.g., rain, snow).

(Yt): Outputs; outcome of systems at time t; (e.g., crops produced)

Control variables:

(X_t): Inputs whose magnitudes we can choose in our attempt to reach our objectives. (e.g., the amt. of water used for irrigation).

Parameters:

(P): Items that can be taken as constant with respect to the problem at hand. (e.g., the production elasticity of irrigated water)

Equation of motion:

Next period water stock = This period water stock + rainfall - irrigation water:

$$s_{t+1} = s_t + u_t - x_t$$

Objective Function:

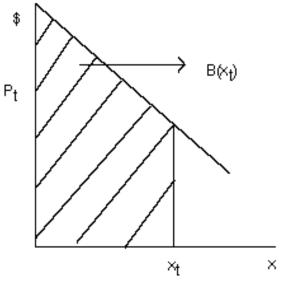
$$\max_{X_{t}} NPV = \frac{T}{t=0} \frac{B_{t}[Y_{t}(P)] - C_{t}(X_{t})}{(1+r)^{t}}$$

Dynamic Models of Nonrenewable Resources

Nonrenewable resources are resources that have a finite stock and that do not grow naturally.

Key Issues:

- Determining optimal resource allocation and pricing.
- Sources of market failure and policies to correct market failure.



- t = time (the initial period: t=0; the future period: t=1)
- r = interest rate
- S_0 = initial stock of nonrenewable resource

 X_t =control variable, the amt. of the resource consumed in period t $B(X_t)$ = benefit of consuming X_t

Economics of scarcity:

- Scarcity: Imposes an opportunity cost on using resources today. In a natural resource system, we refer to dynamic opportunity cost as a *user cost*.
- User Cost: The Present Value of foregone opportunity. (e.g., if you use a unit of a natural resource today, you forego the opportunity to use it tomorrow)

Nonrenewable Resources (cont.)

The User Cost decreases as r increases:

- The higher the interest rate, the less valuable tomorrow's benefits and the smaller the opportunity cost of using more of the resource today.
- at r = infinity, resources left for tomorrow are worth nothing and user cost = 0.
- Similarly, when there is enough of the resource to go around, so that scarcity is not an issue, the user cost = 0. The dynamic model yields the same outcome as two separate static models.

Discounting: The use of discounting is important in determining the optimal extraction rate of a nonrenewable resource, because the revenue a resource owner receives in period 1 is not worth as much as the revenue received in period 0.

• the NPV of benefits in period 1 in terms of the current period 0:

$$\mathbf{NPV} = \frac{1}{1+r} B(X_1)$$

Dynamic Efficiency: An allocation of resources is said to be **dynamically efficient** when it maximizes the NPV of benefits.

Max.
$$L = B(X) - C(X)$$
,

• B(X) is now a *stream of benefits* through time,

$$B(X) = B_0 + \frac{1}{1+r} B_1 + \frac{1}{1+r} B_2 + \ldots + \frac{1}{1+r} B_N$$

• C(X) is now a *stream of costs* through time

Dynamic Efficiency: The Two Period Case

assume zero costs are associated with consuming the resource.

Objective function:
$$\underset{X_0,X_1}{\text{Max}} \text{NPV} = B(X_0) + \frac{1}{1+r} B(X_1).$$

Equation of motion (constraint): $S_0 = X_0 + X_1$.

Note: by assuming $X_0 + X_1$ *exactly* equals S0 (resource stock is used up), we are implicitly assuming **unsatiated demand**.

the optimization problem is:

$$\max_{X_0, X_1} NPV = B(X_0) + \frac{1}{1+r}B(X_1)$$

subject to: $S_0 = X_0 + X_1$.

The Lagrangian expression is:

$$L = B(X_0) + \frac{1}{1+r}B(X_1) + (S_0 - X_1 - X_0).$$

To maximize the Lagrangian expression we find the F.O.C.'s:

(1)
$$\frac{\mathrm{dL}}{\mathrm{dX}_0} = \mathrm{B}_{\mathrm{X}}(\mathrm{X}_0) - = 0$$

--

(2)
$$\frac{dL}{dX_1} = B_x(X_1) \frac{1}{1+r} - = 0$$

(3)
$$\frac{dL}{d} = S_0 - X_1 - X_0 = 0$$

Two-period Dynamic Efficency (cont.)

The system can be solved for X₀, X₁ and in terms of the parameters of the system. An often useful step in this process is to set FOC (1) = FOC (2) and eliminate to obtain:

(4)
$$B_X(X_0) = \frac{1}{1+r} B_X(X_1)$$

- then use (3) and (4) to solve for X₀ and X₁, and
- substitute X0 into (1) to find .

We can find P₀ and P₁ by recalling that:

(5)
$$B_X(X_t) = MB \text{ of } X \text{ at time } t = Price \text{ at time } t = P_t$$

Rearranging (4), we get: $(1 + r) B_X(X_0) = B_X(X_1)$

Substituting P0 for $B_X(X_0)$ and P1 for $B_X(X_1)$, we find:

$$\frac{P_1 - P_0}{P_0} = r$$

Two-period Dynamic Efficency (cont.)

Conclusions:

- when dynamic efficiency is met, the price increases at the rate of interest.
- the shadow price of S₀, , is equal to P₀. the shadow value is also equal to the *present value of* P₁. In other words, $= P_0 = P_1/(1+r)$. Thus, the solution to the nonrenewable resource problem equates the NPV of benefits across all time periods in the horizon
- If P₀ > P₁/(1+r), the owner should extract more today; invest the money at r.
- If $P_0 < P_1/(1+r)$, the owner should leave more in the ground to extract tomorrow
- the rate of return of holding resource stock in the ground is: IRR > r.
- Therefore, in equilibrium, it must be the case that $P_0 = P_1/(1+r)$.

-Produce today until $MB_0 = PV(MB_1)$

Note: The intuition for is that, = the user cost of the resource! The solution to the dynamic problem equates the user cost of extracting the resource across all time periods.

A Numerical example:

Suppose $B(X) = a\sqrt{X}$ then $B_X(X) = \frac{a}{2\sqrt{X}}$.

noting that X1 = S0 - X0 from (3), X_0 can be found by using $B_x(X)$ with eqn's (3) and (4) :

$$\frac{a}{2\sqrt{X_0}} = \frac{a}{2(1+r)\sqrt{S_0 - X_0}} \qquad \qquad \frac{S_0 - X_0}{X_0} = \frac{1}{(1+r)^2}$$
(6) $X_0 = S_0 \frac{(1+r)^2}{1+(1+r)^2}$

Substitute X_0 back into eqn (3) to find X_1 :

(7)
$$X_1 = \frac{S_0}{1 + (1 + r)^2}$$

Substitute X_0 back into $B_X(X_0)$ to find :

(8)
$$P_0 = \frac{a}{2} \sqrt{\frac{1 + (1 + r)^2}{S_0 (1 + r)^2}}$$

If S0 increases, then both X0 and X1 increase if r increases, then X0 increases & X1 decreases and P0 decreases.

• if r = 0.1, $S_0 = 100$ and a = 10, then:

$$X_0 = 54.75$$
, $X_1 = 45.25$, $P_0 = 0.68$ and $P_1 = 0.74$

• If r increases to r = 0.5, then:

$$X_0 = 69.3, X_1 = 31.7, P_0 = 0.6$$
 and P₁

Two-Period Non-renewable Resource Model with Unsatiated Demand Price

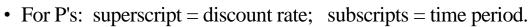
A MB(X₁) C' $MB(X_1)$ $1 + r_1$ Е P12 P11 _ MB(X _ 1) P^1_0 I1 $\frac{1}{1 + r_2}$ Ρô 12 В D

MB(X_n)

So

≽

X₁



M₁

Μ2

- For I's, M's, subscripts = discount rate.
- $r_2 > r_1; I_1 < I_2.$

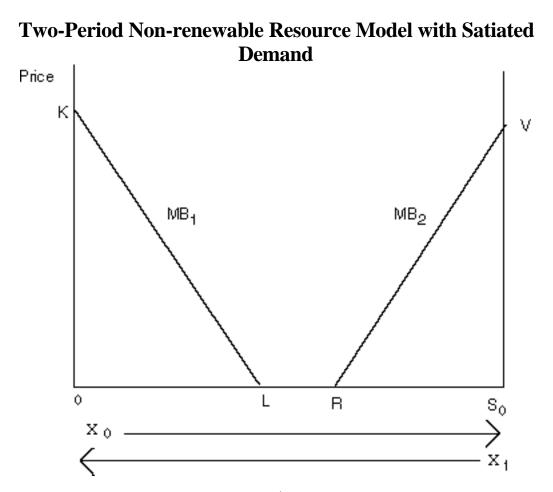
4

Xο

0

• A lower discount rate implies:

i) $P_0^1 > P_0^2$	Higher price in the initial period.
ii) $P_1^1 < P_1^2$	Lower price in the second period.
iii) M1 < M2	Less resource is used in the initial period.



When S0 is so large that B_{x_0} and $\frac{1}{1+r}B_{x_1}$ do not intersect at positive P, then:

- X0 is solved for by setting $B_X(X_0) = 0$, and
- X1 is solved for by setting $B_X(X_1) = 0$

This solution is identical to the solution of two individual static maximization problems, performed separately, in period 0 and period 1.

Note: There is no user cost here, because the MB curves fail to intersect. That is, there is no scarcity in a nonrenewable resource model with satiated demand.