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Abstract

If agentslearn-by-doing and are myopic, less advanéechs might adopt new
technologies while more advancgdns stick with the old technology. This kind
of overtaking can also occur if agents are forward looking and have high discount
rates. However, overtaking never occurs if agents afecgritly patient. Afinite
discount rate increases the set of states at which agents adopt new technologies,
S0 more patient agents tend to upgrade their technology more frequently.
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1 Introduction

Modern development economics emphasizes the role of technology in determining

growth paths. Lucas (1993) identifies technology adoption as the most important ex-
planation of the economic growth of several Asian countries. Recent textbooks such as
Aghion and Howitt (1998) and Barro and Sala-i-Martin (1995)a& the importance
attributed to technology in explaining growth. Technological improvements can lead
to divergence in growth paths whémms in the “advanced” country have a greater
incentive to adopt new technology. In other circumstanfesis in less advanced
countries may be more likely adopt the new technology, even when it is lesaple

for them than for the advancédms. The adoption decision depends on a comparison
of profits under the new technology and under the next best alternative, i.e. on the
opportunity cost of adoption. The opportunity cost of adoption may be higher for the
more advanceflrms, because of their pficiency in using the old technology. In this
case, innovations in technology can contribute to the convergence of growth paths, or
even to “overtaking” (or “leapfrogging”) by the less advanced country.

There have been a number of historical examples where technology adoption has
contributed to overtaking, both at the industry and country level. Industries in regions
destroyed by war (such as in post-war Europe and Japan) sometimes rebuild using
the latest technology, eventually overtaking established industries elsewhere. Start-up
industries may begin with the latest technology which incumbents are slow to adopt.
Brezis et al. (1993) cite cases where new technologies have contributed to overtaking
by entire countries rather than individual sectors.

The incentives to adopt a new technology depend orfithes ability to use the
previous generation of technology. This ability may depend on the experieniarthe
has had with the technology, i.e., on the amount of learning-by-doing that has occurred.
Chari and Hopenhayn (1991), Parente (1994) and Stokey (1988) study learning-by-
doing as a force for sustained growth. Brezis et al. (1993), Krussell and Rios-Rull
(1996), and Jovanovic and Nyarko (1996) (hereafter JN) show that learning-by-doing
can give rise to the type of overtaking noted in the growth literature. An agent accus-
tomed to an existing technology may be unwilling to adopt a newer technology which
requires learning and leads to lower fit® in the short run. An agent who is less



familiar with the existing technology has alower opportunity cost of adopting the new
technology. The second agent may adopt the new technology and eventually overtake
the first, who was initially more advanced.?

If learning is a non-excludable public good (as in Brezis et al. (1993)) or if it is
a private good bufirms are myopic (as in JN), the adoption decision depends on a
comparison oturrent profits under the old and new technology. However, forward-
looking firms who internalize learning-by-doing would consider the future stream of
payoffs in deciding whether to adopt the new technology. We show that overtaking
may still occur, but it is less likely whefirms are forward looking. Overtaking is less
likely in markets with high discount factors.

Jovanovic and Nyarko’s 1994 working paper had also studied the problem when
thefirm is patient. That working paper establishes that overtaking can occur with a
positive but suiciently small discount factor (our Theorems 1 and 2). In addition to
addressing the problem in a formal way, our Proposition 3 and Theorem 3 highlight the
important balancing acts behind the technology adoption decision. Our results show
that a larger discount factor increases the set of parameter values at which upgrading
occurs the more patient th&rms are, the greater the bénef the new technology,
which takes time to learn.

2 Mod€

We modify JN’s model of learning-by-doing by including forward lookfimgns. The
payoff in periodt depends on a random parameger As thefirm learns about the
distribution of this parameter, its payoff increasesfirfn working with a technology

There is an industrial organization literature on leapfrogging which is closely related to the eco-
nomic growth literature we cite in the text. The IO literature emphadizes’ strategic incentives
to change a decision, such as improving technology. Budd et al. (1993) review recent contributions
to leapfrogging models in 10, and Brezis et al. (1993) discuss the relation between the two literatures.
Motta et al. (1997) study a model in which trade changésnais strategic decision (quality, in their
case), and overtaking can occur. Their model thus incorporates elements of both the 10 and economic
growth literatures.



of grade n chooses x in period ¢ and receives the payoff:

g=7"[1—(y—2)°],v>1

After observing the payoff, the firm can infer the value of y, since it knows v, n, .
Thisinferred valueisy, = 60,, + w,, the sum of two random variables; 6,, is arandom
variable that depends on the technology grade n,, and w; isani.i.d. Normal random
variable with zero mean and variance o2. The firm knows the distribution of w;. It
does not know the value of 6,, but has prior beliefs about it.

Before learning y; the firm maximizes the expected payoff by setting = equal to the
expected value of y;, conditional on information available in period ¢:

r = Eily:] = E[0,]

where the second equality follows from the fact that w, is white noise. This choice
yields the expected payoff:

Ey[q] = 7"[1 — var,(0,) — 03] 1)

where var,(6,,) isthe variance of 6,, conditional on information available in period .
Technology grades are integer-valued and théirm can move up by at most one
grade in a single period. There is no pecuniary cost of switching, but skills acquired
in working with the old technology are only partially transferable, so there are learn-
ing costs. Different grades of technology are linked to each other according to the

following relationship

9n+1 = \/a en + €nt1 (2)

wheree,,, 1 ~ N(0,0?) andd,, ande,, ; are independent.
The firm updates its prior od,, based on the signaj. Denote the precision of
the unknown technological parametgrin periodt by n, and the precision oi, by

vimn, = W%en)’ v = =. We assume that > 1, which implies thaffirms earn

positive prdits for suficiently largen. In periodl thefirm begins with a Normal prior
on the current technology (the value®fwith precisiony,.
We now describe how changes over time. First suppose thatfilne does not

upgrade technology in periad Using the assumptions that, is a Normal random
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variable, and that the prior on 6,, is Normal, the precision in period ¢t + 1 is (see
DeGroot, 1970):

Nep1 =M + V. ©)

If the firm upgrades, the variance is updated through two steps. Thefirst step isdue
to the technology switch and the second is due to the observation of the outcome from
the new technology. Thefirst step transformsthe variance (prior to the switch) var;(6,,)
to « - var,(6,,) + o2 (the variance after the switch) due to the transformation of 4,, as
in equation (2). The firm then chooses x, observes ¢;, infers y,, and updates its beliefs
about the value of 6,,.1. The second step transforms the post-switch variance using
equation (3). Combining the two, the precision in the period after a switch occurs is

1 U
=— 4 y=—2"1 _41y=h +v. 4
M1 a/n, + o? a + o2 (n:) )

The functionh(n) represents thérst step of the updating procedure. Hereafter we
restrict attention to state space where h(n).?

A forward-lookingfirm maximizes the present value of thé&iite stream of pay-
offs with a discount factorg > 0. In period 1 it starts with an arbitrary grade of
technology, which we normalize to be grade= 0. Define k, = 0 if the firm keeps
the current technology in periadandk; = 1 if it upgrades. The strategy fite
is (ki1, ks, ...). DefineT,, = ming{ky + ko + ... + k¢ > n}, the period in which it
switches to thenth grade of technology, with the convention tfiat = 0. Given a
strategy(k, k2, . .. ), we can use the single-period expected payoff in equation (1) to
compute the discounted expected payoff. We use thritlen = 1—02 = ”7‘1 >0
in the single-period payoff function, equatioh).

The sequence problem which maximizes the discounted expected payoff, given the

2This restriction is innocuous, since for any initial condition it must be satisfied in finite time, re-
gardless of the agent’s upgrade decisions. If the restriction idiedtiat any period, it holds in all
subsequent periods. Moreover, given the interpretation of the funktipn the model is sensible only
when the restriction is safied. (If n < h(n), upgrading increases precision, which means that the
agent knows more about the new technology than about the old technology.)



initial precision n and technology graden = 0 is:

W*(n,0) = max W(ky, ks, ...:n,0)

(k1,k2,...)
Tny1—1
—ZMT”{ > 8 ——} (SP)
t=Ty,

wheren), is updated according to either equation (3) or equation (4). Thefirst argument
of W* isthe precision, n, and the second is the technology grade, n (heren = 0).
We use the sequence problem to formulate the dynamic programming equation

(DPE). The payoff from the firm’'s choice depends on the grade of the technology and

the precision. Hence the DPE has two state variablesndr,:

V (1, me) = krg{a})ﬁ}{F(kt, Moy 1e) + BV (11,10 + ko) } (5)
where
if k, =0
F(kin,n) = 1[M 77]1 . t
V= aey] i Re=1,
T]t + 1% |f kt — O
Neyq = .
T k() b itk =1,
and

N1 =My + k’t.

An optimal policy,k*(n, n), solves the DPE (5).

3 Preiminaries

Since we use the DPE in later analysis, we begin by showing that its solution exists

and that it solves the proble(® ) under the following



Assumption 1 gy < 1.
Proposition 1 1. Thereexists a solution to the DPE (5).
2. Under Assumption 1, the solution to the DPE satisfying
lim BV (n,,m) =0
Is the unique solution to the sequence problem (SP).

Next we show that the optimal upgrade rule depends on the value of 7, but not on
the grade of technology n or on time, ¢.

Proposition 2 The optimal upgrade rule dependsonly onn, i.e. k = k*(n).

The proofs of these and subsequent results are in the Appendix.

4 Choice of Technology

4.1 Myopic Case

We first review IN's results for the case whefems base their current adoption deci-
sions only on prfits in the current period. Heréyrms solve the problemax{u —
71t = 555)}, which uses the danition of 2 (n). Thefirst term in the maximand
equals préts if the firm sticks with the current technology, and the second equals
profits if thefirm upgrades to the next generation of technology. The fa¢taiffects
profits under both alternatives, but not the adoption decision.

The firm sticks with the current technology if and only if the current precision
satidies the inequality

ay +vyoin—1 B

z(n) = p

The functionz(n) gives the increased fiits, in the current period, resulting from not

p(y —1) = 0.

upgrading. In other words;(n) is the cost of adoption. The slope ofy) has the
same sign a$ — . If there exists a positive root ef(n) = 0, it is unique. Denote
this root (when it exists) ag’ = #0(2_1) Thefirm is indifferent between upgrading
and sticking if and only ify = n¢, i.e. when the opportunity cost of adoption is zero.



ay >1 ay <1

ol > sl stagnation; never upgrade | (possible) overtaking; upgrade if

e n <1
0? < #02) | standard case; upgrade if continual upgrading
n>n° e

Table 1: The Myopic Model

Table 1 summarizes the relation between the parameter values and the optimal
decision. In entries along the diagonal, it is optimal either never to upgrade or to
upgrade in every period, regardless of the value of 7. In these situations, n“ does not
exist. Inthe lower left entry of Table 1, firmswith low precision stick with the current
technology until they learn to useit sufficiently well (until n > 7°), at which time they
upgrade. We refer to this asthe “standard” case.

In the upper right entry, it is optimal to upgrade only if tfien has low precision.

A firm that is relatively unfamiliar with the current technology (i.e., has low precision

n < n°) upgrades, whereas tfiem that knows how to use the current technology well
(i.e. has high precision > 7°) sticks with it. In this situation, thérm with lower

initial precision (and thus, lower initial pfids) may eventually obtain higher gits:

it continues to upgrade its technology even though it never becomes expert at using it.
In that sense, it overtakes tfiem with high initial precision.

In order to guarantee that overtaking occurs, we need the following additional re-
striction. Ddinen, as the (unique) positive steady state to equation (4).

Assumption 2 n° > 1),.
The following lemma summarizes the overtaking result in JN.

Lemma1l (Overtaking) When ay < 1, 0? > #0=1, and Assumption 2 holds, a firm
with initial precision n < 7° eventually earns higher profits than a firm with initial
precision n > n°.

If Assumption 2 did not hold, alfirms would eventually cease to upgrade, and

overtaking might not occur. Hereafter, when discussing the case of overtaking, we
maintain Assumption 2.



42 General Case

This section generalizes the results from the myopic setting. All of the four possi-
bilities described in Table 1 remain whehis positive. Thus, the possibility that
overtaking occurs does not rely on the assumptionfihas are myopic. However, if
firms are sufciently patient, overtaking cannot occur. We also show that a positive
value of 3 never decreases, and typically increases the set of precision levels at which
upgrading is optimal. In this sense, a forward lookfitgh upgrades more frequently
than a myopidirm.

Overtaking requires that there is an intervalnobver which thefirm is willing
to upgrade. Moreover, if the initial precision lies in this interval, the equilibrium
technology sequence is unboundédi;_,., n, = co. There is also a critical value of
n, which we denote, above which théirm never upgrades. Thus, if ofiem begins
with precision in the interval for which upgrading continues, and a sefiamtbegins
with n > 7, thefirstfirm eventually uses a higher grade technology and receives higher
profits in every period, regardless of the initial technologies (the initial value$. of

The next two theorems analyze thiest row of Table 1 wher > 0. Theorem
1 shows that overtaking is a generic possibility. Theorem 2 shows thafiaesidy
large value of3 eliminates the possibility of overtakirfy.

Theorem 1 If Assumptions 1and 2 hold and ey < 1, 02 > “02=2 (so that overtaking
occurs when = 0), overtaking can occur for small positive values of 3.

Theorem 1 demonstrates the robustness of the overtaking result for a small positive
discount factor. Although the possibility of overtaking is generic, it never occurs if
firms are suiciently patient.

Theorem 2 Suppose Assumption 1 holds.

L Ifay < 1,02 > 221 and Assumption 2 holds (so that overtaking occurs when
£ =0), thereexists 5* < % such that for all 5 > (5%, overtaking cannot occur.

3We had completed our analysis of this problem before learning of Jovanovic and Nyarko's working
paper (1994), which contains theorems 1 and 2. We include our proofs of these theorems in order to
make this paper self-contained.



2. Ifay > 1,02 > @ (sothat it is never optimal to upgrade when g = 0), and

in addition p — ﬁ > 0,%it is sometimes optimal to upgrade when 3 > 3*.

We next show how forward-looking behavior changes the setdit which upgrad-
ing is optimal. We dénen<® as a value of) at which thefirm with discount factop is
indifferent between sticking with the current technology and upgrading. That’is,
satigies

z(n) = B[V (h(n) +v)—V(n+v) (6)

(son®® = n°). As with the static case;”® may not exist, in which case tfgm either
upgrades in every period, or never upgrades. Unlike the static case, we have not shown
thatn“® is unique. When we refer tg*® we always mean any value gfthat satifes
equation (6).

We show that (n°?) > 0 for 3 > 0. This inequality means that at a level of preci-
sion where thdirm is indifferent between upgrading and sticking, upgrading reduces
profits in the current period. We have

Proposition 3 For g > 0, at a level of precision where the firmis indifferent between
upgrading and sticking, upgrading causes lossesin the current period: z(n*) > 0.

Proposition 3 implies that forward-lookingyms upgrade to the new technology
because the future befitefrom the new technology exceeds the short-term cost from
discarding the old technology. In other words, forward looKings upgrade when the
current payoff from the new technology is strictly less than the current payoff from the
old technology. In contrast, myopfcms upgrade only when the current payoff from
the new technology is at least as great as the current payoff from the old technology.

Define the “upgrade setA? = {n : k(n) = 1}, the set ofy for which it is
optimal to upgrade, givefi. Table 1 implicitly déinesA° (the upgrade set fg# = 0)
under different cofigurations of parameter values. The following theorem compares
the upgrade sets fgf = 0 and for0 < 8 < % under these four cdigurations of
parameter values.

“When 7° does not exist, we obviously cannot invoke Assumption 2. We therefore impose this
inequality directly.



Theorem 3 For0<ﬂ<%,A0§Aﬁ.

Theorem 3 meansthat forward-looking firms are “more likely” to upgrade than my-
opicfirms. For example, if overtaking occurs in the myopic setting, the introduction
of a positive discount factor reduces (and according to Theorem 2 may eliminate) the
values ofn above which further upgrading never occurs. In addition?if< @

(the second row in Table 1) so that overtaking does not occur wher, then over-
taking cannot occur wheft > 0. Finally, if o2 > @ avy > 1 (the upper left entry

in Table 1) myopidirms would never upgrade. For these parameter valueg and,

firms might upgrade whenis suficiently large. In this case, the introduction of a pos-
itive discount factor transforms the “stagnation” scenario to the “standard” scenario, in
which firms wait until they are stitiently familiar with the current technology before
upgrading.

Theorem 3 compares the upgrade sets for a myopic and a forward |ofaking
Under the hypothesis that the value function is differentiablg,iwe can show that
for small values of3 the upgrade set is monotonefn A? C A? for 5/ > §. In
this case, as thérm becomes more patient, the set of precision levels at which it
upgrades increases. Unfortunately, this is a local resul (at 0) and it assumes
differentiability of the value function.

In order to check the robustness of this local result, we solved the dynamic pro-
gramming problem numerically using the method of value function iteratiom
these simulations we treat the state variable@g) = % > 0. The restriction
n > h(n) implies thatvar(6) < ¢, wherey solvesi = h(é). Thus, the state space is
the intervall0, . For all of our simulations, wénd thaty“® is unique, which implies
that the upgrade set is connectédhe firm upgrades at two levels etir(60), it up-
grades at any convex combination of those values. Also, the upgrade set is monotonic
in 3: more patienfirms are more likely to adopt new technologies.

Figure 1 graphs the critical value ofir(6) (which equals the inverse of’) as

SWe put agrid on the state space and used linear interpolation to cal cul ate the val ue function at points
off the grid. We iterated on the value function until the largest change in the value function (over all
points on the grid, from oneiteration to the next) was no greater than 10~1°. In most cases we achieved
thistolerance in fewer than 75 iterations, although for values of 3 that approached % we needed nearly
400 iterations.
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a function of 3 for three values of ~, 1.1, 1.3 and 1.5. The vertical intercepts of
the graphs show the inverse of the critical precision for the myopic firm, n¢. The
other parameter values in this simulation are: o = 0.5, 02 = 0.25, and v = 3.33
(so p = 0.7). Inthe static model (5 = 0) there is overtaking. For all values of
3, firms upgrade if var(6) exceeds the critical level (the graphs). In every case, the
critical valueis positive for small values of 5 (Theorem 1) and it equals 0 for values of
8 < % (Theorem 2). In addition to illustrating these theorems, the numerical results
show that the upgrade set is connected and is monotonic in 5. Figure 1 shows that
an increase in v decreases the critical variance, and thus increases the upgrade set. A
larger value of ~y increases the advantage of upgrading.

This model illustrates the manner in which technological inventions or changes
in financial institutions can precipitate a process of continued innovation. Initialy,
an economy may be quite stagnant, as it was prior to the industrial revolution. Dur-
ing this period, improvement in productive methods are gradual and of decreasing
marginal value. A technological invention increasesind the development éhan-
cial markets may lower the interest rate, increagindgeither of these kinds of changes
can move the economy into a region where innovation continuefimigdy, as in the
post industrial revolution era.

The model assumes that there is no spillover of information adness. There
are a number of ways that we can think of informational spillovers. [fiatis had
exactly the same information, they would make the same decisions and there could be
no possibility of overtaking. A more realistic view is that dien’s learning is more
informative tofirms with similar technologies, and thatiam learns only fronfirms
with a more advanced technolagye. spillovers are asymmetric. (For example, the
additional information acquired by someone who does wordprocessing is more useful
to someone who currently uses a typewriter than it is to someone who uses only pen
and paper, and the additional learning by the person who uses pen and paper does
not help the other two agents.) Equati@) is consistent with this assumption. A
lower value ofa. implies that the information content of a signal decays rapidly as the
distance between generations of technology increases. (See footnote 7 of JN.)

JN show that overtaking can occur with this model of spillovers when0. This
possibility also arises for smafl, as a modication of their argument shows. When
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« is sufficiently small, spillovers are not very important, and their presence cannot
eliminate overtaking. JN also point out that in order for spillovers to change a firm's
decision not to upgrade, the spillovers must have an effect “early on”, while the leader
is still using a technology similar to the laggard’s. This qualitative result should also
hold in the case wherg > 0.

In other respects, a positive value®Mmay change the effect of spillovers among
a group offirms that behave nonstrategically. Suppose filnats are small, and that
eachfirm takes the investment trajectory of otlfiems as given. Eacfirm recognizes
that by failing to keep up witfirms that are using more advanced technologies, it
lowers its ability to learn from them in the future. This recognition increases the
value of upgrading in the current period rather than in the future. A larger valde of
increases the importance of this effect, and thus tends to increase the role of spillovers
In promoting innovation.

However, in an equilibrium where overtaking occursfiran recognizes that by
delaying innovation it increases the numberfioins who will be using the same or
a higher level of technology in the future. This delay increasedithes ability to
learn in the future and provides an incentive to postpone adoption. A larger value of
(£ magnfies this incentive.

Thus, for a speféic firm, it is unclear whether spillovers increase or decrease the
incentive to upgrade whem > 0. Consequently, the equilibrium effect of spillovers
is uncertain. Note that the incentive to delay vanishes when 0 or if there is no
overtaking in equilibrium. In either of those cases, spillovers have only the positive
effect on innovation at both the individual and the aggregate levels.

4.3 Generalized Technology Choice

Thefirm’s choice set is rather restricted, since it must either upgrade to the next level
or continue with the current technology. In realfiyms can choose from a variety of
technologies. To analyze the consequence of a wider choice, we consider the extreme
opposite possibility in this subsection. Here we assume thdirthecan choose any
(possibly iinite) level of upgrade. We refer to the case whierean be any non-
negative number as the unrestricted model, and the case whaust take the value O

or 1 as the restricted model.

12



We first modify the link between different grades of technology asin JN (equation
(3) on page 1301) for the unrestricted model. That is, we replace our equation (2) with

Orii = a*/%0,, + € (7)

where ¢, ~ N (0, p,0o?) and

_ (1—-a®)/(1—-a) ifa#1,
P k ifo—1

and #,, and ¢, are independent. The variance after ak-stage upgrade is

k 1— k
= 2 ®)

i l—«o

The single period pfit of a k-stage upgradeSis

S e R =) S

For comparison we consider the myofiien first.

Proposition 4 Suppose the firmis myopic.

2
€

1. (a) Ifa<landp < 7=, thenitisoptimal to set & finite (possibly 0) and the
payoff is bounded.

o?

(b) fa<landp >
unbounded.

<, then it is optimal to set k = oo, and the payoff is

a’

2. If a > 1, afinite k (possibly 0) is optimal.

The conditions under Part 1(a) of Proposition 4 are consistent with parameters in
the upper right corner of Table 1, so the over-taking result is not overturned by the
generalized technology choice. The parameter restrictions in the lower right corner
of Table 1 imply that the conditions in Part 1(b) are mé&erefore, when continual
upgrading is optimal under the restricted technologyfittme always prefers an imme-
diate irfinite upgrade. The condition under Part 2 of the proposition is consistent with

SHereafter we ignore the special case o = 1 sinceit has the same characterization asthecase o > 1.

13



the left column of Table 1; here, asin N (Proposition 4.1 on page 1305), afinite k is
optimal.

Next we consider the case where 5 > 0. If it isoptimal to set £k = oo when 5 =0
in the unrestricted model, a patient firm (5 > 0) finds it optimal to set £ = oo in the
unrestricted model, a fortiori. Hence the optimal choice under the condition of Part
1(b) of Proposition 4 is unbounded.

When the optimal choice of the myopic firm is bounded, a comprehensive analysis
isfairly difficult. Therefore we ask the following limited question: If the patient firm
chooses k£ = 1 in the restricted model, will it necessarily choose £ = oo in the unre-
stricted model? That is, if the optimal solution in the restricted model is at the upper
boundary, does the optimal solution in the unrestricted model ecfuaiky?

Proposition 5 If ay > 1,02 < “2=2 and n > ¢ then itis optimal to set k = 1 inthe
restricted model while k£ < oo in the unrestricted model.

We conclude that the conditions that insure thatfiira is on the boundary = 1
in the restricted model are not égfent to insure that thérm would be at the upper
boundary when it has a larger (possibliimite) choice set.

5 Conclugon

When skills are only partly transferable across generations of technology, greater fa-
miliarity with an existing technology may make it easier to upgrade. However, greater
skill at using the existing technology also leads to a higher opportunity cost of up-
grading. Afirm that is less skilled has a lower opportunity cost and may upgrade,
even though it cannot use the new technology afifataly as a more skilleirm that
chooses not to upgrade. The less skifiesh may continue to upgrade to increasingly
sophisticated technologies, even though it never becomes expert at using any of them.
It eventually achieves higher fits than the more skillefirm.
This kind of overtaking can occur even whérms are forward looking, as in Par-
ente’s (1994) model. However, overtaking never occuigtfs are sufciently patient.
When the myopidirm’s upgrade decision depends non-trivially on its skill level,
a forward lookingfirm decides to upgrade for a larger set of skill levels. In this sense,

14



forward looking firms are more likely to upgrade, and they upgrade more frequently.

Low levels of economic devel opment are often associated with inefficient financial
markets and a high discount rate. The high cost of capital discourages adoption of
a new technology, and thus impedes development. Somewhat paradoxically, a high
discount rate may also make overtaking more likely. Thus, a situation where tech-
nologically backwardirms overtake their relatively advanced rivals is more likely to
occur in markets where discount rates are high.

6 Appendix: Proofs

Proof. (Proposition 1.) The proof for part 1 of the proposition is standagéfine the
operator
TV = kg%f}{F(k N M) + ﬂV(mH, ne +k)}.
Since7 is a contraction mapping with modulys the solution to (5) exists.
The second part follows from the result that if the solution to the sequence problem
(SP) is bounded, the solution to the DPE satisfying
lim ﬁ V(ntvnt) =0

t—o0
is the unique solution to the sequence problem (SP). (Theorem 4.3 on p.72 of Stokey
and Lucas (1989)) Hence it sidfes to prove that Assumption 1 implies that the solu-
tion to the sequence problem (SP) is bounded
If 5y < 1, then
W*(n,0) = max W(ky, ko, ...:1p,)

(k1,k2,...)
Th—1

_Zﬁyn lﬁTn 1{Zﬁt T,,l _%]}

tTnl

<Zﬁ7u— ﬁ’y<oo'

Therefore the solution to the sequence problem (SP) is bourmled.
Proof. (Proposition 2.) We use the fact thak'(k;n,n) = v"F(k;n,0) to “guess”
the trial solution:V (n,n) = "V (n) for some function’ Given the uniqueness of

15



V (n,n), thistrial solution must be correct if it solves the DPE. Since the equation of
motion of n is independent of »n, we can substitute the trial solution into equation (5)
to obtain an equivalent DPE

YV (n,) = Joax oy "{F(k;n;,0) + By*V (n,41)}- (10)

Dividing both sidesby ~™ resultsin aDPE — and thus an optimal decision rule —which
is independent of both andt. =

Proof. (Lemma 1.) The firm with initial precisionn > 7° never upgrades, so
n, — oo and its prdits converge toy/"° i, whereny is the initial grade of technology.
Thefirm with initial precisionn < n°continues to upgrade in every periodigo— oo
andn, — n,. Thus, its prtﬁts approachtoco provided thafy — o 0. Suppose to

the contrary that, — o < 0. In that casey(u — e )) w— <p—o L (smce

h(n )
h(n,) <n,), SOitis not optlmal to upgrade at, contradicting the assumptlons of the

lemma. m

Proof. (Theorem 1) We show that for stifciently small but positive values of
3, it is optimal to upgrade in every period wheris small, and it is optimal never to
upgrade whem is large. Using equation (10) and thefidtion of z(n), it is optimal
not to upgrade if

z(n) > B[V (h(n) +v) = V(n+v)]. (11)

V(n) is nondecreasing and/(%) > 0, since the strategy of never upgrading in the
future gives a stream of positive payoffs when- % Thus, fory > , the right side
of equation (11) is bounded above ByV (h(n) + v). For ally, ﬁ”yV( (n) +v)is
bounded above b{% (which equals the present value of the payoff if a new technol-
ogy is adopted in every period and the precision instantly becorfiaga). Ddinen*
as the unique positive solution tg¢n) = %ﬁ%. Given the assumed parameter restric-
tions, n* exists forg sufficiently small but positive. Thus, equation (11) is dadid,
and it is optimal not to upgrade fgr> 77 = max{n*, %}.

It is optimal to upgrade if the inequality in equation (11) is reversed. The right
side of equation (11) is approximatelyfor small 3; the left side is independent of

and is strictly negative fon in the neighborhood of, (sincen, < n°). Therefore,
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for sufficiently small 5 there exists a critical value of n greater than n,, below which

it is optimal to upgrade. If theinitial value of 1 is below this critical value, the firm

upgrades in every period. Since p — ﬁ > 0 by lemma 1, overtaking occurs m

Proof. (Theorem 2.) 1. Overtaking requires that firms with sufficiently high
precision never upgrade. We show that never upgrading in the future cannot be an
optimal policy when 3 islarge. Define g = pu — ﬁ which is positive by lemma

1. Therefore the value of the optimal program at n, isV(n,) > o The payoff

from never upgrading is bounded above by ﬁ. Monatonicity of V'(n) implies that

it is not optimal to stick with the current technology forever if 11%7 > ﬁ, e if

3> —%‘_7;:3 =% Sncey > 1,5 < % Thus there exists arange of parameter values

that satisfy Assumptions 1 and 2 and oy < 1, 02 > @ for which overtaking
cannot occur.
2. The proof of part 2 uses the same argument to show that never upgrading is not

optimal when £ is sufficiently large. m
The proof of Proposition 3 uses the following two lemmas:

T y(n,w) isan

Lemma 2 Define the function x (1, w) = (v — Vi + % — wow

increasing function of w.

Proof. Differentiate the function y and use therestriction that > h(7n). =

Lemma3 h(n) +v > h(n+v).

Proof. h(n+v) < h(n) + A'(n)v < h(n) + v where the first inequality follows
from concavity and the second from the restriction n > h(n) whichimpliesh/(n) < 1.
|

Proof. (Proposition 3.) Suppose to the contrary that
2(n?) <0 (12)

We derive a contradiction for the two interesting cases.” Case 1: it is optimal to up-
grade at)*® — e for small positive: and it is optimal to stick with the current technology

"We ignore the unlikely possibility that the firm prefers to upgrade (or prefers to stick) for both
n® + €, e smal. Even if this situation could arise, it is plausible that a perturbation of parameters
would eliminateit.
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for T periods at °° + . (We allow the possibility that 7' = oo, anecessary condition

for overtaking.) Case2: Itisoptimal to stick at n°° — e for small positive e and it is

optimal to upgrade at n* + ¢. (Case 2 corresponds to the second row of Table 1.)
Case 1. Choosen = 1’ + ¢, so that the optimal policy yields the payoff

Vi =38 (1= gy ) + 8TV b + 7))

where T' (possibly infinite) is the optimal time of the next upgrade. Consider the
deviation of moving forward the time of the next upgrade, e.g. upgrading at time 0
rather thantime 7" . The payoff corresponding to this deviation is D(n)

T-1

D) =07 (= s ) + 9TV () + 7).

t=0
Using these expressions, we have

T—1

D(n) —=V(n) = [Z Bx(n, tv) | + 67y {V(h(n) + Tv) = V(h(n+Tv)} .

Evaluate this difference at n = n°%, where x(n,0) = —z(n) > 0 by equation (12). By
lemma 2, x(n,tv) > 0 for ¢t > 0, so the term in the sguare brackets is positive. By
lemma 3 and monotonicity of 1/, the term in the curly brackets is positive. Therefore
D(n%) — V(n°) > 0, which contradicts optimality.

Case 2. Choosen < 7 withn + v > 1. The optimal policy at such avalue of
n istowait until the next period to upgrade, which leads to the payoff

Vi(n) = (u— %) + By (u— h(?71+1/)> + BV (h(n +v) +v).

Consider the deviation of upgrading in the current period rather than in the next one.
We again denote the value of this deviation as D(n) :

D(n)=v<u—ﬁ) + By (u—

The difference in the payoff is

1 2
) + V) + B4V (h(n) + 2v).

D(n) =V(n) = —z(n)+ By {h(niu) e
+3°7{V (h(n) +2v) = V(h(n+v) + v)} .
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Evaluate this difference at n = n°*. The first term on the right side is non-negative

by equation (12), the second term (square brackets) is positive by lemma 3, and the
third term (curly brackets) is positive by lemma 3 and the monotonicity of the value
function. Consequently)(n) — V'(n) > 0, which contradicts optimality

We use Proposition 3 to compare the critical valyg&sandz©, and thus to obtain
an intermediate result needed for Theorem 3. In order to allow for the possibility that
n“ is not unique, we d&ne7’ = max{n“’} andy*® = min{n“}. We have

Corollary 1 Suppose n*’ and 7° exist. Then 7%’ < n° for ay > 1, and n** > n° for
ay < 1.

Proof. By inspectionz(n) is monotonic, and the derivati\%7 has the same sign
as1 — a. From Proposition 3z(n<) > 0 = z(n°). Hence, wherfi% > 0,7% > n°,
implying % > 7° for ay < 1. Whenj—; < 0,7 < 7, implying 7%° < n° for
ay>1.m

Proof. (Theorem 3.) We prove the claim for the three separate cases in Table 1.

(i) If, for 3 = 0, there is either stagnation{ > 1 ando? > @) or continual
upgrading ¢y < 1 ando? < £0=1), thenA® C AP,

(i) If the “standard case” occurs wheh = 0 (ay > 1 ando? < @), then
AY C AP,

(iii) If overtaking is possible whem8 = 0 (ay < 1, ando? > @ ), then
AY C AP,

We take these cases in turn.

(i) Under stagnationA® = ) C AP. (From Theorem 2A” may be nonempty, in
which caseA’ ¢ AP.) Under continual overtaking)® = R+, and it is straightforward
to show thatA\”® = R+,

(i) In this case,A° = {n : n > n°}. If n° exists, then it must be the case
that A° D {n : n > 7°}. If this relation did not hold, then for sfitiently large
n, it is optimal never to upgrade. However, using the inequatity< @ we
can show that for skitiently largen the payoff of upgrading once and then never
subsequently upgrading is greater than the payoff of never upgrading. 78ineen®
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from Corollary 1, we obtain A®? D {n : n > 7} > A If n°° does not exigt, it is
optimal to upgrade for all 1, so A = R*.

(iii) Inthiscase, A = {n : n < n°}. If n° exists, then from Corollary 1,
7% > n° We need to show that A° O {n : n < n*}. (This relationship implies
that for 5 > 0 it is strictly better to upgrade at n = 7°.) Suppose, to the contrary,
that for n < ﬂcﬁ it is optimal not to upgrade. Then at n = 7° it is optima to stick
with the current technology for 7" > 1 periods, where T' is the smallest integer that
satisfiesn = n° + Tv > n®. At time T timeit is optimal to upgrade. Consider
the deviation of upgrading in the current period (when n = 7°) rather than waiting T
periods. The additiona profits resulting from this deviation, rather than following the
optimal program, are

T—1
[Z Bx(nf, tv)
t=0

The first term (square brackets) is positive using the definition of ¢ and lemma 2, and

+ 87 {V (h(n°) + Tv) = V(h(n° + Tv))} .

the second term (curly brackets) is positive by lemma 3 and monatonicity of V().
Consequently, it must be optimal to upgrade whenn = n° and 3 > 0. Therefore
AP D {n:n<nP} o {n:n<n}=A"

If n°® does not exist, it is optimal to upgrade for all n, so0 A® = R*. =

Proof. (Proposition4) The proof for thefirst part is straightforward from the single
period profit function of k-stage upgrade, (9), since the second par? eanishes for
a largek. For the second part, notice that the second term,invhich is negative,
dominates for a largé while thefirst term is positive, so &nite £ (possibly 0) is
optimal. m

Proof. (Proposition 5) Letv > 1, 02 < @ andn > n° so that the conditions
for the proposition hold. Since these conditions imply the parameter restrictions in
the lower left corner of Table 1, the optimal technology choice in the restricted model
is to setk = 1 (using Theorem 3). If thérm were to sek = oc in the unrestricted
model, then (from equation (8)) the variance becomes unbounded, so all future payoffs
are negative. Thus, the present discounted value of future payoffs is negative. From
equation (9) the current payoff isfinitely negative. Thus, the payoff whén= ~c is
infinitely negative, s& = oo is not optimal. m
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Figure 1: Numerical Results of Critical Values
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