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Abstract

We compare dynamic taxes and quotas in a stationary environment where a regulator
and a non-strategic firm have asymmetric information. The regulator is able to learn about

the unknown cost parameter either by using a tax or a quota that is slack with positive prob-
ability. With a tax, the information asymmetry is resolved in one period. Optimal learning
using a quota is less transparent, though we show that this search problem has a simple

solution. In particular, it is never optimal for the regulator to learn gradually. In the first
period, he either ignores the possibility of learning, or he tries to improve his information.
Regardless of the outcome in the first period, he never experiments in subsequent periods.

We use this result to assess the informational advantage of taxes compared to quotas under
asymmetric information.
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1 Introduction

An extensive literature compares taxes and quotas when nonstrategic firms and the regulator
have asymmetric information about abatement costs. Following Weitzman (1974), many pa-
pers (including Malcomson (1978), Roberts and Spence (1976), Stavins (1996), Watson and
Ridker (1984) and Yohe (1977)) compare the policies when damages are caused by the flow of
pollution.1 Since the regulator does not exactly know the abatement cost function, he cannot
predict the aggregate emissions resulting from the tax. Thus, a tax-setting regulator chooses
the level of marginal abatement cost, and views aggregate emissions as random. A quota-
setting regulator, on the other hand, chooses aggregate emissions, and views the resulting level
of marginal abatement cost as a random variable. This difference between the two policies
is central to the welfare ranking in the papers cited above. Here we extend the literature by
studying the different ways in which the two policies enable the regulator to learn about the
firms’ abatement costs; that is, we focus on the informational differences between the tax and
quota in a dynamic setting.
The papers cited above assume that the optimal quota is binding with probability 1. When

quotas rights are traded efficiently (and firms are heterogenous, so that trade occurs), this as-
sumption means that the equilibrium quota price conveys to the regulator the same information
about an industry-wide cost parameter as does the aggregate equilibrium response to the tax.
In this case, there is no informational difference between the policies.
We assume that emissions trading does not occur – either because it is forbidden or too

costly, or because homogenous firms have no incentive to trade. In this case, the regulator
learns nothing about costs if the quota is binding with probability 1. Such quotas are obviously
less informative than taxes. Given that emissions trading does not occur, the regulator might
want to use a quota that is slack with positive probability in order to learn about abatement
costs.
Our objective is to compare taxes and quotas when the regulator is able to learn about

abatement costs, and is able to change the policy level when he has new information. The basic
informational difference between the two policies is straightforward. By observing a positive
equilibrium response to a tax, the regulator discovers a point on the firm’s marginal abatement

1More recently, a number of papers, including Hoel and Karp (in press), Hoel and Karp (2000), Newell and
Pizer (in press), Karp and Zhang (2001), Karp and Zhang (2002), study the case where damages are caused by the
stock rather than the flow of pollution.
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cost curve. Under a (non-traded) quota, he discovers a point on the marginal abatement cost
curve if and only if the quota is slack. In this case, he learns the point at which abatement costs
are minimized. Thus, there is an obvious sense in which the tax is more informative than the
quota.
Information about a firm’s (or an industry’s) current abatement cost schedule is valuable

only if costs are correlated over time. If costs are imperfectly correlated, the asymmetry of
information may diminish but never disappear. In order to emphasize the informational dif-
ference between the policies, we assume that the regulator is imperfectly informed about a
single cost parameter which is constant over time. Once the regulator learns this parameter,
the asymmetry of information vanishes. This assumption makes the optimal policy under taxes
extremely simple. Under quite general circumstances, any tax that induces positive output en-
ables the regulator to learn the unknown cost parameter. Thus, the regulator chooses the tax to
maximize expected welfare in the current period only. He knows that in the future he can set
the tax at the first best (complete information) level.
The optimal policy under quotas is not transparent. Our major contribution is to show that

the optimal quota policy is in fact very simple. Once we know the form of this policy, we can
easily compare taxes and quotas, and identify the extent of the informational advantage of the
former. The next section discusses the problem under quotas and describes the solution. The
subsequent section presents the formal model and an example. We then prove our main results,
characterizing the optimal quota policy. We use these results to identify the informational
advantage of taxes. In a numerical example, we illustrate the parameter space over which taxes
or quotas dominate in this dynamic setting.
The assumption that the asymmetry of information vanishes once the regulator has learned

the single unknown cost parameter is a means of emphasizing the informational difference
between the two policies. If we take this assumption as a literal description, the problem
may appear vacuous: If the regulator can learn the unknown parameter by a single experiment,
then he would already know it if he had been using a tax in the past, or if the firm had been
unregulated, or equivalently if the regulator had used a non-binding quota.
This objection has no force if we consider the case of a new industry, an industry currently

regulated with a binding quota, or one which has recently experienced a technological or input
price shock that leads to an unknown change in abatement costs. For example, the industry
might have installed a new technology that is associated with unknown costs of abating pollu-

2



tion. If there are substantial costs of changing the technology, it is reasonable to think of the
abatement cost function as being constant for a long period of time.
If the regulator could change policies quickly and costlessly, he would be willing to incur

a large flow cost for a short period of time (resulting in a low total cost) in order to learn the
unknown parameter. However, if policies can be changed only after a non-negligible period of
time, it may be necessary to incur a substantial cost in order to learn the unknown parameter.
In practice, policies are changed at non-negligible intervals, so the optimization problem is not
trivial.

2 The optimal quota as a search problem

This section describes the optimal dynamic quota-setting problem as a problem of optimal
search. We compare this problem to a familiar search problem; despite their apparent similari-
ties, the solution to the quota and the familiar search problems are very different.
We use an infinite horizon model of a representative polluting firm. In each period the firm

pollutes at its privately optimal level if this level is less than the quota; otherwise, the quota
is binding. In each period, given his current beliefs about the abatement cost function, the
regulator chooses the quota in order to balance two conflicting objectives. He would like to
control the amount of pollution, and simultaneously learn about the true costs so that he can
choose a more efficient quota in the future. The quota that would be optimal in a one-period
problem (the “myopic quota”), is binding with probability 1 by assumption, so a regulator who
uses this quota learns nothing about costs. If he lets the firm produce at its privately optimal
level, he learns everything about costs. We discuss these and other assumptions in the next
section.
In each period, the regulator can use one of three types of quotas. He can use the myopic

quota, in which case he maximizes welfare in the current period, but learns nothing about
costs. He can use an “aggressive” quota (defined as one which is slack with probability 1), in
which case welfare in the current period is low, but the regulator learns the true cost parameter.
Finally, he can use a cautious quota that is binding with probability strictly between 0 and 1.
In this case, the regulator learns something about abatement costs, but expected welfare in the
current period is lower than under the myopic quota.
One possibility is for the regulator to proceed cautiously. That is, he might refine his infor-
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mation over a number of periods until he eventually learns the value of the unknown parameter,
or decides that further experimentation is too costly. Rob (1991) analyzes a model which has
many of the characteristics of ours, and he finds that this kind of cautious approach is optimal.
In Rob’s setting, a social planner is uncertain about the location of the market demand curve.2

The social planner gradually increases production capacity – requiring costly investment – un-
til he learns the true market demand. In general, learning takes place for more than a single
period.
Optimal learning in our setting is qualitatively different. We show that if there is any

learning, it takes place in a single period. In addition, the aggressive quota is never optimal if
the regulator discounts the future; learning takes place only by using a single, cautious, quota.
In the first period the regulator might decide to use either the myopic quota, in which case he
learns nothing with probability 1, or a cautious quota, in which case he learns something but
might not discover the true cost parameter. Whatever the outcome is in the first period, the
regulator never experiments a second time.
The difference in optimal behavior in our search model and in Rob’s is due to the differences

in the costs of searching “cautiously” and “aggressively” in the two models. A cautious search
in Rob’s model involves a slight increase in capacity. The amount of information obtained from
such a search is modest, but so is the cost. Under the quota, however, it is necessary to incur a
significant cost in order to acquire even a small amount of information. This fact follows from
the assumption that the myopic quota is binding with probability 1. An aggressive search in
Rob’s model has a higher expected cost than a more cautious search. For example, if the social
planner builds twice the capacity needed to satisfy the market (in Rob’s model), he incurs a
greater loss than if he over-builds by a small amount. In contrast, an increase in a quota that is
slack has no effect on welfare.

3 The model

Here we list the assumptions of our model and explain their role. We then use an example to
illustrate these assumptions and to describe the basic properties of the model.

2Much of Rob’s analysis concerns the competitive equilibrium. However, for our purposes, the relevant
material is his treatment of the social planner’s problem.
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3.1 Assumptions

The firm knows its abatement cost function, which is constant over time. There are neither
exogenous nor endogenous (e.g. investment-related) cost changes. This assumption reduces
the complexity of the problem, enabling us to understand how the regulator learns under quo-
tas. We also assume that the firm does not behave strategically with respect to the regulator.
Our model does not apply if strategic behavior is important.3 In many circumstances firms
are genuinely non-strategic. In addition, we assume that social damages (external to the firm)
are caused by the flow rather than the stock of pollution, and the damage function is constant.
These assumptions eliminate two possible sources of dynamics, enabling us to focus on learn-
ing.
The regulator has full information about the cost function up to an unknown parameter θ.

This assumption reduces the dimension of the problem, and is standard in models of asymmetric
information.
We define the myopic quota as the quota that would be optimal if the regulator ignored the

possibility of learning; that is, the myopic quota minimizes the expectation of current dead-
weight loss. In addition to the previous assumptions, we adopt:

Assumption 1 The firm’s individually optimal level of emissions in monotonically increasing
in its cost parameter, θ.

Assumption 2 The myopic quota is binding with probability 1.

Assumption 3 (a) For quotas that are binding, the current loss in social welfare is a finite,
convex function of the quota. (b) If the quota is not binding, an increase in the quota does not
affect social welfare. (c) The welfare loss under full information is 0.

Assumption 4 (a) Let θ and θ̄ < ∞ be the lower and upper bounds of the support. The
distribution function of θ is strictly increasing over [θ, θ̄]; (b) the distribution has a finite number
of mass points, and (c) There are no mass points in an open neighborhood of θ̄.

Assumption 1 states that the cost parameter affects the firm’s individually optimal behavior.
The regulator can calculate the smallest possible value of θ consistent with a particular quota

3Moledina, Polasky, Coggins, and Costello (in press) compare taxes and quotas in the situation where strategic
firms face a naive regulator. In this situation, the arrival of new information causes “ratcheting”, i.e. the tightening
of the policy.
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being exactly binding. The assumption also implies that if the quota is not binding, the regu-
lator learns the true cost parameter. Thus, the regulator is certain to learn the cost parameter if
he uses a quota that is slack with probability 1.
Assumption 2 implies that under the myopic quota, the regulator never acquires any infor-

mation. This assumption is consistent with the literature cited above, where there can be no
learning under the optimal one-period quota in the absence of trade. If Assumption 2 does not
hold, the regulator has a positive probability of obtaining information under the myopic quota.
This change eliminates the “fixed cost” of searching, one of the two differences between our
and Rob’s search models. With this change, we conjecture that consecutive searches might be
optimal.
Assumption 3 is standard. Part (a) implies that the myopic quota is unique. An increase

in a non-binding quota has no effect on the firm’s actions and therefore does not change the
deadweight loss, as part (b) states. Part (c) is merely a normalization. The deadweight loss of
using a first-best (full information) policy is 0.
We explained in Section 2 that Assumptions 2 and 3b account for the qualitative difference

in optimal searching behavior in this setting, compared to Rob’s model, Assumption 2 means
that the cost of acquiring a small amount of information is non-negligible. Assumption 3b
means that the cost of using a high quota levels off as soon as the quota is slack. The example
below illustrates these features.
Assumption 4 collects technical assumptions about the distribution: Assumption 4a means

that there are no “gaps” in the support of the distribution – i.e. the support is a connected
set. This assumption simplifies the description of the regulator’s future information set, as a
subsequent footnote points out. Assumption 4b is used to prove Lemma 1 and Assumption 4c
is used to prove Proposition 2.

3.2 The example

We illustrate the model using the linear functions shown in Figure 1. By emitting one more
unit of pollution, the firm saves the marginal abatement cost. For the linear case, the firm’s
marginal benefit (MB) of polluting at rate q equals (θ − q) b. The regulator knows the slope b
but not the parameter θ, which in this setting equals the unregulated level of emissions. The
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Figure 1: The linear example

expected value of θ is Eθ and the social marginal damage (MD) of pollution is dq. 4

Under the assumption that the optimal quota is binding with probability 1 (our Assumption
2), Weitzman (1974) shows that it is optimal to use the tax if and only if b > d. A simple
calculation shows that a necessary condition for the myopic quota to bind with probability 1 is
b

d+b
Eθ < θ.5 The expected deadweight loss under the myopic quota equals b2

2(d+b)
var(θ). By

reducing the value of var(θ), the regulator is able to decrease the expected deadweight loss.
The dashed line in Figure 1 shows the marginal benefit curve associated with Eθ. With

this linear example, the myopic quota, denoted QM , occurs at the intersection of the marginal
damage and the expected marginal benefit curve. Consistent with Assumption (2), QM < θ.
Consistent with Assumption (1), the regulator learns the true value of θ if he chooses a quota
greater than or equal to θ. If the true value of θ happens to be Eθ, and if for some reason the
regulator uses a quota Q1, the deadweight loss in the current period is shown by the shaded

4A modification of the example in this section illustrates a situation that violates Assumption 1. Suppose that
the horizontal intercept of the firm’s marginal benefit curve, θ, is known, but the slope of the curve is private
information. In this case, the use of a quota does not enable the regulator to learn about the cost parameter.

5Brozovic, Sunding, and Zilberman (2002) use a two part distribution (which violates our Assumption 4a)
to show that this condition is not, in general, sufficient to guarantee that the optimal myopic quota binds with
probability 1. In the general case, a sufficient condition is bθ

d+b < θ. However, our numerical example (section 5)
uses a uniform distribution over θ. With this distribution there is a unique local minimum in expected deadweight
loss at b

d+bEθ, so
b

d+bEθ < θ is both necessary and sufficient for the myopic quota to bind with probability 1.
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area.
It is clear from this figure that the regulator would never choose a quota betweenQM and θ.

Such a quota increases the current loss in expected welfare without offering any possibility of
learning. If the regulator’s subjective distribution does not have a mass point at θ he would not
want to use a quota close to θ, since such a quota provides negligible information but causes a
substantial current welfare loss. If he decides to learn about the cost parameter, he uses a quota
that is slack with probability strictly greater than 0.
If, for example, the regulator uses Q1 > θ (Figure 1), then two things can happen. If

θ < Q1 he learns the true value of θ and is able to use the socially optimal quota in the next
period; in this case, the future deadweight loss is 0. If θ ≥ Q1 he does not learn the true value
of θ, but he learns that the lower bound of the support is higher than he previously thought.
He replaces the previous (subjective) lower bound of the support, θ, with Q1. He updates his
subjective probability of θ using Bayes’ Rule, improving his ability to use an efficient quota in
the next period.
The next section shows that at most one search is optimal and that the aggressive quota is

optimal if and only if the regulator does not discount the future. With discounting, the regulator
either uses the myopic quota, choosing never to search, and never to learn anything about θ, or
he “searches cautiously”. In the latter case he uses a quota that is slack with probability
strictly between 0 and 1, and in subsequent periods uses the myopic quota conditional on the
information obtained during the search. With the cautious search, the regulator improves his
information, but might not learn the true value of θ.

4 The general results

In this section we maintain the assumptions described above, but we allow the damage and
benefit functions to be general. In view of Assumption 1, we can treat the unknown cost param-
eter, θ, as the firm’s privately optimal level of emissions (in the absence of regulation). This
interpretation of the unknown parameter simplifies the proof below, and does not entail any loss
in generality beyond Assumption 1. At time t the regulator treats θ as an unknown parameter
with support

£
θt, θ

¤
.

If Qt ≤ θt, the regulator’s subjective distribution over θ in the subsequent period is un-
changed. If θ > Qt > θt the regulator refines his information, calculating the subjective
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distribution in the subsequent period using Bayes’ Rule. If the quota binds, θt+1 = Qt.6 In
every period, the regulator can obtain the current subjective distribution using either the initial
distribution or the previous distribution, together with the current value of the lower bound of
the support. The lower bound summarizes all of the information that the regulator has acquired
since the start of the program; it is the state variable in the regulator’s optimal control problem.
We define L(Q, θ) as the actual deadweight loss in the current period when the regulator

uses the quotaQ and the true value of the firm’s unregulated level of emissions is θ. We define
QM(θt) as the myopic quota (which is unique, by virtue of Assumptions 3a&b):

QM(θt) = argminEt [L(Q, θ)] .

The operator Et takes the expectation with respect to the unknown parameter θ, given the
regulator’s beliefs at time t. Assumption 2 implies

QM(θt) < θt. (1)

The expected value of the deadweight loss in the current period when the regulator uses the
myopic quota, given the state variable θt isM(θt):

M(θt) = Et

£
L(QM , θ)

¤
.

Finally, we define P (Q, θt) as the subjective probability that the quota Q is binding, given the
value of the state variable, θt.
By definition, any quota less than θt is binding with probability 1. That is

P (Q, θt) = 1 ∀ Q ≤ θt (2)

Assumption (3a) implies

EtL(Q, θ) > EtL(Q
M(θt), θ), ∀ Q > QM(θt) (3)

Equations (2) and (3) imply that a quota in the interval (QM(θt), θt] increases the deadweight
loss in the current period without changing the regulator’s information. It is never optimal to
use a quota in this interval. If the regulator uses a quota Qt > θt we say that the regulator
“searches in period t”. The alternative to searching is to use the myopic quota.

6In the absence of Assumption 4a, the updating rule would be a bit more complex. For example, suppose that
the density is 0 over the interval (θi, θi+1) and that θi and θi+1are both in the support of θ, with θi < θi+1. If the
quota Qt = θi + ε is binding, with ε > 0 and small, then θt+1 = θi+1 > Qt.
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A quota in period t, Qt, that exceeds θt may be slack or binding. In the first case the
regulator learns the true value of θ and his problem ends. In the second case he knows that
θ ≥ Qt, so θt+1 = Qt. At time t, given the current quota, the regulator knows what the value of
the state variable will be in the next period, conditional upon not having learned the true value
of θ.
This characteristic holds for an arbitrary number of periods. Given any quota sequence

{Qs}Ts=t the regulator knows that by time t0, (where t < t0 ≤ T ) either one of the previous
quotas will have been slack, or none will have been slack. In the former case he will know the
true value of θ. In the latter case, the value of θt0 will be equal to the largest quota between
time t and t0. This feature makes our control problem fairly simple to solve.7

Providing that the future is discounted, it cannot be optimal to use the myopic quota in one
period and then search in a subsequent period. Information does not change under the myopic
quota. If it is optimal to incur a cost in order to learn, it is better to do it sooner rather than
later.
Rather than looking for an optimal policy function that maps the current state into the cur-

rent control, we can break the problem into two steps. In the first step, the regulator chooses the
number of searches, which we denote T . In the second step, the regulator chooses the optimal
conditional quota sequence {Qs}Ts=t. This quota sequence is conditional in the following sense:
the regulator follows it unless one of the quotas has been slack. If one quota is slack, he learns
the true value of θ and he switches to the first best (full information) quota. Hereafter, when we
say that a program involves T searches, we mean that the regulator intends to search T more
times, conditional upon not learning the true value of θ before the T searches are completed.
Denote the value of the optimal program, i.e. the minimized expectation of the discounted

stream of deadweight loss, as J(θ). Denote JT (θ) as the value of the optimal programwhen the
regulator decides to search T times. From the previous comments, it is clear thatminT JT (θ) =

J(θ). Our principle result is that it is optimal to search at most one time: the optimal value of
T is either 0 or 1.
We begin by showing that the optimal value of T is finite. In order to confirm this fact in
7In many stochastic control problems it is difficult to find the optimal (closed loop) control rule because this

rule has to specify how the regulator will behave in every possible state at every time in the future. In our problem,
the state variable lies in one of two sets. If any of the previous quotas has been slack, the regulator knows the
exact value of θ and the problem has ended. In that case, the control rule is trivial: use the full information quota.
If none of the previous quotas was binding, the state variable equals the maximum of the previous quotas.
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simple manner, we strengthen Assumption 2 slightly, replacing it with8

Assumption 5 QM(θt) < θt − � for some � > 0.

Assumption 2, which implies equation (1), does not exclude the possibility that the myopic
quota is arbitrarily close to the lower bound of the support, θ. Assumption 5, on the other hand,
states that the myopic quota is bounded away from θ.

Lemma 1 Suppose that Assumptions 3 ,4a, 4b and 5 hold. Under these assumptions, the
optimal T is finite.

All results are proven in the appendix. The intuition for the lemma is straightforward. Since
θ < ∞ an infinite number of searches involves an infinite number of marginal searches. The
cost of a marginal search is non-negligible, but (provided that there is not a mass point at θ) the
value of information it reveals is negligible.
We define the regulator’s discount factor as β. Lemma 2 considers the case where β = 1

and Proposition 1 considers the more interesting case where 0 ≤ β < 1. If β = 1 the present
discounted value of future deadweight loss is infinite unless the regulator learns the true value
of θ. It must therefore be optimal to eventually learn this value. The following lemma states
that it is optimal to do so in the first period.

Lemma 2 If β = 1 and Assumption 1 and the assumptions of Lemma 1 hold, the optimal value
of T is 1 and the optimal quota in the first period is Q1 = θ.

Any quota Q1 ≥ θ yields the same loss as is therefore also optimal.
Our first main result is:

Proposition 1 If 0 ≤ β < 1 and Assumption 1 and the other assumptions of Lemma 1 hold,
the optimal value of T is 0 or 1.

The proof uses the fact that at time t the regulator can determine the optimal conditional se-
quence of quotas {Qs}Ts=t for given T . If it were optimal to set T ≥ 2, then at some point the
regulator wants to search two more times. Denote Q2 as the penultimate search when T = 2,

8For the linear example, Assumption 5 requires b
d+bEθt < θt− �. With a uniform distribution, this inequality

implies b+2(d+b)�
2d+b θ < θt. Since θt is non-decreasing, if this inequality is satisfied at the initial time, it will be

satisfied at every subsequent time. Obviously this characteristic holds for many distributions.
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and Q1 > Q2 as the final search. The proof that this sequence cannot be optimal demon-
strates that the regulator could have done better by skipping the penultimate search (Q2) and
immediately setting Q = Q1. Here we provide intuition for the result by describing the costs
conditional upon certain outcomes; the proof requires taking into account both the probabilities
of these outcomes and discounting; it is therefore more complicated than the discussion here.
There are three possibilities: (1) θ < Q2, (2)Q1 < θ, or (3) Q2 < θ < Q1. In the first case,

by Assumption 3b there is no additional loss in the current flow of welfare from usingQ1 instead
of Q2 in the first period; both quotas lead to discovery of the true value of θ. In the second
case (Q1 < θ), the information learned by following the sequence {Q2, Q1} (i.e. arriving at the
conclusion that θ = Q1) could have been obtained at a lower cost by immediately setting Q1.
Finally, ifQ2 < θ < Q1, the regulator avoids the cost of the initial search by immediately using
Q1, and he immediately discovers the true value of θ.
The regulator must choose in the first period one of three types of quotas: the myopic quota

(QM ), the cautious quota (θ < QC < θ), or the aggressive quota (QA ≥ θ). Our second result
shows that the last choice is never used unless β = 1:

Proposition 2 Under the assumptions of Proposition 1 and Assumption 4c, the aggressive
quota is optimal in the first period if and only if β = 1.

Lemma 2 shows that the aggressive quota is optimal if β = 1. In the case where β < 1,
Proposition 1 guarantees that we need only identify the optimal quota in period 1 (Q1), since
the myopic quota is optimal in all subsequent periods if any uncertainty remains. The proof
of Proposition 2 shows that lowering the quota slightly below θ always leads to a decrease in
expected deadweight loss. The proof uses the fact that lowering the quota below θ can affect
both the expected current and future deadweight loss. A marginal reduction in the quota from
θ has no first order effect on either of these terms. It has no second order effect on the future
deadweight loss, but it leads to a second order reduction in current deadweight loss. Therefore,
a small reduction in the quota (below θ) always reduces the present discounted value of expected
deadweight loss. Under the assumptions cited in Proposition 2, it is not optimal to resolve all
uncertainty except in the limiting case where there is no discounting.
For a fixed positive discount rate, β → 1 as the length of a period during which the policy is

fixed approaches 0. If the regulator can change policies frequently, β is close to (but less than)
1. Even in this case it is not optimal to set a quota that is slack with probability 1.
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5 The informational advantage of taxes

A tax-setting regulator uses the tax that minimizes expected deadweight loss in the current
period, i.e., the myopic tax. He then learns the value of the unknown parameter, and future
deadweight loss is zero. Given our characterization of the optimal quota policy, it is straight-
forward to compare the tax and quota policies and to identify the informational advantage of
taxes. We first consider the exogenous characteristics that promote the use of different types
of quotas. We then use the linear-quadratic example with additive uncertainty and provide
numerical examples.
If the regulator decides to use a quota, a small support for the random variable promotes

use of the myopic quota. When the support is small, the amount of uncertainty is small, so
the expected deadweight loss of using the myopic quota is small. The cost of a search may
nevertheless be large, since it might be necessary to use a large quota (with correspondingly
high deadweight loss) in order for there to be a possibility that it is not binding.
If the regulator decides to use a quota and he ignores the future (the discount factor β = 0)

the myopic quota strictly dominates a search quota. Since the payoff function is continuous in
β (and bounded for all policy choices) at β = 0, the myopic quota is optimal for small values
of β.
For the linear-quadratic example described in Section 3.2, the present discounted expected

loss under the myopic quota (JM ) and the optimal tax (JT ) are:

JM =
b2var(θ)

2 (d+ b) (1− β)
, JT =

1

2

d2var(θ)

d+ b
.

In the static setting (under Assumption 2), quotas dominate taxes if and only if b < d, as
Weitzman (1974) showed. In our dynamic setting, the myopic quota dominates taxes if and
only if JM < JT , or b < d

√
1− β. Due to their informational advantage, the condition under

which taxes dominate the myopic quota is less demanding in a dynamic framework (d
√
1− β <

d).
Since we do not have a closed form expression for the payoff under the optimal cautious

search (quota), we use a numerical example to illustrate the parameter space over which each
of the three policies is optimal. The example uses the linear marginal benefit and damage
functions from section 3.2, and assumes a uniform distribution for the unknown parameter, θ.
We fix the parameters θ = 24 and b = 1, leaving free the discount factor, β, slope of marginal
damages, d, and lower bound on the support of the random variable, θ. For four different values
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Figure 2: Light shade: tax is optimal. Dark shade: myopic quota is optimal. Middle shade:
search quota is optimal. Note: For low d Assumption 5 is violated (black shade).

of θ (2, 4, 6 and 8, corresponding to coefficients of variation equal to 0.49, 0.41, 0.35 and 0.29
respectively) Figure 2 shows the regions of d, β space over which the tax (light shade), myopic
quota (dark shade), and search quota (middle shade) are optimal. Sufficiently low values of d
violate Assumption 5 and are shaded in black in Figure 2.
We noted above that for low β and high d, taxes are not optimal and for high β and low d,

the myopic quota is not optimal. We numerically identify the region of parameter space over
which the search quota is preferred over the myopic quota and the tax. Intuition suggests that
searching becomes less desirable as uncertainty is reduced. Searching requires a large current
investment (a high deadweight loss) in order to reduce future loss. A low level of uncertainty
lowers the value of this investment, discouraging the use of the search quota. Figure 2 is
consistent with this intuition; for a sufficiently small coefficient of variation, as in the bottom
two panels, searching is not optimal for any values of β or d. For a high level of uncertainty,
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as in the first panel, a search quota dominates a myopic quota only if d is relatively low. With
low values of d, the costs of a search are low. As the discount factor increases, the regulator
becomes more willing to incur a current period loss in order to reduce future loss, so the search
quota dominates over a wider range of d.

6 Conclusion

A tax has an obvious informational advantage over a quota. The tax can be chosen to minimize
current expected deadweight loss, and learning occurs automatically. Under a quota, on the
other hand, the regulator may need to sacrifice current expected welfare in order to acquire
information and thereby improve future welfare. In order to study the informational differences
between the two policies, we need to determine the optimal behavior under a quota.
The quota-setting regulator faces what appears to be a standard search problem, similar to

the problem of increasing capacity to discover the size of a market. Two features of the search
problem with quotas alter the characteristics of the optimal search. There is a non-negligible
cost of acquiring even a small amount of information, and the cost of using a quota that is slack
does not increase as the quota increases. These features lead to our two main results. First,
gradual search is never optimal. The regulator may or may not search in the first period, but
whatever the outcome in that period, he does not search again. Second a quota that leads to
discovery of the unknown cost parameter with probability 1 is optimal only in the absence of
discounting.
Given the simplicity of the optimal quota program, we can easily rank the tax and quota

policies, and determine how the ranking changes from a static to a dynamic context. That
is, we can assess the informational advantages of tax. We provided examples using linear
functions, and characterized the parameter space over which taxes or quotas dominate.
There are several limitations to our analysis. We have assumed that firms are non-strategic

and that there is a single, constant unknown parameter. The problem is fundamentally different
if firms are strategic. If there were several unknown parameters, the tax-setting regulator also
has a search problem, and the quota-setting regulator has a more complicated search problem.
The comparison between the two becomes more complex. Perhaps a more interesting extension
is to allow the (single) unknown parameter to be imperfectly correlated over time. The problem
for the tax-setting regulator is unchanged, but the search problem for the quota-setting regulator
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is much more complex.

7 Appendix: Proofs

Proof. (Lemma 1) Define
G(θt) ≡ EtL(θt, θ)−M(θt).

G(θt) is the expected additional cost of using the quota θt rather than the myopic quota. Only
quotas greater than θt have a positive probability of being slack. The regulator learns only by
using a quota greater than θt, so we can regard G (θt) as a “fixed cost” of learning. Under
assumptions 3 and 5, G(θt) ≥ δ > 0 for some number δ.
Suppose that at time t, given θt, the regulator intends to “search” T times (i.e., he intends to

use quotas greater than the contemporaneous myopic quota T times, conditional on not having
yet learned the value of θ). In this case, the average, over these T searches, of the difference
between the quota and the contemporaneous lower bound of the support, is no greater than θ−θt

T
.

(If this were not true, then by the time of the T ’th search the quota is greater than the upper
bound θ.) If T =∞, the regulator plans to use infinitely many quotas that are arbitrarily close
to the contemporaneous lower bound. We denote such a quota as a “marginal search”.
In order to show that T = ∞ is not optimal, it is sufficient to show that the program

associated with T =∞ involves at least one action which is not optimal given the current state.
(The existence of such an action violates the Principle of Optimality and therefore cannot be
part of an optimal program.)
The current cost of a marginal search is no less than δ > 0. If the subjective distribution

does not have a mass point at θt the information provided by a marginal search is negligible. In
that case, the cost of the search must exceed the value of the information it provides, so such a
search cannot be optimal. Since (by assumption) there are a finite number of mass points of the
subjective distribution, the program with T = ∞ involves infinitely many marginal searches
where the cost is strictly positive and the benefit is negligible.

Proof. (Lemma 2) By Lemma 1 we need only consider finite values of T . The dynamic
programming equation when it is optimal to search one more time is:

J1(θ) = min
Q
[E1{L(Q, θ)}+K(Q)] (4)
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where K(Q) is the expected value of future loss given that the current quota equals Q. The
expected loss in every future period equals M(Q)P (Q, θ). This function is strictly positive if
Q < θ and it is equal to zero if Q ≥ θ. Therefore, in the absence of discounting, we have:

K(Q) =

∞ for Q < θ

0 for Q ≥ θ.
(5)

So in the final period, the optimal choice is to set Q1 = θ, and J1(θ) = E1[L(θ, θ)]. Stepping
back one period, the DPE when it is optimal to search two more times is:

J2(θ) = min
Q

£
E2{L(Q, θ)}+ P (Q, θ)J1(Q)

¤
(6)

= min
Q

£
E2{L(Q, θ)}+ P (Q, θ)E1[L(θ, θ)]

¤
(7)

which is minimized by Q = θ. This fact follows because the regulator has committed to
learning the true value of θ by the final period.
If, in the penultimate period, he chooses a value Q2 < θ, two things can happen. Either the

quota is slack, in which case his loss would have been identical had he chosen Q2 = θ, or the
quota is binding. If the quota is binding, he must then choose θ in the final period. But, given
that he will acquire the same information by searching either once (by setting Q2 = θ or twice
(by setting Q2 < θ and Q1 = θ), he can avoid the fixed cost of searching by searching only
once. We therefore have a stationary policy function: Q = θ is optimal in every period, and
therefore, Q = θ is optimal in the first period.

Proof. (Proposition 1) Lemma 2 establishes the result when β = 1, so we need only
consider the case where 0 ≤ β < 1. By Lemma 1 we need only consider finite values of T .
Suppose, contrary to the Proposition, that the optimal value is T ≥ 2. In this case, there exists
a value of θ at which it is optimal to search exactly two more times (conditional on not first
learning the true value of θ). Thus, it is sufficient to show that it cannot be optimal to search
two more times.
Suppose to the contrary that for some value of θ it is optimal to search 2more times. Using

previous notation, the dynamic programming equation for this problem is

J(θ) = J2(θ) = (8)

= min
Q

£
E2 {L(Q, θ)}+ β

©
P (Q, θ)J1(Q) + [1− P (Q, θ)] 0

ª¤
(9)

= E2 {L(Q2, θ)}+ β
©
P (Q2, θ)J

1(Q2)
ª
. (10)
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We use Ei, i = 1, 2, to denote the expectation over the unknown parameter θ, conditioned on
beliefs at the time when it is optimal to search (at most) i more times; Qi is the optimal quota
when there are (at most) i remaining searches.
If the quota is not binding (which occurs with probability 1−P (Q, θ)), the regulator learns

the true value of θ, and future losses are 0, by Assumption (3c). If the quota is binding, the
value of the state in the next period isQ. By the hypothesis that we seek to falsify, it is optimal
to search in the next period if the regulator has not learned in the true value of θ. J1(Q) is the
optimal value of the program when it is optimal to search one more time, and the current state
is Q.
At the time of the penultimate search, when the regulator uses Q2, he knows that θ is either

greater or less than Q2. Thus, we can write

E2 {L(Q2, θ)} = [Eθ≥Q2 {L(Q2, θ)}] {P (Q2, θ)}+ (11)

+ [Eθ≤θ<Q2 {L(Q2, θ)}] {1− P (Q2, θ)} .

The expectations on the right side of equation (11) are conditioned on all of the regulator’s
information at the time of the penultimate search, in addition to the information contained in
the inequalities in the subscript of E. Thus, for example, Eθ≥Q2 (·) is an abbreviation for
Eθ≥Q2 (E2 (·)).
Using equation (11) we can rewrite equation (10) as

J2(θ) =
£
Eθ≥Q2 {L(Q2, θ)}+ βJ1(Q2)

¤ {P (Q2, θ)}+ (12)

[Eθ≤θ<Q2 {L(Q2, θ)}] {1− P (Q2, θ)} .

The value function in the next period – the final searching period – (assuming that the
regulator has not learned the value of θ) is given by

J1(Q2) = min
Q

·
E1 {L(Q, θ)}+ β

1− β
M(Q)P (Q,Q2)

¸
(13)

= E1 {L(Q1, θ)}+ β

1− β
M(Q1)P (Q1, Q2) (14)

Note that the unknown parameter θ appears in only the first term on the right side of equation
(14).
Consider an alternative program that involves a single search using Q1 (rather than Q2) in

the “first period”, when the state is θ. Denote the expected value of this program as A(Q1, θ).
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We write this expected value by conditioning on the two events: θ ≥ Q2 and θ < Q2:

A(Q1, θ) = (15)

=

·
Eθ≥Q2 {L(Q1, θ)}+ β

1− β
M(Q1)P (Q1, Q2)

¸
P (Q2, θ) + (16)

[Eθ≤θ<Q2 {L(Q1, θ)}] {1− P (Q2, θ)}

Assumption (3b) implies

L(Q, θ) = L(Q0, θ), ∀ Q,Q0 ≥ θ

This equation states that if two quotas are slack, they lead to the same loss in current welfare.
The quota used in the last search, Q1, involves learning. Therefore Q1 > Q2. Consequently,
we have

Eθ≤θ<Q2 {L(Q2, θ)} = Eθ≤θ<Q2 {L(Q1, θ)} .
Note that the left and the right side of this equation are, respectively, equal to the last term
in square brackets in equation (12) and the last term in square brackets in equation (16). In
addition we see (using equation (14)) that the first term in square brackets in equation (16) is
equal to J1(Q2).
Thus, we can write A(Q1, θ) as

A(Q1, θ) = J1(Q2)P (Q2, θ) + [Eθ≤θ<Q2 {L(Q2, θ)}] {1− P (Q2, θ)} (17)

Using equations (12) and (17) we write the difference in payoffs as

J2 (θ)−A(Q1, θ) =
£
Eθ≥Q2 {L(Q2, θ)}+ (β − 1)J1(Q2)

¤ {P (Q2, θ)} . (18)

If P (Q2, θ) = 0 the regulator learns the true value of θ with probability 1 during the first
search. However, by assumption, the regulator intends to search a second time. Therefore
P (Q2, θ) > 0. Consequently, to obtain a contradiction we need to show that the term in square
brackets in equation (18) is positive. This positive value means that expected discounted
stream of costs are higher under the optimal two-search strategy than under an alternative. The
two-search strategy is therefore not optimal.
In other words, we must show

Eθ≥Q2 {L(Q2, θ)}
1− β

> J1(Q2). (19)
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Note that Eθ≥Q2 (·) = Eθ≥Q2 (E2 (·)) = E1 (·). The first equality is merely a restatement of an
earlier abbreviation, and the second equality states that the only additional information that the
regulator has at the time of the last search, that he did not have at the time of the penultimate
search, is that θ ≥ Q2. Therefore we can rewrite equation (19) as

E1 {L(Q2, θ)}
1− β

> J1(Q2) (20)

The left side of inequality (20) is the present discounted value of using, in perpetuity, the
previous quota (which the regulator knows will be binding). However, the costs of that policy
exceed the cost of the optimal policy, which requires searching one more time. Consequently
inequality (20) is satisfied, and we have a contradiction.

Proof. (Proposition 2) Lemma 2 guarantees that the aggressive quota is optimal if β = 1.
Therefore, we need only show that the aggressive quota is not optimal for 0 ≤ β < 1.
Define Ψ(Q) as the present value expected loss from setting a quota of Q in the current

period (the quantity the regulator wishes to minimize). We decompose Ψ(Q) into the expected
loss in the current period, denoted by Λ(Q), and the present value of expected future losses,
denoted byH(Q): Ψ(Q) ≡ Λ(Q) +H(Q). We prove Proposition 2 by showing that Ψ0(θ) = 0

and Ψ00(θ) < 0; consequently, θ does not minimize Ψ(Q).
Recall that L(Q, θ) is defined as the actual deadweight loss in the current period when the

regulator uses the quota Q and the true value of the firm’s unregulated level of emissions is
θ. This function is convex by Assumption 3a. We define c(Q, θ) as a differentiable function,
convex in Q, with domain [θ, θ + �] × £θ, θ̄¤, for � > 0. Using this function we write L(Q, θ)
as

L(Q, θ) ≡
c(Q, θ) for Q ≤ θ,

c(θ, θ) ≡ c(θ) for Q ≥ θ.

The deadweight loss when the quota is not binding is l (Q, θ), and the deadweight loss when
the quota is binding is c (θ).
Assumption 2 and the fact that the myopic quota is less than θ̄ implies that L(Q, θ) is

increasing in Q at Q = θ − � for small positive � and for θ sufficiently large. (That is, for
sufficiently large θ, the full-information optimal quota is binding.) This fact and the definition
of L(Q, θ) implies that lQ (θ, θ) > 0 for θ sufficiently large.
The function L (·) is continuous but it is not differentiable at Q = θ; l (Q, θ), in contrast, is

differentiable atQ = θ by construction. We defineL−Q (θ, θ) as the “left hand” partial derivative
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of L (·) :
L−Q (θ, θ) ≡ lim

�→0+
L(θ, θ)− L (θ − �, θ)

�
= lQ (θ, θ) .

The expected loss in the current period is:

Λ (Q) ≡ EθL(Q, θ) (21)

=

Z θ

θ

L(Q, θ)f(θ)dθ (22)

=

Z Q

θ

c(θ)f(θ)dθ +

Z θ

Q

c(Q, θ)f(θ)dθ (23)

Thus

Λ0(Q) = c(Q)f(Q)− c(Q,Q)f(Q) +

Z θ

Q

cQ(Q, θ)f(θ)dθ

=

Z θ

Q

cQ(Q, θ)f(θ)dθ

Λ00 (Q) = −cQ(Q,Q)f(Q) +
Z θ

Q

cQQ(Q, θ)f(θ)dθ

Evaluating these derivatives at Q = θ:

Λ0
¡
θ
¢
= 0

Λ00
¡
θ
¢
= −cQ(θ, θ)f(θ) < 0.

The last inequality uses Assumption 4b, which implies that f(θ) > 0. Now we consider
the expected future costs of reducing the current quota below θ. We defineH(Q) as the present
value of expected future costs given a quota Q in this period:

H(Q) ≡ β

1− β
P (Q, θt)M(Q)

This expression equals the probability that the current quota is binding times the discounted
stream of payoff in the future (where the lower bound will be θt+1 = Q), given that it is optimal
to use a myopic quota in the next period (by Proposition 1).
The argument Q in M(Q) determines the amount of uncertainty in the next period, given

that the Q was binding. The support of the random variable in the next period is
£
Q, θ̄

¤
so as

Q→ θ̄ from below, the amount of uncertainty in the next period vanishes. Consequently,

M(θ) = 0 and
∂M

¡
θ
¢

∂Q
= 0. (24)

21



The first equality in (24) states that the deadweight loss of using the myopic quota is 0 if there
is no uncertainty, i.e. if the myopic and the full information quota are identical. The second
equality is implied by the fact that the deadweight loss of using the myopic quota is strictly
positive if there is any uncertainty, and it is 0 if there is no uncertainty; thus the deadweight loss
is minimized as uncertainty vanishes.
Assumption 4c implies that P (θ, ·) = 0 and that PQ

¡
θ̄, θ̄
¢
and PQQ

¡
θ̄, θ̄
¢
are finite Using

these facts and equation (24) we have the following derivatives ofH:

H 0 =
β

1− β
(PQM + PM 0)

H 0(θ) = 0

H 00 =
β

1− β
(PQQM + PQM

0 + PQM
0 + PM 00)

H 00(θ) = 0

Finally, we have:

Ψ(Q) ≡ Λ(Q) +H(Q)

Ψ0(θ) = Λ0(θ) +H 0(θ) = 0

Ψ00(θ) = Λ00(θ) +H 00(θ) = −cq(θ, θ)f(θ) < 0

so θ cannot minimize Ψ(Q), and we have our result.
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