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1 Introduction

Recent work has documented the increasing complexity of production chains, with the exam-

ples of iPods, airplanes or cars. In particular, production has become more fragmented across

countries (Hummels, Ishii and Yi, 2001, Johnson and Noguera, 2012), associated with a large

growth in intermediate goods trade. Yet, little is known about the fragmentation of production

across plants within countries. How long are production chains on average? Is production more

fragmented now than it was decades ago? Production staging and the number of plants sequen-

tially involved in production chains (henceforth referred to as vertical fragmentation) matter for

several key issues in trade and other economic phenomena. As trade costs decline, gains from

trade are magnified when production is, or can be, fragmented: not only can consumers import

goods at a lower price, but producers can reduce costs by importing inputs at lower prices as

well. Similarly, vertical linkages and the possibility of fragmented production constitute one of

the main sources of gains from agglomeration according to Marshall.1 Economic development

has also put a traditional emphasis on the role of vertical linkages (Hirshman, 1955), formalized

more recently with the “O-ring” theory (Kremer 1993, Jones 2010).

In this paper, I provide new quantitative analyses of the length of production chains, the

evolution of production staging over time, and its determinants. I develop two simple measures

to reflect: i) the number of production stages embodied in each product;2 ii) the average

number of stages between production and final consumption. These two different indexes

provide complementary information on the position of each product along value chains. In

particular, the first index corresponds to a weighted average of the number of plants sequentially

involved in the production of a certain good, where the weight is the value that has been added

at each stage. I show that these indexes have simple structural interpretations and are closely

linked to traditional concepts of backward and forward linkages. I also examine aggregation

properties of these two indexes and to what extent industry-level data can provide information

on fragmentation across plants within and between industries. Moreover, in a closed economy,

I find that a weighted average of each of these two indexes across all sectors equals the ratio of

total gross output to value added, thereby offering a novel interpretation of this ratio.

I calculate these measures of vertical fragmentation for the US using benchmark input-

output tables from the Bureau of Economic Analysis for periods covering 1947 to 2002 (aggre-

gate sectors) and 1967 to 1992 (6-digit product level). I find that production chains are short

on average and that most of the value added comes from later stages: the weighted average of

1Recently confirmed by Ellison et al., forthcoming.
2Here, stages correspond to plants. This definition may differ from a task-level approach where each stage

could be associated with one task. It may also differ from a purely international perspective where “fragmen-
tation” may refer to the fragmentation of production across countries (as in Johnson and Noguera, 2012).
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Figure 1: Aggregate measure of vertical fragmentation (tradable goods excluding petroleum)

1.
6

1.
7

1.
8

1.
9

2
W

ei
gh

te
d 

av
er

ag
e 

nb
. o

f s
ta

ge
s

1950 1960 1970 1980 1990 2000
Year

the number of production stages is smaller than 2 for the aggregate economy. Both indexes of

fragmentation exhibit large variations across industries. In particular, I find that the number of

embodied stages is negatively correlated with product specificity, R&D intensity, skill intensity

and dependence on external finance, but does not seem to depend significantly on industry

concentration (either proxied by the share of the largest firms in industry production or the

Herfindahl Index).

The main and most surprising finding of the paper is that the weighted-average number

of production stages has been decreasing by more than 10% over the past 50 years. While

this decrease can be partly explained by the increasing share of services in total production, I

find that the weighted-average number of production stages has also decreased for primary and

manufacturing industries (“tradable” goods). Figure 1 plots this evolution, aggregating over

all tradable goods excluding petroleum.

Since the main measure of fragmentation captures an average weighted by value added,

changes in relative price of intermediate goods versus final goods may potentially explain

changes in this measure (holding quantities fixed). Indeed, swings in oil prices may explain

short-term changes in observed fragmentation by magnifying the weight put on early stages.

Over the long term, however, I show that changes in relative prices of commodities and inter-

mediate goods do not explain the overall observed decline.

I also specifically investigate the role of trade. The decrease in the overall fragmentation of

production remains puzzling since it coincides with the reorganization of supply chains across

borders.3 We can expect that the large decline in transport costs over the past decades has

3Note that the production staging index developed here accounts for both foreign and domestic sourcing. A
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provided new opportunities. I find indeed that increased import penetration induced an increase

in vertical fragmentation, suggesting that foreign outsourcing might not just be a substitute

to domestic outsourcing. This effect is small however, and not robust to instrumenting by

transportation costs or tariff declines.

Perhaps the most intuitive way to understand the main finding of the paper is to look at

the reallocation of value-added along production chains. I provide evidence of a large and

significant shift over time of value-added towards industries that are closer to final demand

(i.e. more downstream). In other words, early stages now contribute less to the final value of

production, whereas more value is added at later stages. Industry characteristics can shed light

on this shift of value-added. In particular, industries that are more intensive in advertising, in

skilled labor and less intensive in capital have experienced a larger growth rate and are also

relatively more downstream. Overall, such industry characteristics can explain about half of

the shift of value-added towards downstream industries.

Furthermore, trade data suggest that this trend is global. I find evidence that the value

of multi-lateral trade flows has grown faster in downstream industries relative to upstream

industries (even if we omit trade to and from the US). This finding is similar to the shift of US

value-added towards final stages and shows that this trend seems common to other countries.

This paper belongs both to the trade and industrial organization literatures. Since the pos-

sibility to fragment production affects trade patterns and the gains from trade (Grossman and

Rossi-Hansberg, 2008), it is important to measure the extent of the fragmentation of production.

Empirical evidence provides various examples of global supply chains (e.g. Feenstra, 1998) and

document large trade flows in intermediate goods (Yeats, 2001, Campa and Goldberg, 1997).

In comparison, my paper aims at capturing the fragmentation of production across plants in-

stead of fragmentation across borders. There is of course a strong connection: when production

can be fragmented within borders it is also more likely to be fragmented across borders. The

decision to fragment production within borders remains however largely underexplored.4

In this paper, I also discuss and provide alternative uses of the two measures of fragmentation

to examine trade patterns. I show that developed and developing countries tend to specialize

at different stages along the value chain. In particular, my results suggest that richer countries

such as the US have a comparative advantage: i) in goods that involve fewer production stages

and ii) in goods that are closer to final demand. Previous indexes on vertical specialization

describe the use of imported inputs in exported goods or the value-added content in trade (e.g.

pure substitution between foreign and domestic sources would not affect the index.
4A notable exception is Fort (2011) who examines the decision to fragment production (domestically and

internationally) in a cross section of US plants in 2007. In all industries, she finds that most firms do not
fragment their production, even domestically. This supports my results that production is not highly fragmented
vertically. The data however do not allow her to examine the evolution of fragmentation over time.
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Hummels, Ishii and Yi, 2001, Johnson and Noguera, 2010), but are not informative about the

position of traded goods along the value chain and their sorting across countries.5

This paper also relates to several trends within the industrial organization literature. Firstly,

it contributes to analyses of input-output tables pioneered by Leontief (1941). This literature

has traditionally examined inter-industry “linkages” and the propagation of shocks across in-

dustries and regions. Instead, I show how input-output matrices can provide very interesting

information on the number of plants involved sequentially in production chains and quantify

the relative position industries along production chains.6 To my knowledge, this is the first

paper to document a decrease in a weighted-average number of production stages and a shift

of value added towards downstream stages.

Secondly, it relates to an extensive amount of work in industrial organization on the make-

or-buy decision and the determinants of vertical integration (see Lafontaine and Slade, 2007,

for a survey of previous empirical works). Within this literature, many studies take as given the

decision to source from a supplier, and focus on the ownership structure, i.e. on the decision

to integrate this supplier or not. However, as documented by Hortacsu and Syverson (2011),

most domestic shipments occur between two independent firms while plants within the same

firm do not trade much among themselves. Hence it may be just as important to examine the

decision to source inputs from within the same plant vs. from another plant, as reflected by

the index developed here.7

The remainder of the paper contains four sections. Section 2 defines the key indexes and

describes their properties. Section 3 describes the data. Section 4 presents descriptive statistics

and the main empirical results. Section 5 presents another application and Section 6 concludes.

5Additional findings on the role of institutions and focusing on the second index (distance to final demand,
also refered to as “upstreamness”) are further described in Antràs, Chor, Fally and Hillberry (2012). Note that
Fally (2012) preceeds Antràs, Chor, Fally and Hillberry (2012) as well as Antràs and Chor (2012).

6The work on “average propagation length” (Dietzenbacher and Romero 2007, Bosma, Dietzenbacher and
Romero 2005) also provides a step in this direction. See also Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi
(2011), who examine the network structure of intersectoral linkages and its role in the propagation of shocks.

7Various indexes have been used to measure the extent of vertical integration such as firm size (e.g. Brynjolf-
sson, Malone, Gurbaxani and Kambil, 1994) or the ratio of value added to gross output (Adelman, 1955). The
closest index related to this paper is the “Vertical Industry Connection Index” and similar indexes of vertical
integration that take higher values when a firm owns a plant producing goods in an industry having strong
make-buy relationship according to the input-output table (e.g., automobile manufacturing and steel) as in
Maddigan (1981), Hitt (1999), Fang and Lan (2000), Acemoglu, Johson and Mitton (2007), Acemoglu, Aghion,
Griffith and Zilibotti (forthcoming) among others. The later approach has several caveats however. The first is
that it requires detailed plant-level data with sufficient information on the range of products that are produced.
This makes it difficult to study the evolution of an entire economy over an extended period of time. A second
caveat is that it is sensitive to the product classification, especially if inputs and outputs are classified in the
same category making it impossible to distinguish integrated from disintegrated processes. Another caveat is
that this index is based on ownership structure rather than actual shipments of intermediate goods (this index
can take a high value even if these plants to not actually trade).
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2 Definitions and properties

2.1 Embodied production stages: index N

In this section, I define two measures Ni and Di defined by industry or product8 to characterize

the position along production chains. For each product i, I define:

i) Ni to reflect how many stages on average enter the production of i (average number of

stages embodied in good i). This corresponds to a weighted-average number of plants

involved sequentially in the production of i.

ii) Di to measure how many plants on average this product will go through (e.g. by being

assembled with other products) before reaching final demand. In other words, it captures

the distance to final demand in terms of production stages.9

To construct Ni, I rely on information provided by input-output tables. In particular, we

need data on the value of inputs from industry j used to produce one dollar of goods in industry i,

which I denote by µij. I define this index recursively: the average number of production stages

embodied in a good depends on how many stages are embodied in each intermediate good.

Using these µ’s, I implicitly define Ni for each industry i by:

Ni = 1 +
∑
j

µijNj (1)

This provides one equation for each industry. This system of linear equations generally has a

unique solution that characterizes Ni.
10

If production does not require any intermediate goods, the measure of fragmentation N

equals one. If production relies on a particular intermediate good, the measure of production

stages N depends on how important intermediate goods are in the production process and on

how many production stages are needed to produce these intermediate goods.

Note that, in a special case where Nj = Ni for all inputs j entering the production of good

i, the index Ni would be equal to the gross-output-to-value-added ratio. This GO-VA ratio

has previously been used as a measure of vertical fragmentation at the industry level.11 In

8While the US input-output classification after 1967 is precise enough to name each category as a “product”,
I will henceforth refer to i indifferently as an industry or as a product. For convenience, time subscripts are
dropped in this section and will be added in the empirical section.

9In Antras et al. (2012) we refer to this index as a measure of “upstreamness”.
10This measure of production stages corresponds to the sum of “total requirement” coefficients for a given

industry. As a corollary of the Perron-Frobenius theorems for non-negative matrices, this system has a unique
solution if

∑
j µij < 1 for all i (this condition is always satisfied in practice). By inverting this system of

equations, we obtain the (transposed) matrix of total requirements.
11See for instance Adelman (1995), Woodrow (1979), Macchiavello (2009).
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general, though, Ni differs from the gross-output-to-value-added ratio and better accounts for

inter-industry linkages when Nj 6= Ni for a significant fraction of intermediate goods j.

Another way to understand the intuition behind this index is to decompose output into slices

of value-added. Let us denote by Vi the total value-added of industry i (gross output minus

intermediate goods purchase). By construction, we have the following accounting equality:
Vi
Yi

+
∑
j µij = 1. We can then see that a fraction v

(1)
i = Vi

Yi
of the value of output has “gone

through” only one stage since it has been added within the plant.

Then, looking more closely at intermediate goods, a fraction v
(2)
i =

∑
j µij

Vj
Yj

of output value

comes from first-tier suppliers and has gone through 2 stages (including the value added by

first-tier suppliers within the same industry i). Similarly, a fraction v
(3)
i =

∑
j,k µijµjk

Vk
Yk

of the

value has gone through 3 stages (i.e. that comes from suppliers of first-tier suppliers), and

so forth. We can thus decompose each dollar of output i into different slices of value-added

corresponding to different stages along the production chain:

1 =
Vi
Yi

+
∑
j

µij
Vj
Yj

+
∑
j,k

µijµjk
Vk
Yk

+ ... =
∞∑
n=1

v
(n)
i

where v
(n)
i denotes the fraction of output value going through n stages. This fraction v

(n)
i can

be defined recursively by v
(n+1)
i =

∑
j µijv

(n)
j , with v

(1)
i = Vi

Yi
. Based on this decomposition, we

obtain the following result:

Proposition 1 If Ni is defined recursively as in equation (1) and v
(n)
i is defined as above, then:

Ni =
∞∑
n=1

n v
(n)
i

In other words, Ni is the average number of stages to produce good i weighted by the share v
(n)
i

of value added at each stage n (n = 1 being most downstream).

The proof is provided in the appendix section. Hence the index Ni can be reinterpreted as

the average number of stages involved in the production chain, weighted by the value added at

each stage.12 Note that an input coming from a different plant (a supplier) counts as a different

stage even if this input is classified in the same industry as the output.

To better grasp what Ni is measuring with respect to trade, firm ownership and the type

of integration, several comments are in order:

12In Section 5.3, I examine an alternative index based on v
(n)
i for each good i, inspired from the Herfindahl-

Hirschman Index, to measure the dispersion of value added along the chain.
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Snakes or spilders?13 While this measure aims at capturing the sequential nature of production,

it obviously does not reflect all dimensions of complexity of production chains. In particular,

N and D depend on the number of plants involved sequentially (production stages) but do not

depend on the number of plants involved in parallel. Suppose that, among other intermediate

goods, the production of good i relies on inputs j and j′ with Nj = Nj′ . Index Ni for good i

would depend on the sum µijNj + µij′Nj′ = (µij + µij′)Nj and would not depend on whether

inputs j and j′ are sourced from two different plants or from the same plant as long as the total

use (µij +µij′) remains the same. This point is further detailed and illustrated in the appendix.

Plants or firms? When the input-output table is constructed at the plant level (as is the BEA

input-output matrix for the US), this index reflects the fragmentation of production across

plants independently from the ownership structure (i.e. does not depend on whether suppliers

are affiliated or not).14 Note that, according to Hortacsu and Syverson (2011), shipments across

plants belonging to the same firm account for only a very small fraction of total shipments. It

suggests that similar results would be obtained if within-firm transactions were excluded.

Foreign or domestic sourcing? Index Ni does not depend on the share of imported inputs in

intermediate goods purchases as long as products of the same classification requires the same

number of production stages abroad as domestically.15 Here I implicitly assume that produc-

tion of input j is associated with the same measure Nj whether it is imported or produced

domestically, taking the US as the benchmark.Formally, if we differentiate input usage into

domestic µDij vs. foreign purchases µFij, the sum of these two coefficients correspond to the

observed input-output coefficient µij = µDij + µFij. Ideally, if we denote by ND
i and NF

i the

weighted average number of production stages required to produce goods i from domestic and

foreign sources respectively, we would like to define ND
i by the following recursive equation:

ND
i = 1 +

∑
j

µDijN
D
j +

∑
j

µFijN
F
j

Assuming that NF
j = ND

j = Nj, we obtain the same equality as in equation (1):

Ni = 1 +
∑
j

(µDij + µFij)Nj = 1 +
∑
j

µijNj

13Baldwin and Venables (2010) classify production chains into “snakes” and “spiders”; my index captures the
length of snakes and is indifferent to the number of a spider’s legs.

14A similar point has been made by Woodrow (1979) about the value-added-to-gross-output ratio: transac-
tions are recorded in the input-output table even if it involves two plants owned by the same firm. It is however
difficult to track intra-firm transactions between plants.

15Input-output tables generally account for both imported and domestically produced inputs. The BEA
tables incorporate the use of imports. However, they do not provide information on the share of imports.
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This also means that this index does not differentiate between foreign sourcing (offshoring) and

domestic sourcing, as long as both types of transactions occur across plants. If there is only

a substitution between domestic and foreign sourcing, there is no effect of trade on index Ni.

There is an effect only if foreign sourcing is a substitute to in-house (within-plant) production.

2.2 Distance to final demand: Index D

Whereas Ni reflects the number of stages before obtaining good i, an alternative measure Di

can be constructed to reflect the number of production stages between production of good i

and final demand. For each product i, now we need to know the share of its production that

is used as intermediate goods in industry j. We denote this coefficient by ϕij. In a closed

economy, this coefficient ϕ satisfies:

ϕij =
Yjµji
Yi

where Yi stands for both the demand for good i and the supply of good i. In an open economy,

part of the local demand is met by imports while a fraction of the local production is exported.

Assuming that the share of production that is purchased by industry j is the same whether the

good is internationally traded or not, then ϕij should satisfy:

ϕij =
Yjµji

Yi +Mi −Xi

where Yi stands for the value of production of good i, Mi for imports and Xi for exports. The

denominator Yi+Mi−Xi is total demand (absorption) of good i in the country, and thus ϕij is

the fraction of this demand that corresponds to intermediate input demand from industry j.16

We can now use these coefficient ϕij in the same way as for input-output coefficients µij.

For each product i, we define the “distance to final demand” Di by:

Di = 1 +
∑
j

ϕijDj (2)

Again, it defines one equation for each industry. This system of linear equations generally has

a unique solution.

The intuition behind this index D mirrors the intuition for N . While N reflects the number

of production stages embodied in production, D reflects the number of stages that have yet to

be achieved before reaching final demand. In the extreme case where the entire production of

this good is used as final consumption, this measure of distance to final demand is one. If part

16Note that this open-economy adjustment is consistent with situations where countries specialize at different
stages of production. More details on open-economy adjustments are provided in Antràs, Chor, Fally and
Hillberry (2012) where we further examine specialization patterns across a broad range of countries.
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of the production is used as an intermediate good, this index is greater than 1 and depends

on the share of production used as intermediate good and as well as the number of stages

separating the corresponding downstream industry from final demand.

We should also note that it improves on a simple classification of parts versus final goods.

As noted by Hummels et al. (2001), goods such as tires can be used as both intermediate goods

and final goods. Index Di does not suffer from this drawback since it more precisely account

for the share of output being purchased by final consumers and producers.

A simple example to grasp the intuition behind index D is the one of a purely sequential

production chain (“snake”). Suppose that a number S of plants produce sequentially, where

each plant is indexed by n = 1, ..., S from the most downstream plant (n = 1) to the most

upstream plant (n = S). In this example, plant n only sells to plant n− 1. Simple calculations

show that index D corresponds to the position of plant n on the chain: Dn = n.

As we show in Antràs, Chor, Fally and Hillberry (2012), this intuition can be generalized to

more complicated cases where the whole production in a particular stage is not necessarily sold

to a unique plant. In particular, we can decompose output in a similar way as for Proposition

1 above. The above definition of Di is equivalent to constructing a weighted average of the

number of stages between an industry’s output and final demand:

Di =
∞∑
n=1

n s
(n)
i

weighted by the share of output s
(n)
i of industry i that goes through n stages before reaching

final demand. In particular, s
(1)
i corresponds to 1 −∑j ϕij, the fraction of output of industry

i that goes to final demand. s
(2)
i corresponds to the

∑
j ϕij(1 −

∑
k ϕjk), i.e. the fraction of

output of industry i that is purchased as inputs for the production of goods that are then sold

to final consumers, etc. The fraction s
(n)
i can be formally defined by s

(n+1)
i =

∑
j ϕijs

(n)
j , with

s
(1)
i = 1−∑j ϕij.

2.3 Structural interpretations

While the index Ni has an intuitive interpretation, the link with previous models and more

structural interpretations is not straightforward and depends on the structure of production.

This section motivates this index from a more structural standpoint, linking Ni to: i) cumulative

trade costs along production chains; ii) the elasticity of prices to productivity; iii) the elasticity

of output to productivity; iv) the gains from trade in a Ricardian framework.

i) Cumulative transport costs: As shown by Yi (2010), vertical specialization and multiple

border crossings along production chains magnifies the effect of transport costs on trade. A
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similar effect can apply to domestic trade between plants.

To illustrate the relevance of index Ni, let us examine cumulative trade costs Ti that are

being paid for the production of good i, assuming that there is a transport cost τ to ship one

dollar of production between any two plants. While τ is paid for transporting product i, a

transport cost µijτ has been incurred for intermediate goods j to produce of one dollar of good

i. If we also account for transport costs in more upstream industries, we find:

Ti = τ +
∑
j

µij Tj

Tj
τ

satisfies the same recursive definition as Ni (equation 1) and thus Ti = τ Ni. This implies,

for instance, that an increase in transport costs τ has a larger effect on high-N industries.

ii) Price multiplier: Now, let us consider an economy with J goods, characterized by the

following production functions:

Qi = ZFi(Qi1, Qi2, ..., QiJ , Li)

where Z is a economy-wide productivity term, and Fi is a good-specific production function

with constant returns to scale, Qij the quantity of good j used in the production of good i,

and Li the amount of labor used for i. In this general setting, after normalizing wages to unity,

we obtain that the elasticity of prices to economy-wide productivity shocks corresponds to the

fragmentation index Ni (see proof in appendix):

∂ logPi
∂ logZ

= −Ni

In the spirit of the O-ring theory (Kremer, 1993) and a more recent model of Costinot, Vogel

and Wang (2012), we could further assume that mistakes are made at each stage of production

and that mistakes destroy both production and inputs used in production, so that productivity

is determined as Z = e−λ where λ is the Poisson rate of arrival of mistakes. In this setting, the

semi-elasticity of prices to the rate of mistakes λ equals −Ni.

We can further examine how a change in productivity affects welfare. In this general frame-

work, we obtain that the effect of productivity on welfare depends on the average of index Ni

weighted by the share of each good in final consumption:

∂ log e

∂ logZ
= −

∑
iCiNi∑
iCi

(3)
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where e denotes the expenditure function for a given level of utility.17

iii) Output multiplier: While the role of index N as a multiplier for prices holds in a general

framework, the link between productivity and output depends on the structure of the economy

and the shape of production functions. In the appendix, I illustrate the role of Ni and Di in

two cases: with Cobb-Douglas and with Leontief production functions.

In a first simple case where production functions and preferences are Cobb-Douglas func-

tions of goods i, the elasticity of output in industry i to economy-wide productivity shocks Z

correspond to the index Ni:
∂ logQi

∂ logZ
= Ni

This simple case formalizes the link with “total output multipliers” that are well-known in the

input-output literature (Chenery and Watanabe 1958, Rasmusen 1956).

In a second case where production functions and preferences are Leontief, the elasticity of

output in industry i to economy-wide productivity shocks Z now depends on the index Di:

∂ logQi

∂ logZ
− ∂ logQj

∂ logZ
= Di −Dj

In other words, a change in productivity (or in the rate of mistakes as in Costinot et al 2012), the

effect on output is the largest for the more upstream goods, i.e. goods that are the “furthest”

from final demand. In both cases, we can see that the position of an industry on the production

chain determines the sensitivity of output to productivity shocks.

iv) Welfare gains multiplier: As motivated in the introduction, the fragmentation of produc-

tion magnifies the gains from trade and economic integration. This intuition can be formalized

by taking the same approach as in Arkolakis, Costinot and Rodriguez-Clare (2012).

For simplicity, let us assume that we have several industries i and that production in each

industry is as in Eaton and Kortum (2002): markets are perfectly competitive, productivity

draws for each variety follow a Frechet distribution, labor is the only factor of production, trade

flows satisfy a gravity equation, and demand is CES (see Arkolakis et al 2012, for more details

on the underlying assumptions of the competitive case). If there is only one production stage,

and if the wage at home is normalized to unity, Arkolakis et al (2012) show that the change in

the price index is given by:

P̂i =
λ̂domi

θi

where λdomi refers to the fraction of goods that are not imported (in the consumption of goods

17Since wages are normalized to unity, a decrease in e reflects a increase in welfare.
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in industry i) and where θi is both the coefficient of dispersion of the Frechet distribution of

production in industry i and the elasticity of trade to trade costs in this industry.

If we extend their model by allowing for inter-industry linkages, assuming Cobb-Douglas

production functions with coefficients µij for the share of input j in the production of good i,

the expression above becomes:

P̂i =
λ̂domi

θi
+
∑
j

µijP̂j

If we further assume that the change in import penetration is the same in all industries (λ̂domi =

λ̂dom) and that θi = θ is also constant across industries, then we obtain that the change in the

price index Pi is proportional to the average number of production stages as measured by Ni:

P̂i =
λ̂dom

θ
.Ni

The intuition is simple. When a country opens to trade, not only consumers can have access to

cheaper foreign goods but domestic producers can also reduce their costs by importing cheaper

inputs. This magnifies the gains from trade in industries with multiple production stages.

2.4 Index for the aggregate economy

Before turning to the data and computing these indexes, I show that these two indexes satisfy

interesting and useful aggregation properties.

While both measures Ni and Di are defined for each product, we need to characterize the

aggregate economy. For aggregation purposes, the key is to consider the appropriate weights

to compute averages. With these two indexes at hand, we can compute:

i) The number of production stages embodied in final goods (using index Ni), averaged

across all goods purchased by final consumers. For this purpose, a natural weight is the

total value of good i used for final consumption. As shown in equation (3), this would be

also a natural weight to examine welfare implications.

ii) The average number of stages between production and final consumption (distance to

final demand), making use of index Di. For this purpose, a natural weight is the value

added by industry i.

I denote by Ci the value of final consumption of good i. It satisfies: Ci = Yi−
∑
j µjiYj+Mi−Xi.

It corresponds to total production minus the amount used as intermediate goods by domestic

plants, plus net imports. Similarly, I denote by Vi the value added by industry i, which equals

production of good i minus intermediate goods use: Vi = (1−∑j µij)Yi.
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Closed economy. In a closed economy, net imports equal zero and Ci = Yi−
∑
j µjiYj. Using

accounting equalities and the definition of the index (see proof in the appendix), it turns out

that the weighted average of both measures of fragmentation equal the ratio of gross output to

value added:

Proposition 2 For a closed economy, the average of the number of production stages Ni across

all industries weighted by their contribution to final demand Ci equals the average distance to

final demand Di weighted by value added Vi, and both equal the ratio of total gross output over

GDP: ∑
iCiNi∑
iCi

=

∑
i ViDi∑
i Vi

=

∑
i Yi∑
i Vi

This result provides an interesting interpretation of the gross-output-to-value-added ratio in

an economy: it equals the average number of production stages and reflects the fragmentation

of production in the economy (note that this is not the case at the industry level).

Open economy. In an open economy, there is no longer equality between supply and demand

for intermediate goods by domestic industries (net imports Mi −Xi no longer equal zero). In

this case, the weighted average of the number of production stages is no longer equal to the ratio

of gross output to GDP, and no longer equal to the average distance to final demand weighted

by value added. Interestingly, the differences between each index and the GO/VA ratio can be

expressed as a correlation term between net imports and each index across products:

Proposition 3 For the aggregate economy, the average of the number of production stages Ni

across all products i weighted by final consumption Ci and the average number of stages between

production and final demand Di weighted by value added Vi satisfy:

∑
iCiNi∑
iCi

= N̄ +

∑
i(Mi −Xi)(Ni − N̄)∑

iCi
(4)∑

i ViDi∑
i Vi

= N̄ −
∑
i(Mi −Xi)(Di − 1)∑

i Vi
(5)

where N̄ denotes the gross-output-to-value-added ratio.

When net trade (Mi − Xi) is not correlated with either fragmentation index Ni or Di,

then the equality to the gross-output-to-value-added ratio continues to hold even in an open

economy. When net imports are positively correlated to the number of production stages Ni, the

gross-output-to-value-added ratio underestimates the weighted average number of production
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stages as it does not account for the larger number of production stages embodied in imports.

Conversely, the gross-output-to-value-added ratio underestimates the average number of stages

to final demand when a country tends to export goods that are relatively further from final

demand.

2.5 Additional results on aggregation

From varieties to industries

For the calculation of Ni and Di, the unit of observation would be ideally the plant or the

product variety. Unfortunately, calculating these indexes at the plant or variety level would

require plant-level input-output matrices (with data on transactions matched between buyers

and suppliers) that are not available. In appendix section A., I derive conditions under which

each index measured at the industry level (taking i as an industry in equations 1 and 2) equals a

weighted average of ideal indexes N(ω) and D(ω) at the plant/variety level.18 Under reasonable

assumptions, index Ni derived at the industry level is equal to the average of N(ω) across

varieties ω classified in industry i, weighted by final consumption for each variety. Similarly,

index Di derived at the industry level equals the average of D(ω) across varieties classified in

industry i, weighted by the value added by the plant producing variety ω.

I also provide an empirical validation of these aggregation properties. In appendix section C,

I show that aggregation yields very little bias when I use an artificially aggregated input-output

matrix (aggregating the US input-output matrix at the 2-digit instead of 6-digit level). Index

Ni constructed with the aggregated matrix is very close to the weighted average of indexes Nm,i

constructed with the disaggregated matrix for each sub-product m in industry i (with < 1%

error on average). This suggests that the measure of the number of production stages using

equation (1) is robust to the use of aggregated data.

Cross-border production sharing and the VAX ratio

In this analysis, the measure of fragmentation captures the number of plants (or stage) involved

sequentially in production whether these stages occur within the same country or not. Johnson

and Noguera (2012) instead define fragmentation as cross-border production sharing. Their

main measure of fragmentation for the world economy is based on the ratio of total value-

added content of exports to the total gross value of exports (“VAX world”).

18Here varieties do not just refer to final goods but also to specific varieties of intermediate goods for each
plant (and for each production stage). Final consumption of a variety can be zero if it is purely an intermediate
good.
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As one could expect, there is a close link between these two measures of fragmentation, the

VAX ratio and the gross-output-to-value-added ratio. To see the correspondence, one could

consider each country as one plant. In line with this interpretation, the equivalent measure of

gross output would be total exports for the world in Johnson and Noguera’s case (within-country

transactions are not counted in the measure of total exports, such as within-plant transactions

in the measure of gross output) and the equivalent measure of value added would be total

value-added content of trade in Johnson and Noguera’s case.19 Using Propositions 1 and 2, we

can conclude that the inverse of the VAX ratio corresponds to the number of embedded border

crossings in each dollar of imported final good, weighted by the contribution of each country

to total value-added content of trade (a formal proof is provided in the appendix).

3 Data

The main data sources are the US input-output matrices developed by the Bureau of Economic

Analysis (see Horowitz and Planting, 2009, for a description of the methodology). The US

input-output matrices are unique among all countries: they cover the longest time span (since

1947) and are available at a very detailed level (6-digit classification since 1967). Input-output

tables for other countries are generally not available at such disaggregated level or only for a

much shorter time span.20

I use the BEA input-output tables for benchmark years, which are available online.21 Un-

fortunately, industry classifications are not always homogenous across periods. The 1997 and

2002 IO tables follow the NAICS classification (430 product categories); the 1967, 72, 77, 82, 87

and 92 IO tables are based on the SIC classification (6-digit level, up to 540 product categories);

the 1963 table also follows the SIC classification but is defined at the 4-digit level; previous

tables (1947 and 1958) are aggregated to 85 industries.

When I construct the vertical fragmentation index for the aggregate economy I can thus

cover 55 years. When more disaggregated data are required for cross-industry comparisons,

I rather focus on the period 1967 to 1992 which provides a panel of 377 harmonized product

categories.22 No very precise concordance table is available for NAICS to SIC and so I do not

19The part of value-added that corresponds to final consumption within the same country is not counted in
the total value-added content of trade.

20This is particularly the case for input-output tables that have been homogenized across several countries,
e.g. OECD IO Tables (constructed for 40 industries since 1992), IDE-JETRO IO Tables and GTAP IO Tables
(about 80 industries). Among specific countries, Denmark probably has the best coverage (about 200 industries
since 1966), which still does not compare to the coverage provided by US IO tables.

21http://www.bea.gov/industry/io benchmark.htm
22Some sectors are more disaggregated for certain years but I consolidate these industry classifications to

obtain a homogenous classification across all years (the final one is close to 1987 SIC). The consolidated classi-
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consider the 1997 and 2002 IO tables in my regressions by industry.23

Note that the industry classification is more precise for manufacturing goods and commodi-

ties, with 330 disaggregated categories in these industries. Some services sectors (such as retail

and wholesale trade) are not described at a detailed level. Also, I complete these data with a

set of various covariates that are used throughout Section 4. The source and construction of

these variables are described in the appendix section B. Given the greater availability of data

for manufacturing industries, regressions performed at the industry level mostly focus on the

manufacturing sector. The manufacturing sector is composed of 305 consolidated input-output

industries, 266 of which having information on all variables.

Several remarks are in order about the construction of these data. First, the US input-

output matrices are based on data on establishments, or plants. As defined by the Census

Bureau, an establishment is “a business or industrial unit at a single physical location that

produces or distributes goods or that performs services.” (Horowitz and Planting, 2009, p39).

Hence, each input-output matrix should reflect transactions between plants even if these plants

are classified in the same industry. In the construction of indexes Ni and Di, these within-

industry transactions do matter in order to measure the degree of vertical linkages not just

across industries but also across plants within industries. Specifically, these within-industry

transactions are reflected in the diagonal terms µii in the IO matrix. Finally, we should note

that, given the level of disaggregation of the US tables, these diagonal terms are not large: only

10% of intermediate goods purchases are recorded from within the same industry (between

9.8% and 10.9% each year). This fraction is typically much larger in other input-output tables

where product classifications are much more aggregated.

4 Empirical Findings

4.1 Descriptive statistics

Evolution of production staging, 1947-2002

The first striking fact is that the weighted-average number of production stages for the US is

below 2 except for 1947 and 1958. This is shown in Figure 2 with the average index of production

staging proxied by the gross-output-to-value-added ratio for all products. Production is not as

disintegrated as we could expect. In other words, value added embodied in production goes

through less than two plants (two stages) on average before reaching final demand.

fication is made available on the following webpage: http://spot.colorado.edu/˜fally/data.html
23See Pierce and Schott (2009) for a discussion. My attempts to include these two years generally confirm

my results for 1967-1992.
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Figure 2: Weighted average number of production stages
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Moreover, the fragmentation of production in the US has been decreasing over time. This

decrease in the fragmentation of production has been quite smooth over time except for years

1977 and 1982. An obvious candidate explanation for the peak in 1977 and 1982 is the increase

in oil prices.24 When I thus reconstruct my index by excluding petroleum-related industries

(crude petroleum and refining), the 1977 and 1982 peak almost disappears and the overall

decline in the fragmentation of production is confirmed.25

One simple potential explanation is the increasing role played by services in the US economy.

Services now account for more than two thirds of GDP but generally require fewer production

stages. Moreover, we need to carefully interpret the fragmentation measure using services as

the input-output matrix is much more aggregated for these sectors.26 In comparison, data on

manufacturing sectors are more finely detailed.

In the right panel of Figure 2, I compute the aggregate index of fragmentation using only

tradable goods and tradable inputs (manufacturing goods and commodities, excluding services

and petroleum-related industries). Even if we exclude services, the downward trend is con-

firmed. The average number of embodied stages for tradable goods declined from 2 to 1.6 over

the past 50 years. We can further restrict our attention to manufacturing industries but the

picture remains similar.

The figures above are based on the gross-output-to-value-added ratio, adjusting value added

for the use of excluded industries such as petroleum. This amounts at considering the US as

closed economy. In an open economy, aggregate measures of fragmentation may differ, as shown

24See sections 4.3 and 4.4 for more precise analyses of the role of prices.
25The negative trend is statistically significant even after correcting for auto-correlation.
26For instance, wholesale trade and retail correspond to only two industries in the input-output table.
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in Proposition 3. In particular, the aggregate number production stages
∑

i
NiCi∑
i
Ci

(weighted by

final consumption) can differ from the aggregate number of stages to final demand
∑

i
DiVi∑
i
Vi

(weighted by value added). Using product-level trade data from 1967 to 1992, I compute the

difference between each of these aggregated indexes and the GO/VA ratio, as described in

Proposition 3.

Table 1: Aggregation biases in open economy

Import GO/VA ∆ Number ∆ Distance to
Year Penetration Ratio of stages final demand

1967 0.033 1.937 0.006 -0.002
1972 0.064 1.805 0.012 -0.005
1977 0.073 1.814 0.013 0.011
1982 0.094 1.728 0.020 0.023
1987 0.140 1.665 0.011 -0.021
1992 0.157 1.658 0.012 0.005

Notes: GO/VA is the ratio of gross output to value added calculated for the aggregate
economy. The terms ∆N and ∆D corresponds to the difference between each aggregate
index and the GO/VA ratio.

Results are shown in Table 1. While trade has grown very rapidly during this period (import

penetration rose from 3.3% in 1967 to 15.7% in 1992), not adjusting for trade creates very little

bias in the computation of these aggregate measures of fragmentation. Deviations are smaller

than 0.02, i.e. a 1% error at most. Figure 2 would thus remain identical after correcting the

fragmentation index for international trade. As shown in Proposition 3, this implies that net

trade volumes for the US are not systematically related to the position on the value chain. This

issue is further discussed in Section 4.3.27

Indexes of production staging by industry in 1992

I now turn to cross-indutry variations in the production staging indexes and describe industries

with the largest values of embodied production stages Ni. I find that food industries typically

involve long production chains with little value added at each stage (see Table 2a). Among

the top-5 industries with the largest values for Ni, we find meat packing, sausages, cheese

and butter industries (poultry is next). Among the top 25 industries, 17 are related to food.

Non-food industries in the top 25 are metal-intensive industries (e.g. cans), leather tanning,

petroleum refining, video and audio equipment, wood preserving and the car industry.28

27In Section 4.3 I confirm that import penetration is not significantly correlated with the number of production
stages. I find, however, that fragmentation has increased relatively more in sector with larger import penetration.

28The full dataset is posted on this webpage: http://spot.colorado.edu/˜fally/data.html
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Table 2a: Largest values in index Ni (embodied production stages)

Production stages All inputs Tradables GO/VA

Top-5 industries:
Meat packing plants 3.49 2.67 8.74
Sausages and other prepared meat products 3.39 2.65 4.88
Leather tanning and finishing 3.15 2.43 3.93
Natural, processed, and imitation cheese 3.15 2.35 5.55
Creamery butter 3.13 2.35 5.12

Motor vehicle industries:
Motor vehicles and passenger car bodies 2.79 2.03 6.09
Motor vehicle parts and accessories 2.40 1.78 3.15
Truck and bus bodies 2.41 1.82 2.83
Truck trailers 2.59 1.91 3.75

Table 2b: Largest values in index Di (distance to final demand)

Stages to final demand All inputs Tradables

Nonferrous metal ores, except copper 7.17 6.48
Copper ore 5.10 4.37
Oil and gas field machinery and equipment 4.45 3.22
Primary smelting and refining of copper 4.39 3.65
Iron and ferroalloy ores mining 4.32 3.59

If we only look at tradable intermediate goods (manufacturing goods and commodities,

excluding services and petroleum-related industries), the ranking among top industries is almost

the same. In line with case studies (e.g. Helper, 1991), the car industry appears to be quite

disintegrated, though not as disintegrated as the food industry. The weighted average number

of stages is 2.8, and it is 2.4 for auto parts.29

In turn, if we look at index Di on distance to final demand, primary goods exhibit the

largest values. The largest is obtained for basic metal products (Table 2b).

Industries with the smallest index of production stages Ni are generally service industries

(see Table 3). If we only consider tradable goods, industries with the smallest number of

production stages Ni correspond to primary goods. Similarly, industries that are closest to

final demand are generally services industries. In 1992, 8 products are not used as intermediate

goods: “Residential care”, “Hospitals”, “Cigarettes”, “House slippers”, “Doctors and dentists”,

“Owner-occupied dwellings”, “Child day care services”, “Ordnance and accessories, n.e.c”.

An important point to note that these two indexes are only weakly correlated across all

29Note that the fragmentation index Ni differs from the gross-output-to-value-added ratio Yi/Vi at the in-
dustry level. Fragmented industries generally exhibit a large GO/VA ratio but the difference between the two
indexes can also be large (first vs. last column) and the ranking is not preserved.
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Table 3: Industries with the smallest number of production stages

Production stages All inputs Production stages Tradables

Owner-occupied dwellings 1.23 Carbon black 1.03
Other Federal Government enterprises 1.25 Greenhouse and nursery products 1.08
Greenhouse and nursery products 1.33 Manufactured ice 1.14
U.S. Postal Service 1.34 Miscellaneous crops 1.15
Real estate 1.44 Forestry and fishery products 1.16

commodities and manufacturing industries. The correlation is negative until 1982: -7.5% in

1967, -4.3% in 1972, -1.9% in 1977. Then it lies between -1% and 1% after 1982. This small

correlation shows that these two indexes capture different dimensions of the fragmentation of

production and can be both informative to characterize the position of an industry along supply

chains.

An overall comparison between commodities, manufacturing goods and services confirms

the intuition above (Table 4). Manufacturing industries embody more production stages than

commodities and commodities more than services. Commodities are further from final demand

than manufacturing industries, while services are closer to final demand than manufacturing

industries on average. The comparison between manufacturing goods and commodities carries

over if we only consider tradable inputs and exclude petroleum-related products.

Table 4: Averages for groups of industries

Inputs from: All industries Tradables excl. oil

Index: Production Stages to Production Stages to
stages Ni final demand Di stages Ni final demand Di

Manufacturing 2.19 2.11 1.60 1.53
Commodities 2.06 3.01 1.38 2.45
Services 1.75 1.79 / /
Petroleum 2.33 3.48 / /

Now I show that, among manufacturing industries, there are systematic differences between

industries and these differences depend on various industry characteristics. The choice of these

industry characteristics is primarily motivated by the literature on firm boundaries (see La-

fontaine and Slade, 2007). Even if these measures of fragmentation only capture within-plant

integration (boundaries of the plant), it may well be influenced by factors determining owner-

ship (boundaries of the firm). Hortacsu and Syverson (2011) show that shipments that occur

within the firm account for a very small portion of all shipments across plants. This result
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implies that the decision to integrate supply chains within the same firm often goes along

within-plant production.

The literature on the boundaries of the firm has identified various determinants of vertical

integration. First, innovative industries rely less intensively on outsourcing whereas mature in-

dustries are more likely to outsource components (Acemoglu, Aghion and Zilibotti, 2007). We

can thus expect a negative correlation between R&D intensity and vertical fragmentation. Skill

intensity and the complexity of tasks may also affect externalization decisions, with more com-

plex tasks more likely to be performed within the firm (Costinot, Oldenski and Rauch, 2009).30

Following Antràs (2003) model based on the property-right approach, the internalization de-

cision also depends on capital intensity. Capital-intensive industries rely more intensively on

investment decisions taken by headquarters and are thus more likely to be integrated, whereas

decisions taken by suppliers are relatively more important in labor-intensive industries leading

to more outsourcing in these industries (a similar argument applies to R&D intensive indus-

tries vs. mature industries). Other factors affecting integration include competition and market

thickness (e.g. McLaren, 2000) and financial constraints (Acemoglu, Johnson and Mitton, 2007,

Carluccio and Fally, forthcoming). I proxy competition by the fraction of output produced by

the 4 largest companies in the industry31 and financial constraints by an index of external

finance dependence (Rajan and Zingales, 1998).

Another factor to be considered is product specificity. Nunn (2007) suggests that sourcing is

more difficult or costly for specific product, especially when contracts are difficult to enforce (see

also Hanson, 1995). The claim is not specifically made about the choice between outsourcing

and integration, but applies to supplier-buyer relationships in general. As in Nunn (2007), I

use Rauch (1999) classification to identify specific products (goods sold on thin markets). We

can expect a negative correlation between specificity and vertical fragmentation.

Pairwise correlations between each index and these industry characteristics are shown in

Table 5 (see appendix for details on data and variable definitions).32 The first column shows that

high-tech industries generally embody a smaller average number of production stages. These

results are in line with the literature on vertical integration. In particular, there is a negative

and significant correlation for Ni with product specificity, R&D intensity, skill intensity and

dependence in external finance. We may expect high-tech industries to be more complex and

combine multiple inputs, but complex inputs are more difficult to source from other plants.33

30Here I focus on a measure skill intensity. I obtain similar results with the measure of non-routine vs. routine
task developed by Costinot, Oldenski and Rauch (2009). The latter is however initially defined following the
NAICS classification, which is difficult to match with the SIC classification.

31Alternatively, we can use the Herfindahl-Hirschman Index. Results are qualitatively the same.
32Very similar results are obtained with multivariate regressions.
33As mentioned before, the measure of vertical fragmentation Ni depends does not depend on how many
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Table 5: Pairwise correlations with industry characteristics

Production Distance to
Variable: Stages (Ni) final demand (Di)

Specificity -0.266* -0.498*
R&D -0.259* -0.038
Capital intensity 0.091 0.524*
Skill intensity -0.219* -0.167*
Advertising intensity -0.083 -0.267*
Productivity -0.025 0.030
Financial Dep -0.185* 0.322*
Share of top 4 firms -0.040 0.075

Notes: Variables for year 1992. A star denotes significance at 1%

There is however no significant correlation between Ni and either capital intensity, productivity

or industry concentration.

Turning to the second column (index Di), industries that are further from final demand

have lower values of skill intensity and product specificity. In particular, these industries are

less intensive in the use of advertisements, which is quite intuitive (advertising industries are

those that are closer to final consumers). These upstream industries are also more intensive in

capital and rely more heavily on external finance. In particular, the latter is consistent with

the predictions of Kim and Shin (2012).

4.2 Within-between decompositions of aggregate changes

Since the degree of vertical fragmentation varies sensibly across industries, I now examine

whether the decrease in the overall fragmentation of production can be explained by composition

effects. Is there a continuous shift towards industries with fewer production stages? Or can we

only explain the overall decrease by changes within each industry?

Composition effects can occur along two dimensions. First, consumption may be shifting

towards goods that require fewer production stages. Second, value added can shift towards

industries that are closer to final demand, meaning that downstream industries contribute to

a larger fraction of final goods value. Following Proposition 2, both shifts can contribute to

the aggregate decrease in fragmentation. Hence, using these two indexes provides two different

angles to look at these composition effects.

To examine these questions quantitatively, I decompose the change in the fragmentation

of production into “between” and “within effects”. Between two periods, the change in the

different inputs are assembled, conditional on the share of outsourced inputs in the value of the final good.
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aggregate index can be expressed as (Decomposition 1):

∆N̄t =

[∑
i

(Ni,t +Ni,t−1)

2
.∆ci,t

]
︸ ︷︷ ︸ +

[∑
i

∆Ni,t .
(ci,t + ci,t−1)

2

]
︸ ︷︷ ︸

Between 1 Within 1

with ∆ denoting simple differences between periods t and t − 1, and ci,t ≡ Ci,t/[
∑
j Cj,t] the

share of consumption in section i at time t. Decomposition 1 is based on the number of

production stages. Alternatively, we can use the distance to final demand weighted by value

added (Decomposition 2):

∆D̄t =

[∑
i

(Di,t +Di,t−1)

2
.∆vi,t

]
︸ ︷︷ ︸ +

[∑
i

∆Di,t .
(vi,t + vi,t−1)

2

]
︸ ︷︷ ︸

Between 2 Within 2

where vi,t ≡ Vi,t/[
∑
j Vj,t] denotes the share of value added in section i at time t. In each

decomposition, the first term reflects a change in the composition (between effect) whereas the

second term reflects changes within industries. As documented in Table 1, aggregate indexes

N̄t and D̄t are almost equal to each other, and very close to the ratio of gross output to value

added.34 Hence, these two approaches can be seen as two alternative decompositions of the

evolution of the aggregate average number of production stages.

I first decompose the change in the index calculated for all industries, including all inputs

(Table 6, Panel A). Panel A shows similar results for both decompositions. In both decomposi-

tions, the within and between effects are equally large. Summing across all years, the between

effect actually dominates. This negative trend for both indexes can be explained by a shift of

demand and production towards services. Services require fewer stages and are also closer to fi-

nal demand. While the between effect is consistently negative in Decomposition 1, the between

effect in Decomposition 2 is positive for the transition period between 1972 and 1977. This can

be explained by the increase in basic commodity prices such as petroleum, which increases the

share of industries that are further from final demand. For other years, the between effect is

negative though. Similarly, increases in commodity prices can explain the positive within effect

in the first decomposition (see Table 8 in the next section).

Then, I decompose the change in fragmentation by considering tradable goods only (man-

ufacturing and commodities excluding petroleum). Panel B shows that the between effect in

Decomposition 1 is much smaller for tradable goods, and a large part of the evolution across

34In theory, the weighted average of the number of production stages may differ from the weighted average of
the distance to final demand in an open economy. However Table 1 show that, in practice, these two measures
are almost equal to each other for the US.
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Table 6: Within-between decompositions

Average number of Average distance to
production stages: final demand:

(decomposition 1 along Ni) (decomposition 2 along Di)

Aggregate Between Within Aggregate Between Within
Year change effect effect change effect effect

Panel A: All industries
67-72 -0.087 -0.028 -0.059 -0.100 -0.023 -0.078
72-77 0.070 -0.009 0.078 0.049 0.032 0.016
77-82 0.013 -0.033 0.045 0.026 -0.016 0.042
82-87 -0.086 -0.007 -0.079 -0.097 -0.041 -0.055
87-92 -0.031 -0.030 -0.001 -0.014 -0.010 -0.004

Panel B: Tradeable goods
67-72 -0.127 0.022 -0.148 -0.136 -0.002 -0.134
72-77 0.011 -0.024 0.035 0.025 0.042 -0.017
77-82 -0.079 -0.030 -0.049 -0.074 -0.055 -0.019
82-87 -0.072 -0.002 -0.070 -0.107 -0.055 -0.052
87-92 -0.006 -0.006 0.001 0.019 0.009 0.010

Notes: Panel A: all industries are included except petroleum; Panel B: primary and secondary industries are
included except petroleum. See text for within and between decomposition. It is applied to the number of
production stages in columns 3 and 4 and to the number of stages to final demand in columns 5 and 6. The
values in column 2 (difference in aggregate GO/VA between two years) equal the sum of columns 3 and 4 and
also the sum of columns 5 and 6.

years is explained by the within effect. This confirms that part of the results from Panel A are

driven by the shift towards services and shows that, among tradable goods, there has been no

shift of consumption towards less fragmented goods. Hence, changes in consumption patterns

across tradable goods do not explain the decline in production staging.

The between effect in Decomposition 2 remains large compared to Decomposition 1. Except

for 1967, the variations in aggregate distance to final demand are mostly driven by the between

effect. Except for 1972-1977 period, value-added has been shifting towards manufacturing

industries that are closer to final demand.

In what follows, I will first examine the evolution of the number of production stages N

focusing on the within effect of decomposition 1 (section 4.3). Then I will turn to distance to

final demand by providing additional evidence on the shift of value-added towards final stages

(section 4.4). The latter provides simple and intuitive insights on the aggregate decrease in the

weighted number of production stages.
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4.3 Determinants of “Within” changes

As shown previously (decomposition 1), the aggregate decrease in fragmentation in the man-

ufacturing sector mostly corresponds to “within” effects rather than a shift of consumption

towards goods that require fewer production stages. As motivated previously, whether produc-

tion chains are more vertically fragmented across plants may depend on the complexity of tasks,

on the need for capital, on the thickness of upstream markets, etc. Now, are there empirical

regularities that could explain the change in vertical fragmentation by industry?

Table 7: Within-industry changes

Dependent variable: ∆N

coef. s.e.

Specificity 2.121∗∗∗ [0.665]
R&D intensity 0.565∗∗∗ [0.153]
Capital intensity 1.490∗∗∗ [0.475]
Skill intensity -6.285∗∗ [3.052]
Advertising intensity -0.018 [0.079]
Productivity growth -2.666 [2.052]
Financial Dependence -0.293∗ [0.168]
Top 4 share -0.014 [0.013]

Number of industries 266
R-squared 0.12

Notes: OLS regressions with robust standard errors in brackets;
∗ significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%.

Table 7 explores the change in fragmentation by industry depending on various industry

characteristics. The dependent variable is increase in the index of fragmentation: ∆Ni =

Ni,1992−Ni,1967. Results show that the change in fragmentation is positively related to product

specificity (measured by Rauch 1999 index), R&D intensity and capital intensity, and negatively

related to skill intensity and financial dependence. All-in-all, these industry characteristics

can account for about 12% of the variance in the change in fragmentation (R-squared). The

positive correlation with variables characterizing high-tech industries (such as R&D intensity) is

consistent with a product-cycle interpretation: innovative industries become more fragmented

as they mature (see e.g. Antràs 2005). However, while this interpretation might help understand

why some industries are becoming more fragmented than others, it does not shed light on the

overall decline fragmentation.

In the working paper version (Fally 2012), I further examine whether the decline in fragmen-

tation can be explained by changes in these industry characteristics. As R&D, skill and capital

intensity are important determinants of differences vertical fragmentation across industries, one

26



might suspect that changes in R&D, capital and skill intensities might be driving the decrease

in fragmentation. However, I do not find any significant relationship between the change in

these industry characteristics and the change in fragmentation ∆Ni. I also examine the role

of upstream industry characteristics by averages of industry characteristics weighted by direct

input-output coeffcients as in Nunn (2007). Results are very similar to the ones presented in

Table 7, with even stronger correlations with capital and R&D intensity.

Adjusting for prices

Since the measure of fragmentation developed here is based on value-added weights, a natural

question is whether changes in these weights (and changes in the overall measure) are not

simply reflecting changes in relative prices along value chains. For instance, if competition

among suppliers has eroded their bargaining power compared to final goods producers, we

could expect the relative price of intermediate goods to decrease, thus reducing the share (in

value) of intermediate goods in final goods production. Such an effect would be reflected in the

index N as a decrease. To disentangle such price effects, I propose a further decomposition of

the “within” effect computed in Table 6 (decomposition 1).

Let Qij,t denote the quantity of intermediate good j used in the production of good i at time

t. The input-output coefficient could then be rewritten as: µij,t = Pj,tQij,t

Pi,tQi,t
where Pi,t denotes the

price index of goods produced by industry i, and where Qi,t denotes total output quantity of

industry i. Looking at the evolution across years, we can decompose the change in input-output

coefficient ∆µij,t ≡ µij,t − µij,t−1 in two components reflecting changes in prices and quantities

respectively (see Appendix B):

∆µij,t =

(
Pj,t
Pi,t
− Pj,t−1

Pi,t−1

)
.

1

2

(
Qij,t

Qi,t

+
Qij,t−1

Qi,t−1

)
︸ ︷︷ ︸ +

1

2

(
Pj,t
Pi,t

+
Pj,t−1

Pi,t−1

)
.

(
Qij,t

Qi,t

− Qij,t−1

Qi,t−1

)
︸ ︷︷ ︸

∆µPij,t ∆µQij,t

Using this price-quantity decomposition of the change in direct coefficients, we thereby obtain

a natural decomposition of the changes in the fragmentation index for each industry:

∆Ni,t =
∑
k

aik,t

∑
j

∆µPkj,t

(
Nj,t +Nj,t−1

2

)
︸ ︷︷ ︸

+
∑
k

aik,t

∑
j

∆µQkj,t

(
Nj,t +Nj,t−1

2

)
︸ ︷︷ ︸

Price effect Quantity effect

where aik,t denotes the coefficients of the matrix (I−Mt−1,t)
−1 with I the identity matrix and

Mt−1,t the average matrix for time t− 1 and t with coefficients µij,t+µij,t−1

2
(see Appendix B).
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To proxy for price ratios, I use data on producer price indices from the NBER CES database

(for manufacturing industries) and from the BLS (for other commodities). Using data on rela-

tive price indices, quantity ratios are simply obtained by dividing the input-output coefficient

by the relative price ratio Qij,t

Qi,t
= µij,tPi,t

Pj,t
.

Table 8: Price vs. quantity decomposition - Tradeable goods

Year Within effect Price effect Quantity effect

67-72 -0.148 0.006 -0.154
72-77 0.035 0.076 -0.041
77-82 -0.049 0.008 -0.057
82-87 -0.070 -0.025 -0.045
87-92 0.001 -0.011 0.012

Notes: The within effect is the same as in Table 6, panel B, and equal
the sum of the quantity and price effects.

In Table 8, I compute this decomposition to isolate the role of prices in explaining the

within effect in the decomposition of the fragmentation index. Interestingly, price effects are

very small except for transition period between 1972 and 1977, where the evolution of prices

(increase in the relative price of intermediates) can explain a large increase in the fragmentation

index. The quantity effect is however negative for 1972-1977, like other years, suggesting that

the index of vertical fragmentation would have decreased during this period if relative prices

had remained stable. This table shows that the negative trend in the index N cannot be simply

explained by price changes.

While these results suggest that changes in relative price do not explain the overall decrease

in vertical fragmentation, one must remain careful about potential price measurement errors. As

measured by the BLS, price indices do not fully account for the introduction of new varieties.35

Trade and vertical fragmentation

Trade can have two opposite effects. As trade barriers fall, production chains increasingly

involve parties located in different countries (Yi, 2003). International trade provides new op-

portunities to reduce costs by shifting part or entire production abroad. It is thus natural to

expect a positive effect of trade on the fragmentation of production. Note however that trade

does not affect this measure of fragmentation if there is simply a substitution between domestic

outsourcing and foreign outsourcing. As described in Section 2, the measure of fragmentation

is based on the total use of inputs and does not differentiate shipments from another plant in

35This is known as the “outlet substitution bias” in the consumer price index literature. A similar issue arises
with international trade and the availability of new imported varieties (Houseman et al., 2011).
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the US and shipments from overseas. Hence, if trade is found to have a positive impact, it

would suggest that it substitutes to tasks that were previously performed within the plant.

There may be also a negative effect of trade on this measure of fragmentation. If trade

reduces the relative price of intermediate goods, there is a possibility that it also reduces the

amount spent on these goods, and therefore reduces the share of value added associated with

upstream stages.36

A first test is whether the number of production stages or the position on the value chain is

correlated with import penetration across industries (in the cross section). Results presented in

Table 1 already imply that is only a small correlation between either net imports and production

stages Ni or net imports and the distance to final demand Di. In Table 9, I confirm these

results by regressing index Ni (column 1) and Di (column 2) on import penetration across

industries (all variables are averaged across periods). Import penetration is defined as the ratio

of imports to production plus imports minus exports in each industry. I find no significant

correlation (OLS regression with robust standard errors). Interestingly, I even find a negative

(but not significant) correlation between import penetration and Di, suggesting that import

competition has become relatively tougher in downstream industries than upstream industries.

Given this result, it appears also unlikely that import competition has induced a decrease in

the relative price of upstream goods vs. compared to downstream goods. This is in line with

the fact that price indexes have not decreased relatively faster in upstream industries.

From the non-significant correlation between trade and import penetration in a cross-

section, we should however not conclude that trade does not affect vertical fragmentation.

I now examine whether changes in import penetration are related to changes in the fragmenta-

tion of production. For this purpose, I regress the change in the measure of production stages

(∆Ni) by industry on the increase in import penetration between 1967 and 1992, by indus-

try. In columns (3) and (4), I find a positive and significant effect which could suggest that

trade indeed creates new opportunities to fragment production. Controlling for other industry

characteristics does not greatly affect the main coefficient (column 4).

More importantly, we would like to know whether imports of inputs are associated with

an increase in the number of production stages. For this purpose, I compute the change in

average import penetration among upstream industries (import penetration weighted by direct

input coefficients), and use it instead of the change in import penetration within the same

industry. In columns (5), I find a larger coefficient but the associated beta coefficient is smaller

36The results above suggest that price effects are small but these price indices do not perfectly account for
new varieties of traded inputs. Note that this negative effect of trade can only occur if there is a very low
substitution between outsourced intermediate goods (domestically or internationally) and intermediate goods
produced within the plant, otherwise a negative effect of trade on relative prices would also imply an increase
in the share of outsourced intermediate goods.
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Table 9: Import penetration and the measure of production stages

Dependent variable: N D ∆N ∆N ∆N ∆N

Import penetration -0.032 -0.475
[0.128] [0.307]

Increase in imports 0.218 0.168
(same industry) [0.060]∗∗∗ [0.076]∗∗

Increase in imports 0.260 0.240
(upstream industry) [0.137]∗ [0.204]

Controls No No No Yes No Yes
Nb of industries 305 305 305 266 305 266
R-squared 0.01 0.01 0.03 0.16 0.01 0.13

Notes: OLS regressions. Dependent variables: Average number of production stages (N) and stages to final
demand (D) in 1992; ∆N increase in N between 1967 and 1992. Independent variables: average import
penetration (col. 1 and 2); increase in import penetration in the same industry (col. 3 and 4); increase in
average import penetration in upstream industries (col. 5 and 6). Controls include all variables in column (1)
of Table 7. Robust standard errors in brackets; ∗ significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%.

(0.11 against 0.20) and less significant. As shown in column (6), the coefficient for imports is

no longer significant when additional controls are added. Similarly, I find no significant effect

after instrumenting the change in import penetration by transport costs and tariff decreases in

upstream industries. Hence, while opening to trade seems to be positively associated with an

increase in vertical fragmentation across plants, its effect is not large and robust.

4.4 A shift of value added towards downstream industries

As shown in Proposition 1, the index N can be interpreted as the weighted average number

of production stages, weighted by value being added at each stage. Hence, equivalently, a

decrease in N can be interpreted as a shift of value towards final stages. While plant-level data

between buyers and suppliers are not available, we can still examine the shift of value added

towards industries that are closer to final demand. This shift corresponds to the between effect

associated with distance to final demand (decomposition 2) in Table 6.

A similar way to illustrate this shift is to examine the value-added-weighted average distance

to final demand, using panel data on value added but using a reference value for the index of

distance to final demand for each sector. To be more precise, I compute for each year:

D̃v,t =
∑
i

vitDi,1992

whereDi,1992 is the distance index associated with industry i in year 1992 (or an alternative year)

30



and vit is the share of value added from sector i at time t. Hence, keeping the distance index

constant, the observed change in D̃v,t would solely reflect a change in the industry composition.

Moreover, we are no longer restricted to “benchmark” years since data on value added are

available from other sources. Here, I use data on manufacturing value-added from the NBER-

CES database available on a SIC-based classification between 1958 and 1996 (this dataset

does not cover primary industries). To also examine what happened in subsequent years, I

also compute the distance index using the 2002 input-output matrix (based on the NAICS

classification) to be combined with NBER-CES data available on a NAICS basis until 2005.

Figure 3: VA-weighted distance to final demand
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NAICS-based classification SIC-based classification

Notes: Distance index measured with the 1992 (SIC-based) and
2002 (NAICS-based) input-output tables. Value-added data are
from the NBER-CES database.

Figure 3 illustrates the evolution of D̃v,t. We can indeed observe an overall shift of produc-

tion towards downstream sectors during these five decades except between 1973 and 1981 when

the price of oil and other basic commodities have dramatically increased.

Table 10 provides yet another way to examine the shift of value added. In columns (1) to

(3), I test whether value added has grown significantly more in industries that are closer to final

demand (OLS regressions with robust standard errors). The dependent variable is the growth

in VA by industry between 1967 and 1992, while the independent variable is the distance to

final demand by industry (1967-1992 average).The coefficient is negative and significant; the

beta coefficient equals -0.221.

This result clearly confirms the shift of value added towards downstream industries, which is

consistent with the negative “between” effect found in Table 6 (Panel B, Decomposition 2). In

column (2), I control for the number Ni of production stages: the coefficient is not significant,
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Table 10: Shift of value-added towards final stages

Dependent variable: VA VA VA Increase Increase Price
Growth Growth Growth in VA/GO in VA/GO Growth

Stages to final demand -2.927 -2.951 -2.365 -0.403 -0.270 -0.122
[1.108]∗∗∗ [1.119]∗∗∗ [1.430]∗ [0.151]∗∗∗ [0.207] [0.597]

Number of stages 0.530 0.837
[2.931] [3.245]

Specificity -5.985 -0.400
[3.025]∗∗ [0.379]

R&D intensity 0.323 -0.213
[0.688] [0.084]∗∗

Capital intensity -5.330 -0.704
[2.088]∗∗ [0.253]∗∗∗

Skill intensity 8.126 3.110
[9.921] [1.621]∗

Advertising intensity 0.712 0.003
[0.299]∗∗ [0.077]

Productivity growth 26.580 0.456
[11.381]∗∗ [1.027]

Financial Dependence 1.173 0.210
[0.522]∗∗ [0.083]∗∗

Top 4 share -0.065 0.003
[0.043] [0.007]

Import penetration -36.838 -2.022
[8.848]∗∗∗ [1.104]∗

Number of industries 305 305 266 305 266 305
R-squared 0.02 0.02 0.20 0.02 0.12 0.00

Notes: OLS regressions. Dependent variables: growth of value added by industry between 1967 and 1992
(columns 1 to 3); increase in the value-added-to-gross-output ratio (columns 4 and 5); growth of industry price
index (column 6). Independent variables: averages between 1967 and 1992; data on industry characteristics are
described in the appendix. Robust standard errors in brackets; ∗ significant at 10%; ∗∗ at 5%; ∗∗∗ at 1%.

reflecting the small “between” effect found in decomposition 1.37 In column (3), I control for

other industry characteristics: Product specificity, R&D intensity, capital and skill intensity,

advertising intensity, productivity growth, financial dependence and industry concentration.

The coefficient for distance to final demand remains significant but is now smaller. In particular,

part of the negative correlation between value-added growth and distance to final demand can

be attributed to a faster growth in advertising-intensive industries (which are closer to final

demand). I also control for import penetration which has a negative effect on VA growth.

Interestingly, the ratio of value added to gross output (by industry) exhibits a similar

37Alternatively, we can use the growth of consumption as the dependent variable. The coefficient for the
number of production stages is also not significant.
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pattern. In columns (4) and (5), the dependent variable is the increase (simple difference) in

VA/GO between 1967 and 1992, regressed on the distance to final demand by industry. The

coefficient is also significantly negative; the beta coefficient equals -0.242 in column (4). In this

regression, the constant equals +1.30. We can test and verify that VA/GO has significantly

increased for industries that are the closest to final demand, while it has significantly decreased

for industries with a measure of distance to final demand equal to 3. These results remain fairly

unaltered after controlling for other industry characteristics and import penetration.

Since the growth in value-added is mechanically affected by changes in prices, a natural

question is whether the shift of value added does not simply reflect an erosion of the relative

prices of intermediate goods (e.g. driven by an increase in competition among suppliers and

an erosion of their bargaining power relative to downstream producers). To examine this

hypothesis, I again use industry price data from the NBER-CES database and the Bureau of

Labor and Statistics (BLS) over the same time period. In column (6), I regress the change in

the industry-level price index on the measure of distance to final demand. The coefficient is

however very small and not statistically significant. Additional evidence on relative prices is

provided in appendix section C, showing that the price of basic commodities and intermediate

goods (compared to final goods) has not decreased over the past decades.

A straightforward explanation for the shift towards downstream industries is that value-

added growth has been driven by other factors (e.g. shift towards high-tech industries) and

that these factors are themselves related to the distance to final demand. In particular, value-

added has grown faster in industries that are intensive in R&D, in skills, in advertising, in

external finance, and less intensive in physical capital. In turn, these industries are generally

closer to final demand (see Table 5) which can explain why value-added growth is negatively

correlated with distance to final demand. To examine this explanation quantitatively, I perform

the following exercise:

i) First, I regress value-added growth on industry characteristics (all control variables from

column 3 of Table 10: R&D intensity, skill intensity, etc.) excluding the two measures

of fragmentation. The regression coefficients are almost identical to those in column 3 of

Table 10 for the corresponding variables.

ii) Then, I use the predicted value-added growth by industry from step 1 and regress the

constructed variable on distance to final demand.

The resulting coefficient is -1.50 (significant at 1%). It is more than half of the magnitude of the

main coefficient from Table 10, column 1. This result suggests that these industry character-

istics can explain half of the negative correlation between value-added growth and distance to
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final demand, which itself can explain the aggregate decrease in vertical fragmentation. These

findings on the shift of value-added also demonstrate that the overall decline in fragmentation

is not counter-intuitive if we see it from this angle: US activities that have grown the fastest

are those at the last stages of production chains, which also implies that intermediate goods

and early-stage production is becoming relatively less important.

A global shift towards downstream industries

While the previous results document the fragmentation of production in the US, and partic-

ularly the shift of value-added towards downstream industries, one can ask whether similar

results can be observed for other countries and for trade flows.

Production has become more fragmented across borders (Hummels, Ishii and Yi, 2001,

Johnson and Noguera, 2012). This can be shown (see Johnson and Noguera, 2012) as an overall

decrease of the ratio of value-added content of trade (VAX ratio) which can be interpreted (see

Section 2.4) as the inverse of the average number of border crossings embodied in traded goods.

Surprisingly, I find however that trade flows have shifted towards downstream industries, in

parallel to the shift of value-added in the US.38 To document this fact, I construct the average

of distance to final demand across industries weighted by the total value of world trade:

D̃x,t =
∑
i

xworldit Di,1992

where Di,1992 is the distance index associated with industry i in year 1992 (or an alternative

year) and xwit is the share of total trade of product i in world trade, at time t. To compute xwit,

I use multilateral trade data from the UN-NBER database between 1962 and 1996.39

The evolution of D̃x,t is shown in Figure 4. The decline in average distance to final demand

is even starker than for US value-added. The year 1974 is an outlier although petroleum-

related trade flows have been dropped for the calculation of the weighted-average. One may

think that this shift simply reflect an increasing share of manufacturing goods relative to basic

commodities, but a similar trend is obtained if we just look at trade flows in manufacturing

industries.40 It shows that the shift toward downstream activities is not unique to the US

38A similar finding has been pointed out by Hummels, Ishii and Yi (2001). Looking at trade across Broad
Economic Classifications (distinguishing goods into capital, consumption and intermediate goods), the share of
intermediate goods trade has been decreasing from 50% in 1970 to 40% in 1992. As discussed earlier, the BEC
classification has some drawbacks while Di better accounts for the position on the value chain.

39These trade data are available in the revision 2 of the SITC classification. I have used various concordance
tables between SITC and SIC industries to combine the trade data with input-output measures. Alternatively,
I obtain extremely similar results by using more precise concordance tables between SITC and HS product
classifications, and then between HS and NAICS classification, to be finally combined with distance indexes
contructed from the NAICS-based 2002 input-output table.

40Note that the fact that trade has shifted towards more downstream industries is not inconsistent with an
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Figure 4: Trade-weighted distance to final demand (based on 1992 IO table)
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economy and is also reflected in world trade flows. We obtain the same figure even US imports

and exports are excluded in the computation above.

5 Vertical specialization and trade patterns

This section briefly describes alternative applications of the two measures of fragmentation

examined in this paper. These two measures provide novel information on the position of each

industry along production chains which is not captured by other indexes of fragmentation.

Table 9 shows that import penetration is not significantly correlated with either index Ni or

Di across industries. However, the patterns of trade and the source of imports may be related

to the degree of fragmentation. A recent paper by Costinot, Vogel and Wang (2011) develops

a simple model where stages along production chains are naturally sorted across countries

depending on their productivities. They predict that poor countries specialize in early stages

while more developed countries specialize in final stages. They also predict that poor countries

should be involved in shorter production chains, while developed countries specialize in longer

production chains.

To examine these predictions, I regress US imports in 1992 (by industry i and source

country c) on industry dummies, country dummies and two interaction terms: i) between

overall increase in international fragmentation (as shown for instance by the decrease in the VAX ratio, Johnson
and Noguera, 2012). For instance, let us consider two industries: a downstream industry (e.g. assembly) and
an upstream industry (e.g. components). If international trade is initially more concentrated in the upstream
industry, with downstream activities taking place where final goods are consumed, the value-added content of
trade would be large since they would be no “vertical specialization” as defined by Hummels et al. (2001). Now,
if international trade occurs in both downstream and upstream industries, patterns of vertical specialization
would appear and the value-added content of trade (VAX ratio) would decrease.
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GDP per capita of the source country c and the number of production stages Ni in industry i

(measured for the US as above); ii) between GDP per capita and the distance to final demand

(index Di):
41

logE[Mic] = βN . Ni . log(pcGDPc) + βD . Di . log(pcGDPc) + αi + ηc

Such approach using interaction terms has been put forward by Romalis (2004) and Nunn

(2007) among others. If richer countries specialize in goods involving more stages, we could

expect a positive coefficient βN . If richer countries specialize in stages that are closer to final

demand, we could expect a negative coefficient βD. Since patterns of fragmentation are related

to other industry characteristics such as capital and skill intensity (see Table 5), I further

control for interactions between capital intensity and capital endowments, skill intensity and

skill endowments (as in Romalis, 2004).

Table 11: Comparative advantage along supply chains

Dependent variable: Imports Imports Imports Imports

pcGDPc * production stages Ni -0.420 -0.421 -0.209
[0.090]∗∗∗ [0.091]∗∗∗ [0.096]∗∗∗

pcGDPc * stages to final demand Di -0.075 -0.065 -0.180
[0.033]∗∗ [0.033]∗ [0.042]∗∗∗

Skill endowmentc * Skill intensityi 6.118∗∗∗

K endowmentc * K intensityi 0.314∗∗∗

Industry fixed effects Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Observations 46412 46412 46412 31696
Log pseudolikelihood -34632 -34647 -34629 -31032

Notes: Negative binomial PML regressions with robust standard errors in brackets; ∗ significant at 10%; ∗∗

significant at 5%; ∗∗∗ significant at 1%.

Table 11 shows that, surprisingly, rich countries are more likely to export goods involving

fewer production stages, with a negative and significant interaction terms in column (1). Also,

richer countries seem to specialize in industries that are closer to final demand (column 2).

The latter is consistent with Costinot et al (2011) while the former is not. In column (4),

I further control for endowments in skilled labor and capital and interactions with skill and

capital intensities (which are both positive and significant as in Romalis, 2004). With these

controls, results are more in line with Costinot et al (2011) with a stronger coefficient for the

interaction with the number of stages to final demand Di and a smaller coefficient for the

interaction with the number of production stages Ni.

41This equation with Negative-Binomial PML which allows for zeros and overdispersion.
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Other applications of the second index Di (“upstreamness”) are explored in Antràs, Chor,

Fally and Hillberry (2012) where we examine the role of institutional quality in explaining

patterns of specialization along value chains. In Fally (2012), I also examine the effect of

distance depending on the position on production chains.

6 Conclusion

In this paper, I provide a novel measure of the fragmentation of production reflecting the

average number of production stages by industry weighted by the contribution of each stage

to value added. A variant of this measure reflects the number of stages between an industry’s

production and final demand. These indexes offer simple structural interpretations. These

indexes only require input-output tables that are generally publicly available. They satisfy

interesting aggregation properties: i) the weighted average equals the gross-output-to-value-

added ratio in a closed economy; ii) at the industry level, these indexes are not likely to be

biased by using more aggregated input-output matrices.

The key finding is that US industries have become less vertically fragmented over the past

50 years. The average number of production stages seems to have decreased according to the

above fragmentation index computed using the BEA US input-output tables since 1947. This

fact is not just limited to a composition effect between services and tradable goods. When I

exclude services, I also find a decline in the number of production stages on aggregate. Among

manufacturing industries, I find a relatively smaller declines in more specific, R&D- and capital-

intensive industries, and larger declines in skill-intensive and financially dependent industries.

Trade and prices do not play an important role in explaining these results. While the

commodity-price shock of the mid-70’s can explain a temporary increase in measured fragmen-

tation, long-term changes in fragmentation do not reflect systematic changes in relative prices of

upstream vs. downstream goods. Also, import penetration in the US is not correlated with an

industry’s position on the value-added chain across industries, and the change in fragmentation

is not strongly correlated with increases in import penetration in upstream industries.

In order to provide a more intuitive view on the decrease in vertical fragmentation, I examine

the evolution of the relative contribution of stages to value added. In particular, I find a large

and significant shift of value added towards production stages that are closer to final demand,

which generates an overall decrease in weighted-average number of production stages. Half of

this shift can be explained by observable industry characteristics such as intensities in the use

of capital, skilled labor and advertising services.

While this paper mainly focuses on the vertical fragmentation of production in the US, the

measures of fragmentation developed here may have various other applications. I illustrate one
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of those by investigating patterns of US imports depending on the position of industries along

value chains and the level of development of the exporting country. In particular, I find that

rich countries have a comparative advantage in industries that are closer to final demand and

less vertically fragmented.
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Appendix sections for online publication

A. Mathematical Appendix

Proposition 1: If Ni is defined recursively as in equation (1) and v
(n)
i is defined as above,

then:

Ni =
∞∑
n=1

n v
(n)
i

In other words, Ni is the average number of stages to produce good i weighted by the share
v

(n)
i of value added at each stage n.

Proof: Suppose that Ni is defined by: Ni =
∑∞
n=1 n v

(n)
i where the fraction v

(n)
i is defined

recursively by v
(n+1)
i =

∑
j µijv

(n)
j , with v

(1)
i = Vi

Yi
. We need to show that Ni verifies the

recursive definition of equation (1).

First, note that
∑∞
n=1 v

(n)
i = 1. To see this point, note that

1−
∞∑
n=1

v
(n)
i = 1− v(1)

j −
∞∑
n=2

∑
j

µijv
(n)
j

= 1− Vi
Yi
−
∞∑
n=1

∑
j

µijv
(n)
j

=
∑
j

µij −
∑
j

µij

( ∞∑
n=1

v
(n)
j

)

=
∑
j

µij

(
1−

∞∑
n=1

v
(n)
j

)

Assuming that the identity matrix minus the input-output matrix is invertible (see footnote 10),

1−∑∞n=1 v
(n)
j = 0 is the only solution of the system of equation xi =

∑
j µijxj.

Using the above definition of Ni, we obtain successively:

Ni =
∞∑
n=1

n v
(n)
i

=
∞∑
n=0

(1+n) v
(n+1)
i

=
∞∑
n=0

v
(n+1)
i +

∞∑
n=0

n v
(n+1)
i

=
∞∑
n=1

v
(n)
i +

∞∑
n=1

n
∑
j

µijv
(n)
j
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Then, using the recursive definition of v
(n)
i and using the fact that

∑∞
n=1 v

(n)
i = 1, this becomes:

Ni = 1 +
∞∑
n=1

n
∑
j

µijv
(n)
j

= 1 +
∑
j

µij
∞∑
n=1

n v
(n)
j

= 1 +
∑
j

µijNj

which corresponds to equation (1).

Section 2.1: Illustration

Snakes or spilders? This point is illustrated in Figure 5, cases 1 and 2. Case 1 involves sequential
production whereas case 2 involves simultaneous production.

Figure 5: Vertical vs. horizontal fragmentation: an illustration

Plant 2

Case 1

Consumers

Case 2

Plant 2 Plant SPlant 1

m
S

…

…

Plant S+1

Consumers

Plant S-1

Plant 1

Plant S

m
1

1

…

1

N
S+1 

= 2

D
S+1

= 1

N
i 
= 1

D
i
= 2

11

1

)(
1

=

=∑ =

D

vnN
S

n

n

∑ =

S

n

nv
2

)(

)()1( SS vv +−

)(Sv

SD

N

S

S

=
=1

1

2

1

)()1(

)()1(

1

−=
+
+=

−

−

−

−

SD
vv

vv
N

S

SS

SS

S

2

...

2

2

=
=

D

N

m
2

In case 1, the measure of fragmentation increases with the number of suppliers because each of
them enters sequentially in production. Each plant n contributes to a fraction v(n) of the final
value of the product (

∑S
n=1 v

(n) = 1). According to Proposition 1, N equals
∑S
n=1 n v

(n) for the
final product and increases with S.

In case 2, however, they all ship to the same plant, so the degree of verticality does not
depend on how many of them ship to this plant. Index N does not depend on the number
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of plants as long as they all contribute to a constant fraction
∑
jmj of the value of the final

product (
∑
jmj = 1 in the example above).

A production chain such as case 1 also provides a simple example to illustrate index D. In
this example, plants are indexed from 1 to S depending on their position on the chain (with
with one being the closest to consumers). We obtain that Dn = n or each plant n. Note that,
in this example, the measure of production stages for the last stage Nn equals the average of
the distance to final demand Di across all plants i weighted by the contribution of each plant
to value added. This result is a corollary of Proposition 1 and also holds for the aggregate
economy (Proposition 2).

Section 2.3: Structural interpretations of N : details on examples ii, iii)

Example ii): If the production function for product i has constant returns to scale in all
inputs j plus labor, the unit cost is a homogenous function of degree one in prices of each input
and labor, and is inversely proportional to productivity. Keeping wages constant, we obtain
that the relative change in prices satisfies:

P̂i = −Ẑ +
∑
j

µijP̂j

where hats denote relative changes and µij is the share of input j in total cost of production

for i. We can see that −P̂i

Ẑ
satisfies the same reccursive definition as Ni. Hence: P̂i = −ẐNi.

Concerning welfare, the result shown in equation (3) is obtained by considering the expendi-
ture function and the envelop theorem. In equilibrium, quantities of goods for final consumption
maximize utility given the set of prices. Hence the change in expenditures generated by a change
in prices is given by:

ê =
∑
i

αiP̂i

where αi = Ci∑
j
Cj

is the share of good i in final consumption. Using the previous results on

price changes, we obtain the formula in the text.

Example iii): In a first case, let us consider an economy with J industries, in perfect compe-
tition, characterized by the following equations:

Qi = QF
i +

∑
j Q

M
ji

Qi = ZAi .
∏J
j=1(QM

ij )µij . L
1−
∑

j
µij

i

U =
∏J
i=1(QF

i )αi

L̄ =
∑
i Li

where U defines preferences in terms of consumption of goods i, with the sum
∑
i αi normalized

to unity; QF
i referes to the quantity of final goods i whereas QM

ij refers to the quantity of goods
j used an inputs for the production of good i. In addition, we normalize wages (and nominal
income) to unity. Nominal GDP is therefore equal to population L̄.

In this framework, final consumption (in value) is a constant fraction of total income:
Ci ≡ PiQ

F
i = αiL̄. Intermediate demand (in value) is also a constant fraction of downstream
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production Yi (in value): Yij ≡ PjQ
M
ij = µijYi. Hence, the value of production in sector j

satisfies: Yj = αjL̄ +
∑
i µijYi. Taking all sectors, this system of equation determines sectoral

production as a function of total income and parameters αi and µij. In particular, the value of
production does not depend on Z.

This framework is a special case of example ii). The result on prices applies: ∂Pi

∂Z
= −Ni.

Since the value of production does not depend on Z, quantities should satisfy:

∂Qi

∂Z
= Ni

Now, suppose instead that we have the following Leontief production function:

Qi = Z. min
j

{
Qij

αij
,
Li
αiL

}

with Qi denoting the production (in quantity) of good i, Qij is the quantity of input j used
for the production of i, Z reflects productivity, Li is the amount of labor for the production of
good i, αij and αiL are parameters.

In the spirit of the O-ring theory (Kremer, 1993) and Costinot Vogel and Wang (2012), we
can interprete Z as being determined by the probability that no mistake arise, assuming that
mistakes potentially arise at each stage of production (i.e. for the production of each good i,
whether it is a final or intermediate good).

Suppose also that utility is a Leontief function of final consumption QF
i :

U = min
i

{
QF
i

αiF

}

In this framework, we obtain that QF
i = αiFU where U is the level of utility attained at

equilibrium. Total production quantities of good i satisfies:

Qi = αiFU +
∑
j

αjiQj/Z

Given a change in productivity Ẑ (generating a change in utility Û), the effect on production
is:

Q̂i = (1−
∑
j

ϕij)Û +
∑
j

ϕji(Q̂j − Ẑ)

where ϕij = αjiQj/Z

Qi
denotes the share of production of good i absorbed as intermediate goods

for industry j.
From the previous equation, we obtain that:

Q̂i − Ẑ − Û = −Ẑ +
∑
j

ϕji(Q̂j − Ẑ − Û)

We can see that Q̂i−Ẑ−Û
−Ẑ satisfies the same recursive equation defining Di, the index of “distance
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to final demand”, and thus should be equal to Di. Therefore:

Q̂i − Ẑ − Û = −ẐDi

Taking the diifference between any two industries, we obtain:

Q̂i − Q̂j = −Ẑ(Di −Dj)

which corresponds to the result shown in the main text.

Proposition 2: In a closed economy, the aggregate measure of fragmentation equals the gross

output to value added ratio:
∑

i
CiNi∑
i
Ci

=
∑

i
Yi∑

i
Vi

(part 1) and
∑

i
ViDi∑
i
Vi

=
∑

i
Yi∑

i
Vi

(part 2).

Proof: We use two equalities: the definition of measure of fragmentation Ni = 1 +
∑
j µijNj,

and the link between final consumption, intermediate demand and production (in a closed
economy): Ci = Yi −

∑
j µjiYj. We obtain:

∑
i

CiNi =
∑
i

(
Yi −

∑
j

µjiYj
)
Ni

=
∑
i

YiNi −
∑
i,j

µjiYjNi

=
∑
i

YiNi −
∑
i,j

µijYiNj

=
∑
i

YiNi −
∑
i

Yi
(∑

j

µijNj

)
=

∑
i

YiNi −
∑
i

Yi(Ni − 1)

=
∑
i

Yi

Similarly, for the other measure Di (part 2), we obtain:
∑
i ViDi =

∑
i Yi by using the definition

Di = 1 +
∑
j ϕijDj and the equality Vi = Yi −

∑
j µijYi = Yi −

∑
j ϕjiYj.

Finally, notice that the sum of final demand
∑
iCi equals the sum of value added

∑
i Vi.

Proposition 3: In an open economy:∑
iCiNi∑
iCi

= N̄ +

∑
i (Mi −Xi)(Ni − N̄)∑

iCi∑
i ViDi∑
i Vi

= N̄ −
∑
i (Mi −Xi)(Di − 1)∑

i Vi

Where N̄ denotes the ratio of gross output to value added
∑

i
Yi∑

i
Vi

.

Proof: In an open economy, final consumption satisfies Ci = Yi −
∑
j µjiYj + Mi −Xi. Let’s

define Fi ≡ Yi −
∑
j µjiYj. We deduce that Ci = Fi + (Mi −Xi). Following the same path as
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in the proof of Proposition 2, we can show that
∑
i FiNi =

∑
i Yi. Moreover, we can verify that∑

i Fi equals total value added
∑
i Vi and thus: N̄

∑
i Fi =

∑
i Yi.

Using these three equalities above, we obtain:∑
i

Ci(Ni − N̄) =
∑
i

Fi(Ni − N̄) +
∑
i

(Mi −Xi)(Ni − N̄)

=
∑
i

Yi − N̄
∑
i

Fi +
∑
i

(Mi −Xi)(Ni − N̄)

=
∑
i

(Mi −Xi)(Ni − N̄)

After dividing by total consumption, this provides the first equality of Proposition 3.
Turning to the second equality, we use the following relationship between ϕij and input-

output coefficients in open economy: ϕij = Yj
Yi+Mi−Xi

.µji. We obtain:

∑
i

ViDi =
∑
i

(
Yi −

∑
i

µijYi
)
Di

=
∑
i

YiDi −
∑
i,j

µijYiDi

=
∑
i

YiDi −
∑
i,j

µjiYjDj

=
∑
i

YiDi −
∑
i,j

(Yi +Mi −Xi)ϕijDj

=
∑
i

YiDi −
∑
i

(Yi +Mi −Xi) (Di − 1)

=
∑
i

Yi −
∑
i

(Mi −Xi)(Di − 1)

After dividing by total value added
∑
i Vi and using the definition of N̄ =

∑
i Yi/

∑
i Vi, we get

the second equality of Proposition 3.

Section 2.5: From varieties to industries

In this appendix section I derive conditions under which the index measured at the industry
level (equation 1) equals the average of an ideal index at the plant level weighted by the
value of production by each plant that is sold to final consumers. If production techniques are
homogenous across plants within each industry, this question would be irrelevant. However,
Fort (2011) documents substantial heterogeneity within each industry in terms of fragmentation
of production and sourcing strategies.

Some additional notation is needed for this appendix section only. Let us assume that each
industry i is composed of a set of varieties ω ∈ Ωi. These sets Ωi offer a partition of the set of
all varieties produced in the economy. If we denote by y(ω) the value of production of variety
ω, gross output Yi of industry i can be defined as Yi =

∫
Ωi
y(ω)dω.

Without loss of generality, I assume that each variety is either sold to final consumers or
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sold to a unique downstream industry j.42 I denote by Ωij the set of varieties in industry i that
are sold as intermediate goods to industry j, and I denote by ΩiF the set of varieties in industry
i that are sold as final goods. For a given industry i, the sets Ωij and ΩiF offer a partition of
Ωi. In particular, Ωii refers to the set of varieties of industry i that are used as intermediate
goods by industry i (e.g. chemicals used as inputs for other chemicals).

Now let us assume that N(ω) is the “true” index of production stages at the variety level
which could be measured if we had plant-level input-output matrices, i.e. data on the full
supply chain for each variety ω. Under the following conditions, the industry-level index equals
a weighted average of the variety-level index in each industry:

Proposition 4 If (
∫

Ωij
y(ω)N(ω)dω)/(

∫
Ωij
y(ω)dω) does not depend on the downstream indus-

try j, for all j 6= i or j = F , then:

Ni =

∫
ΩiF

y(ω)N(ω)dω∫
ΩiF

y(ω)dω

is the solution to equation (1) which characterizes index Ni at the industry level.

In other words, the industry-level index defined by equation (1) provides an unbiased mea-
sure of the average of the “true” index at the variety level (weighted by final consumption)
provided that the number of production stages does not depend on the buying industry j.
Formally, it requires that: ∫

Ωij
y(ω)N(ω)dω∫
Ωij
y(ω)dω

= Ni

whatever the downstream industry j 6= i. While plants may be heterogeneous in terms of
production processes, such heterogeneity matters in terms of aggregation only if there is a
systematic link between supply and demand across industries. For instance, if more productive
firms are more likely to fragment their production, this would affect the measure of the industry-
level index only if those firms are more likely to sell goods to a particular downstream industry
rather than another.

Note also that these conditions do not impose any constraint on within-industry linkages
and we may have: ∫

Ωii
y(ω)N(ω)dω∫
Ωii
y(ω)dω

6= Ni

In particular, if all varieties are aggregated into a unique industry (representing the whole
economy), the measured index of production stages for an aggregate closed economy (GO/VA) is
unbiased and equals the average of the index across all varieties that are sold to final consumers.

In order to mitigate the aggregation bias, more aggregation might be an answer instead
of an issue. Indeed, if fragmentation depends on the buying industry, aggregating industries
into larger industries might actually eliminate such patterns. For instance, if the production

42While in practice the same type of product (e.g. tires) can be sold as an intermediate good to a downstream
industry (e.g. the auto industry) and as a final good to consumers, for accounting purposes we can simply
consider these products as different varieties that require the same production process (e.g. tires sold to final
consumers vs. other tires).
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of auto parts is more or less fragmented depending on whether buyers are final consumers or
plants in the auto industry, then aggregating auto parts with the rest of the auto industry
would eliminate the bias that arises between the observed index of production stages and the
true average across varieties of the number of production stages.

Similar properties can be derived for the distance to final demand Di. Let v(ω) denote the
value added in the production of variety ω and µj(ω) denote the use of inputs from industry j
in the production of variety ω. We obtain the following conditions for unbiased aggregation:

Proposition 5 If: (
∫

Ωi
y(ω)µj(ω)D(ω)dω)/(

∫
Ωi
y(ω)µj(ω)dω) = (

∫
Ωi
v(ω)D(ω)dω)/(

∫
Ωi
v(ω)dω)

for all downstream industries j 6= i, then:

Di =

∫
Ωi
v(ω)D(ω)dω∫
Ωi
v(ω)dω

is the solution to equation (2) which defines index Di at the industry level.

In other words, the measure of the number of stages to final demand is unbiased at the
industry level if there are no systematic differences in the distance to final demand depending
on the use of inputs.

Proof of Proposition 4: If N(ω) denotes the average number of stages required to produce
variety ω (same definition as for the industry-level index but at the variety- or plant-level), then
N(ω) equals 1 plus the weighted average of the index for inputs required to produce variety ω.
Aggregating over all varieties ω ∈ Ωi in industry i, we obtain:∫

Ωi

y(ω)N(ω)dω =
∫

Ωi

y(ω)dω +
∑
j

∫
Ωji

y(ω′)N(ω′)dω′

where ω′ refers to varieties of inputs, and where Ωji refers to the set of input varieties ω′ in
industry j that enter the production of varieties in industry i. Note that the first term of the
righ-hand side corresponds to output in industry i:∫

Ωi

y(ω)N(ω)dω = Yi +
∑
j

∫
Ωji

y(ω′)N(ω′)dω′

If we exclude varieties in Ωi that are used as inputs for industry i (i.e. only consider varieties
ω ∈ Ωi\Ωii), we have then:∫

Ωi\Ωii

y(ω)N(ω)dω = Yi +
∑
j 6=i

∫
Ωji

y(ω′)N(ω′)dω′

Let us denote by Ñi =

∫
ΩiF

y(ω)N(ω)dω∫
ΩiF

y(ω)dω
the “true” average index across varieties in industry i

weighted by final demand. If the conditions enounced in Proposition 4 are satisfied, then the set
ΩiF in the previous definition can be replaced by the set Ωi\Ωii that includes all varieties not
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sold as input for industry i. By using again the conditions enounced in Proposition 4 (between
lines 3 and 4 in the following equalities), we obtain successively:

Ñi =

∫
Ωi\Ωii

y(ω)N(ω)dω∫
Ωi\Ωii

y(ω)dω

=

∫
Ωi\Ωii

y(ω)N(ω)dω

Yi − µiiYi

=
Yi +

∑
j 6=i

∫
Ωji
y(ω)N(ω)dω

(1− µii)Yi

=
Yi +

∑
j 6=i Ñj

∫
Ωji
y(ω)dω

(1− µii)Yi

=
Yi +

∑
j 6=i ÑjµijYi

(1− µii)Yi

=
1 +

∑
j 6=i µijÑj

1− µii

After rearranging, we find:
Ñi = 1 +

∑
j

µijÑj

This shows that Ñi = Ni if that conditions in Proposition 4 are satisfied.

Proof of Proposition 5: The proof follows the same logic as for Proposition 4.

Propositions 4 and 5 can also be used to examine partial aggregation properties: what
happens when two industries are merged together in the industry classification? Details are
provided in the working paper version (Fally 2012).

Section 2.5: Correspondence with the VAX ratio

Johnson and Noguera (2012) define fragmentation as cross-border production sharing. Their
measure of fragmentation for the aggregate world economy is the ratio of total value-added
content of exports to the total gross value of exports (“VAX world”). In keeping with Johnson
and Noguera’s notation, this is:

V AXworld =

∑
i 6=j

∑
s vaij(s)∑

i 6=j
∑
s xij(s)

where xij(s) denotes bilateral gross trade flows between countries i and j in sector s and where
vaij(s) the value-added content of trade between i and j.

There is a close link between the two measures of fragmentation, the VAX ratio in Johnson
and Noguera (2012) and the gross-output-to-value-added ratio in this paper. In particular,
Propositions 1 and 2 can shed light on the interpretation of the VAX ratio. To see the corre-
spondence, one could treat each country as one plant and.
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Lemma 1 below formalizes the correspondence between gross output and gross exports
derived as functions of the vector final demand.

Lemma 2 below formalizes the correspondence between value-added at the plant level and
the value-added content of trade at the country level.

Using Propositions 1 and 2, we can conclude that the inverse of the VAX ratio corresponds
to the number of embedded border crossings in each dollar of the final good, weighted by the
contribution of each country to total value-added content of trade (details are provided in the
appendix section). Formally:

1

V AXworld

=

∑
n

∑
i 6=j n.va

(n)
ij∑

n

∑
i 6=j va

(n)
ij

where va
(n)
ij denotes the part of the value added by country i that is going to cross n borders

before reaching final demand in country j. Hence the inverse of the VAX ratio is the analogous
of the gross-output to value added ratio when focusing on cross-border transactions instead of
transactions between plants.

The starting point in Johnson and Noguera (2010) is to construct a global input-output
matrix A relating the use of input by destination and source country. They use this global IO
matrix to derive output as a function of absorption in each country. Using their notation (with
i and j being country subscripts):

yj = (I − A)−1fj

where fj is the vector of final goods to be purchased by final consumers in country j. Gross
output yj is the sum of both domestic sales and gross exports.

Lemma 1: Gross trade xj of goods absorbed in final destination j can be expressed as:

xj = (I − Ã)−1f̃j

where Ã is an input-output matrix for trade flows, i.e. describing import requirement for each
dollar of gross exports, and f̃ is a vector of export to their final destination.

Proof of Lemma 1: Let us define AD the domestic component of the global IO matrix (i.e. the
block-diagonal matrix with blocks Aii describing the use of inputs from country i by industries
in i) and let us define AM the IO import matrix for the use of inputs from other countries:
AM = A− AD.

Similarly, let us denote by fD the vector of final goods consumption from domestic sources
and by fM the vector of imported final goods: f = fD + fM . Let us also denote x the vector
of gross exports and h the vector of gross domestic shipments. We can obtain the following
accounting equality:

x = AM(x+ h) + fM

h = AD(x+ h) + fD

The first term in the first equation corresponds to imported intermediate goods and the second
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term reflects imported final goods, while the second equation reflects the purchase of interme-
diate and final goods from domestic sources. Solving for h, we obtain that:

h = (I − AD)−1ADx+ (I − AD)−1fD

Plugging in h back into the expression for x, we obtain successively:

x = AMx+ AMh+ fM

= AMx+ AM(I − AD)−1ADx+ AM(I − AD)−1fD + fM

= AM
(
I + (I − AD)−1AD

)
x+ AM(I − AD)−1fD + fM

= AM(I − AD)−1x+ AM(I − AD)−1fD + fM

= Ãx+ f̃

where Ã ≡ AM(I − AD)−1 and f̃ ≡ fM + ÃfD. In words, Ã is the matrix of import directly
required for each dollar of export x and indirectly for domestic output generated by this export
through domestic requirements. We can then solve directly for trade:

x = (I − Ã)−1f̃

As in Johnson and Noguera (2010), we can also split trade and output depending on the final
destination country j as:

xj = (I − Ã)−1f̃j

Lemma 2: Denoting by mj ≡ Ãxj the vector indirected imports generated by exports xj, and
by 1 the column vector (by country and sector), the total value-added content of trade from i
to j (summed across all sectors s) can be obtained as:∑

s

vaij(s) =
∑
s

xij(s)−
∑
s

mij(s)

where xij(s) is the value of trade from i to final destination j in sector s minus the sum of
import requirements mij(s) associated with these exports (summing across inputs).

Proof of Lemma 2: Direct inputs required for output yij (output in country i for final
absorption in country j) are given by (I − Ai)yij where Ai is the global IO table component
for country i. Output yij is the sum of exports xij and domestic output hij destined to final
consumption in country j.

Note that if i 6= j, then hij = (I−AD)−1ADxij and does not depend on final goods purchased
from domestic sources in i.

Combining these results, we can obtain the vector of output yij (production in country i
destined to be absorbed in country j) minus the vector of intermediate goods as a difference
between the vector of export from i (for final absorption in j) and the vector of imported
intermediate goods:

(I − Ai)yij = (I − ADi − AMi )(xij + hij)
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= (I − ADi − AMi )
[
xij + (I − ADi )−1ADi .xij

]
= (I − ADi − AMi )

[
I + (I − ADi )−1ADi

]
.xij

= (I − ADi − AMi )(I − ADi )−1xij

=
[
I − AMi (I − ADi )−1

]
xij

=
[
I − Ãi

]
xij

Then, by taking the column-sum of these vectors, the left-hand side gives the value-added
content of trade from i to j as defined by Johnson and Noguera (2010): total output by
country i to be absorbed in j minus total intermediate use by country i for the production of
goods to be absorbed in j. Taking the column-sum of the right-hand side, we obtain total gross
trade from country i to be absorbed in j minus the total use of imported intermediate goods
related to these exports.

Hence, it is equivalent to measure the value-added content of trade by just looking at exports
xij and the related use of imported goods using the IO matrix Ã = AMi (I − ADi )−1.

Interpretation of the VAX ratio: Using these two lemmas we can deduce that:

- Exports can be derived from a purely international IO matrix Ã ≡ AM(I − AD)−1 and
the vector of trade to be absorbed within the destination country f̃ ≡ fM + ÃfD

- The value-added content of trade (summed across sectors) can be simply obtained from
the export flows and the international IO matrix Ã.

Hence to draw a parallel with Proposition 2, we can treat the world as one closed economy
where only international shipments are observed, where both the value-added content of trade
and the index of fragmentation can be constructed from the matrix Ã relating observed trade
flows. The equivalent of an economy’s gross output would be the total gross trade in this case,
while total value added (GDP) would now correspond to the total value-added content of trade.
Using Proposition 2, we htus obtain that the weighted number of border crossings embodied in
trade flows forthe world economy (weighted by value added at each “stage” i.e. each country)
equals the VAX ratio.
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B. Data Appendix

Treatement of “make” and “use” tables

“Make” and “use” industry-by-commodity tables are available from 1972 onward. I combine
information from these two tables to construct a commodity-by-commodity table and estimate
the amount of commodity j (input) used to produce commodity i (output).43

“Use” tables describe the value of purchases ukj of input j by industry k, while “make” tables
describe the value of production mki of output i for each industry k. I construct commodity-by-
commodity input-output ceofficients µij by taking the average share of input j in production
of industry k weighted by the contribution of industry k to the production of output i:

µij =
∑
k

[
mki∑
k′mk′i

ukj∑
j′mkj′

]

where
∑
k′mk′i = Yi corresponds to total production of output i and

∑
i′mki′ corresponds to

total production of industry k – this method is based on the “industry-technology assumption”
(see Guo et al., 2002).

Note that this way of constructing intput-output coefficients µij is consistent with the
construction of coefficients ϕij measuring the fraction of output i used for production of output
j if they are defined as:

ϕij =
∑
k

[
uki

(
∑
k′ uk′i + uFi)

mkj∑
j′mkj′

]

where
∑
k′ uk′i + uFi includes the use of product i by all industries plus final demand. In an

open economy, this corresponds to total absorption Yi +Mi−Xi i.e. domestic production plus
net imports, as discussed in section 2.2. We can verify that:

ϕij =
Yjµji

Yi +Mi −Xi

Note also that this way to construct input-output coefficients is consistent with aggregation
properties discussed in the text. In particular, we find that total value added

∑
i Vi, where

value-added is defined by Vi = (1 −∑j ϕij)Yi as in the text, equals total production
∑
k,imki

minus total use of inputs
∑
k,j uk,i.

Treatment of “non-comparable” and “transferred” imports

In the 1972 table and after, the sum of each column of the use table provides production for
each industry (sum of value-added and intermediate purchases). Intermediate goods imports
are reported as part of input usage ukj as described above. Total imports and exports by
product are also reported in two of the last columns.

A small share of imports, however, are reported as “non-comparable” and correspond to a
distinct row in the list of inputs. These non-comparable imports correspond to products that
are different from any product produced in the US such as coffee and cocoa beans. Since I need

43The 1967 input-output table is treated as a commodity-by-commodity table. I obtain very similar results
by extrapolating a “make” table from other years to adjust input-output coefficients.
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to have an estimate of the number of production stages necessary to produce all inputs (even
if thoses goods are imported), I make changes in the data for two industries: I assume that all
non-comparable imports by the coffee-roasting industry (industry 142800) and the chocolate
industry (industry 142002) correspond to imports of coffee and cocoa beans respectively and are
comparable to “tree nuts” (commodity 020401). These two changes reduce the amount of non-
comparable imports of intermediate goods by more than half and the remaining non-comparable
account for less than half a percent of total production value (and are thus dropped).44

The 1967 input-output table has a different treatment for imports and a few other corrections
are needed. Imports are classified in two categories: “non-comparable” imports as described
above and “transferred” imports. “Transferred” imports are recorded in two places and would
be double-counted if not carefully taken into account. In particular, the column-sum of the 1967
I-O table gives the sum of domestic production plus “transferred” imports classified in the same
product category. Hence we need to substract “transferred” imports to obtain domestic output.
Note however that “transferred” imports of intermediate goods also appear in input-output
coefficient for each input category.45 In terms of final consumption, some imports destined
for final consumption are classified as “non-comparable” imports (while being actually quite
comparable) and may account for a large share of absorption in these industries: for instance,
most imports of cars are missing in the 1967 consumption data. I thus use import data from
the NBER trade database (Feenstra, 1996) to impute the amount of imports for consumption.

Other data sources

Industry characteristics are obtained from various sources. I use the NBER-CES database
(Bartelsman, Becker and Gray, 2000) to construct an index of capital intensity (value of capital
stock over wages), skill intensity (share of non-production-worker wages in total wages) and
productivity. The NBER-CES database is available for manufacturing industries in the SIC
1987 classification and includes all benchmark years between 1967 and 1992. Data on R&D
intensity are obtained from the National Science Foundation and is available from 1982. An
index of product specificity has been developed by Rauch (1999). Rauch (1999) classifies goods
into three categories: goods traded on integrated markets, goods with reference prices and
other goods classified as specific. I simply use a dummy being equal to one when goods are
specific.46 I also use an index of dependence in external finance following Rajan and Zingales
(1998) methodology. Concentration indexes are obtained from the Census, which provides
the Herfindahl index and the share of production by the 4 largest companies for each 1987
SIC manufacturing industry. An index of advertising intensity for manufacturing industries
is constructed using the input-output coefficient for advertising-related services in 1992. Note

44Note that the 1992 table significantly reduced the “non-comparable imports” category by associating these
imports will other classified commodities. In particular, the coffee-roasting and chocolate industries in 1992
exhibit large uses of inputs classified as “tree nuts” instead of non-comparable imports, which is consistent with
the changes made on earlier tables.

45For instance, imports of crude petroleum to be used by the petroleum refinenement industry appear twice:
in the row for transferred imports in the column of crude pretroleum, and also in the row for crude petroleum
in the column for petroleum refinement.

46Rauch classification follows SITC revision 2. My final index is then the fraction of goods within each 1987
being categorized as specific in the SITC classification.
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Table 12: Mean and standard deviation of industry variables

Variable Mean Std. Dev.

Number of stages 1.684 0.251
Stages to final demand 1.574 0.672
Specificity 0.744 0.386
R&D intensity 1.944 1.942
Capital intensity 1.124 0.615
Skill intensity 0.357 0.112
Advertising intensity 1.479 2.119
Productivity 0.978 0.113
Productivity growth 0.024 0.081
Financial Dependence 0.166 1.490
Top 4 share 40.36 19.84
Import penetration 0.096 0.110

Notes: Mean and standard deviation of the main variables across
industries.

finally that the main results presented throughout the paper are robust to dropping extreme
observations for each variable (extreme percentiles).

US trade data are available in the 1972 SIC classification (after 1958) and 1987 SIC clas-
sification (after 1972) for manufacturing industries from Feenstra (1996). For section 4.5 (on
imports across source countries) I complement the trade data by source country with Penn
World Table data on GDP per capita (average between 1990 and 1994), physical distance
(CEPII) and data on endowments in capital and skilled labor from Hall and Jones (1999).

Section 4.3: Price decomposition

To see how the change in the input-output coefficient ∆µij,t impacts the within-industry change
in the fragmentation index, we can write:

∆Ni,t =
∑
j

∆µij,t

(
Nj,t +Nj,t−1

2

)
+
∑
j

(
µij,t + µij,t−1

2

)
∆Nj,t

We can see this equality as a linear equation in ∆Ni,t, the change in the fragmentation index
for each industry. Inverting this equation, we can write the change in the index as a function
of the change in input-output coefficients:

∆Ni,t =
∑
k

aik,t

∑
j

∆µkj,t

(
Nj,t +Nj,t−1

2

)
where aik,t denotes the coefficients of the matrix (I −Mt,t−1)−1 where I is the identity matrix
and Mt,t−1 is the matrix with coefficients µij,t+µij,t−1

2
. Using the price-quantity decomposition

of the change in direct coefficients, we thereby obtain the decomposition described in the text
for the changes in Ni for each industry i.
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C. Other robustness checks

A first robustness check examines aggregation properties of index N by comparing the index
calculated with an aggregated input-output matrix with a weighted-average of the same index
calculated with a disaggregated matrix.

A second and third robustness check examine the evolution of the relative price of interme-
diate goods and the evolution of transport and distribution margins.

A fourth robustness check examines an alternative measure of vertical fragmentation.

Aggregation

As shown by Proposition 4 and 5 in appendix, results at the industry-level might be sensitive to
the level of disaggregation when characteristics of production across varieties within an industry
are systematically related to characteristics of the buying industry. In order to check whether
the level of aggregation matters, I artificially construct an aggregated input-output matrix
at the 3-digit level (similar results are obtained at the 2-digit level), I reconstruct the index
of fragmentation using this aggregate matrix, and I compare with the appropriately-weighted
average of the disaggregated measure.

Figure 6: Aggregation at the 3-digit level
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I find that the new index is always very close (less than a 1% difference on average) to the
average of the disaggregated ones. This is depicted in Figure 8 where I plot the measured index
using the aggregated input-output table as a function of the average of the index calculated
across sub-industries using the disaggregated input-output table. We can see that the two
measures differ only for extreme industries (generally belonging to the food industry).

This robustness to aggregation is comforting and promising for future studies as most coun-
tries beside the US do not have precise input-output tables. For the US, where more precise
but still imperfect input-output tables are available, this suggests that the results of this paper
would probably not be very different if even more detailed tables were available.
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Intermediate vs. final goods prices

A first concern is that commodity prices and intermediate goods prices might have decreased
compared to final goods prices. Keeping quantities constant, this could explain a downward
trend in the fragmentation index. To investigate this issue, I compare producer price index
series from the Federal Reserve Economic Database (FRED) for different types of goods. In
particular, I consider the following series: i) “Finished Consumer Goods”; ii) “Intermediate
Materials: Supplies & Components”; iii) “Crude Materials for Further Processing”. Figure 6
plots the ratio of the price index of the second and third category over to the first one (yearly
average).

Figure 7: Relative price of commodities and intermediate goods compared to final goods

.6
.8

1
1.

2
1.

4

1950 1960 1970 1980 1990 2000 2010
Year

Rel. price of intermediates Rel. price of commodities

There is no evidence that intermediate goods prices have declined compared to final goods
over the 1947-2002 period. As shown in Figure 6, there has been instead an overall increase
in the relative price of intermediate goods. Concerning the relative price of basic commodities,
there is no decline over the period 1967-1992 (period corresponding to the results presented in
Table 1 to 10) and only a small decline if we compare 1947 to 2002. Given the relatively small
share of commodities in total production (10% of value added and gross output), this change
is not large enough to explain the decrease of the measure of fragmentation.

Consumer vs. producer prices

A second issue is that the BEA input-output tables are mainly based on producer prices. This
might be a concern if the main focus is the decision to outsource by the downstream firm:
purchasing prices could be more appropriate. From 1982 onward, the BEA input-output tables
include coefficients based on consumer price, with details on transport margins, retail and
wholesale margins. Such data are not available for previous tables (1947-1977) at the industry
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level. For the aggregate economy, we can however approximate the index of fragmentation.
If µ is the ratio of intermediate goods use to gross output, and τ the total amount of spent
on trade costs divided by gross output, the corrected measure of fragmentation equals 1

1−µ−τ
instead of 1

1−µ . In order to approximate τ , I use input-output coefficients associated with the
use of retail, wholesale and transportation industries as inputs.

Figure 7 (a) plots the measure of fragmentation after incorporating transportation margins
only. The corrected index of fragmentation is larger as it puts more weight on intermediate
goods. The approximated curve is even above the curve using actual consumer prices, but
not by far. As Figure 7 (a) shows, transportation margins have remained fairly constant over
the past decades and thus the negative trend in vertical fragmentation is confirmed. Similarly,
the negative trend still appears after incorporating retail, wholesale as well as transportation
margins (Figure 7b), even if retail and wholesale margins have slightly increased.

Figure 8: Incorporating (a) transportation and (b) retail margins
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An alternative index of vertical fragmentation

While this measure of fragmentation aims at reflecting the number of plants that production is
sequentially going through, it might not well reflect whether production is actually dispersed
along the value chain. For instance, if plant A ships one dollar of an intermediate good to plant
B, and plant B only add one cent of value added to the product, our measure of fragmentation
associated with the final product will be equal to 2 whereas production is mostly concentrated
within just one plant.

For this purpose, I construct an alternative measure of fragmentation inspired from the
Herfindahl-Hirschman Index (HHI). For each product i, I define Hi by:

Hi =
1∑∞

n (v
(n)
i )2

where v
(n)
i is defined as in Proposition 1 and corresponds to the share of the value added that

has gone through n stages. Note that the sum of these shares equal one for each industry:
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∑∞
n v

(n)
i = 1, hence Hi ≥ 1 by construction. This index can be interpreted as a HHI-index of

the concentration of value added across production stages. If value added originates from only
one stage (i.e. if v

(n)
i = 1 for a particular stage n), this index equals 1. If the source of value

added is rather dispersed across production stages, this index will take larger values.

Table 13: Dispersion of value added along supply chains

Year 1967 1972 1977 1982 1987 1992
H-Index 2.68 2.36 2.38 2.36 2.15 2.18
Weighted 3.01 2.76 2.77 2.56 2.43 2.45

Notes: First row: average across industries of index Hi for each year; second
row: average weighted by final consumption.

I calculate this index for all tradable goods (excluding services and petroleum-related indus-
tries as in previous tables).47 I find a very large correlation between this new index Hi and the
previous index Ni across industries (taking averages across years): the correlation is above 90%
each year. This suggests that both Hi and Ni capture very similar aspects of fragmentation.

Using Hi, I also find that production has become less vertically fragmented. Table 13
shows the average of Hi across industries for each year. The unweighted average of Hi across
industries has steadily decreased from 2.68 in 1967 to 2.18 in 1992. The average weighted by
final consumption has decreased from 3.01 to 2.45.

47In practice, I compute this H-index by summing up to n = 20, but this captures more than 99.99% of the
value-added.
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