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Abstract

U-statistics are often used in semiparametric estimation in a variety of settings. An important

obstacle to their widespread use is the computational cost — particularly when the kernel of the

U-statistic is non-smooth (and smoothing is not desirable since it further increases computational

complexity). In this paper we study the properties of an alternative procedure: finite-difference

derivative approximations to evaluate the derivatives of U-statistic based objective functions and

the use of these approximations in gradient-based optimization routines. We find that the existing

guidelines in the literature for the choice of the step size for numerical differentiation are excessively

conservative. While most analyses employing U-statistics suggest a choice of the step size of order

n−1/4, our findings show that uniform consistency of estimated derivatives (and the consistency of

the resulting extremum estimator) is maintained even when the step size is chosen to be of order

log n2/n2. This implies that the step size can be chosen to approach to zero at a rate that is faster

than the sample size. We illustrate our results with a Monte-Carlo study of a U-statistic based

estimator for a semiparametric model with random censoring.

JEL Classification: C14; C52

Keywords: Numerical derivative, entropy condition, stochastic equicontinuity

∗c Corresponding Author (Email: nekipelov@econ.berkeley.edu), Department of Economics, University of

California at Berkeley, Berkeley, California, 94720; a,b Department of Economics, Stanford University, Stanford,

CA 94305. We would like to thank Tim Armstrong for insightful comments and crucial inputs in obtaining

the most general version of the main theorem of the paper. We also thank participants at numerous seminars

and conferences for comments. Generous supports from the National Science Foundation (SES 1024504 ), the

University of California at Berkeley and Stanford University are acknowledged. The usual disclaimer applies.



2

1 Introduction

U-statistics are widely used in applications ranging from random censoring problems to the

analysis of valuation distributions in auctions. However, U-statistic based methods are often

computationally intensive particularly with large datasets which are becoming more prevalent

in practical applications. This is particularly problematic when the kernel function of the U-

statistic is non-smooth, which is relatively common in practice.2 One can smooth the objective

function and use a standard gradient-based numerical routine but this increases computational

complexity.

In this paper we consider evaluating the derivative of the objective function numerically. In

particular, we examine the properties of finite-difference methods for evaluating gradients as

applied to U-statistic based objective functions with non-smooth kernels. Our analysis is most

relevant for large samples where traditional approaches to numerical analysis (such as smoothing

or polynomial interpolation) of the objective function are computationally costly.

Finite-difference formulas allow us to work directly with the objective function subject to the

choice of the step size parameter used for computing the finite differences. We consider the

problems of estimating both the gradient and the extremum estimator that is computed using

the gradient (using a numerical gradient-based optimization routine). We derive optimal rates

for the step size while guaranteeing that the estimator for the gradient is uniformly consistent.

We find that our rates are substantially faster than those in the literature on extremum estima-

tion. In particular, our rate for indicator functions is of order log n2/n2 which is a considerable

improvement over the rate of n−1/4 in Sherman (1993). We note that this result is dramatically

different from the result that was obtained in Hong, Mahajan, and Nekipelov (2012) where it

was shown that numerical differentiation may affect the properties of the classical M-estimators

and the step size requred to deliver consistent estimates for the derivatives should have order

log n/n.

2For instance, the maximum rank correlation estimator (Han (1987) and Sherman (1993)) has an objective

function that is characterized by a second-order U-statistic with an indicator kernel function.
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We also characterize the properties of the extremum estimators obtained from gradient search

routines that use finite-difference methods for gradient evaluation. We find that the choice of

step size can affect the convergence rate and the asymptotic distribution of the maximizer of a U-

statistic based objective function. These results depend upon the interaction between the order

of the numerical differentiation and the properties of the sample objective function. Specifically,

we find that if the kernel of the U-statistic is smooth, then the step size can decline arbitrarily fast

(bounded from below by a function of the machine precision). We also find that the lower bound

for the convergence rate for the step size is substantially faster than that in the existing literature.

This implies that precise and robust estimates can be produced without smoothing and thereby

opening the door to the use of U-statistic based methods for large samples. We illustrate our

findings by analyzing the semiparametric estimation procedure for the random censoring model

in Khan and Tamer (2007) and find that the finite-difference optimization routine is well behaved

for moderate and large sample sizes.

We also provide a practical guide for choosing the step size, based on the combination of the

bias-variance trade-off (as in classical estimation) as well as the trade-off between the variance

and the bias arising from computer machine precision. We emphasize, though, that our analysis

is aimed at the specific smoothing implied by commonly used numerical optimization routines

standard in empirical work. Therefore solutions based on additional kernel smoothing are not

considered since they are often not used by numerical optimization routines and they are often

computationally costly or infeasbile.3

Various aspects of this problem have received some attention in the previous literature, espe-

cially in applications to U-statistics. Pakes and Pollard (1989), Newey and McFadden (1994)

and Murphy and Van der Vaart (2000) provided sufficient conditions for using numerical deriva-

tives to consistently estimate the asymptotic variance in a parametric model. The properties of

numerical derivatives have, however, predominantly been investigated only for smooth models.

For instance, Anderssen and Bloomfield (1974) analyzed derivative computations for functions

3For instance, the evaluation of the exponent with single precision takes over 5 times CPU time longer than

the addition operation, required for the evaluation of the non-smoothed U-statistic.
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that are approximated by polynomial interpolation. L’Ecuyer and Perron (1994) considered

asymptotic properties of numerical derivatives for the class of general smooth regression mod-

els. Andrews (1997) considered the relationship between the numerical tolerance for computing

GMM-type objective functions and their sample variance. Finally, while Hong, Mahajan, and

Nekipelov (2012) consider the use of finite difference formulas for constructing consistent es-

timators for the derivatives of the objective functions of classical M-estimators, we focus on

U-statistics in this paper. To the best of our knowledge, understanding the impact of numerical

approximation on the statistical properties of gradient evaluation and extremum estimation in

the context of U-statistics remains largely an open question.

The paper is organized as follows. Section 2 analyzes uniformly consistent estimation of numerical

derivatives for parametric U-statistics. Section 3 examines the choice of the step size when a

numerical gradient-based procedure is employed to compute the approximation to the maximum

of the objective function. We also discuss consistency and the distribution theory for the resulting

estimator. Section 4 discusses possible approaches to the adaptive choice of the step size. Section

5 demonstrates an application of our analysis to a random censoring problem and presents the

Monte Carlo simulation evidence. Finally, section 6 concludes.

2 Estimation of derivatives from non-smooth sample functions

2.1 Definitions

We focus on second order U-statistics since they are the most commonly used in applications. A

U-statistic objective function is defined by a symmetric function (the kernel) f(Zi, Zj, θ) as

ĝ(θ) =
1

n (n− 1)
Sn (f) where Sn (f) =

∑
i 6=j

f (Zi, Zj, θ) . (2.1)

where {Zi}ni=1 are i.i.d.. We denote the expectation with respect to the independent product

measure on Z × Z by Ezz and the expectation with respect to a single measure by Ez. The

population value can then be written as g(θ) = Ezzf (Zi, Zj, θ) .
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The object of interest in this section will be the population objective function

g(θ) = Ezz [f(Z,Z ′, θ)]

as well as its gradient. We consider θ ∈ Θ ⊂ Rd. Since we want the differentiation operation to be

meaningful, we consider the case where the population objective function can be approximated

well by a smooth function. Formally,

ASSUMPTION 1. A (2p + 1)th order mean value expansion applies to the limiting function

g (θ) uniformly in a neighborhood N (θ0) of θ0. For all sufficiently small |ε| and r = 2p+ 1,

sup
θ∈N (θ0)

∣∣∣∣g (θ + ε)−
r∑
l=0

εl

l!
g(l) (θ)

∣∣∣∣ = O
(
|ε|r+1

)
.

We consider the setting where the derivative of the objective function is an interesting object per

se. However, given the structure of the problem, the closed-form expression for this derivative

may not exist, for instance, because g(·) is defined as an implicit function of θ.

2.2 Numerical differentiation using finite differences

Finite difference methods (e.g. Judd (1998)) are often used for the numerical approximation of

derivatives. To illustrate, for a univariate function g (x), we can use a step size ε to construct

a one-sided derivative estimate ĝ′ (x) = g(x+ε)−g(x)
ε

, or a two-sided derivative estimate ĝ′ (x) =

g(x+ε)−g(x−ε)
2ε

. More generally, the kth derivative of g (x) for a d-dimensional x, where k =
∑d

j=1 kj,

can be estimated by a linear operator, denoted by Lεk,pg (x), that makes use of a pth order two-

sided formula:

Lεk,pg (x) =
1

εk

p∑
l1=−p

. . .

p∑
ld=−p

cl1...ldg

(
x+

d∑
j=1

ljεej

)
.

In the above ej are vectors of the same dimensionality as argument x with one entry equal to

one and other entries equal to zero. The usual two sided derivative formula refers to the case

when p = 1. When p ≥ 1, these are called higher order finite differences. For a given p, when

the weights cl1,...,ld are chosen appropriately, the error in approximating ∂kg(x)

∂x
k1
1 ...∂x

kd
d

with Lεk,pg (x)
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will be small:

Lεk,pg (x)− ∂kg(x)

∂xk1
1 . . . ∂xkd

d

= O(ε2p+1−k).

To illustrate the procedure for evaluating the coefficients cl1,...,ld consider the case where d = 1

and r = 2p. The Taylor expansion is:

Lεk,pg (x) =
1

εk

p∑
l=−p

cl

[
r∑
i=0

g(i)(x)

i!
(lε)i +O

(
εr+1

)]
=

r∑
i=0

g(i)(x)
εi

εk

p∑
l=−p

cll
i

i!
+O

(
εr+1−k) .

The coefficients cl are therefore determined by the system of equations below. δi,k is the Kronecker

symbol that equals 1 if and only if i = k and equals zero otherwise:

p∑
l=−p

cll
i = i!δi,k, for i = 0, . . . , r.

We are mostly concerned with first derivatives where k = 1. In this case we use L
ε,xj

1,p to highlight

the element of x for which the linear operator applies to.

The usual two sided formula corresponds to p = 1, c−1 = −1/2, c0 = 0 and c1 = 1/2. For

second order first derivatives where p = 2 and k = 1, c1 = 1/12, c−1 = −1/12, c2 = −2/3,

c−2 = 2/3, c0 = 0. In addition to the central numerical derivative, left and right numerical

derivatives can also be defined analogously. Since they generally have larger approximation

errors than central numerical derivatives, we will restrict most attention to central derivatives.

In general the step size ε can be chosen differently for different elements of the argument vector. It

is also possible to adapt the equal distance grid to a variable distance grid of the form Lεk,pg (x) =

1
εk

∑p
l=−p clg (x+ tlε) for a scalar x, where tl can be different from l. In addition both the step

size and the grid distance can be made data-dependent. These possibilities are left for future

research.

Machine precision also imposes a lower bound on the step size in conjunction with the statistical

lower bound (see, e.g. Press, Teukolsky, Vettering, and Flannery (1992)). While for most of

the analysis we assume away machine imprecision, we do discuss it and related implementation

issues in section 4.
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2.3 Consistency of numerical derivatives

Following Serfling (1980), the following decomposition of the objective function into an empirical

process and a degenerate U-process component can be used to establish the statistical properties

of approximating G (θ0) = ∂
∂θ
g (θ) by Lεn

1,pĝ
(
θ̂
)

,

ĝ (θ) = g (θ) + µ̂n(θ) +
1

n (n− 1)
Sn (u) , (2.2)

where

µ̂n(θ) =
1

n

n∑
i=1

µ (Zi, θ) , µ (z, θ) = Ez f (Zi, z, θ) + Ez f (z, Zi, θ)− 2g (θ) ,

and

u (z, z′, θ) = f (z, z′, θ)− Ez f (Zi, z, θ)− Ez f (z′, Zi, θ) + g (θ) .

The class of kernel functions that we consider in this paper includes discontinuous and non-

smooth functions that are of use to practitioners. Our main requirement is that the set of

functions is not “too complex” and that we can bound their moments.

ASSUMPTION 2. Consider functions f(z, z′, θ) contained in class F = {f(·, ·, θ + ej ε), θ ∈ Θ}

for ε > 0. Assume

(i) All f ∈ F are globally bounded such that ‖F‖ = sup
θ∈Θ
|f (·, ·, θ) | < C1 �∞.

(ii) The sample moment function has a uniform bound on the variance of its local deviations

in some neighborhood of θ0. That is, for sufficiently small ε > 0 there exists a constant C2

such that for each j = 1, . . . , p

sup
θ∈N(θ0)

Ezz

[
(f (Z,Z ′, θ + εej)− f (Z,Z ′, θ − εej))2

]
≤ C2ε.

(iii) The graphs of functions from F form a polynomial class of sets for any ε→ 0 (depending

on n).
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Many functions used in applications fall in this category. By Lemmas 25 and 36 of Pollard (1984),

Assumption 2 implies that there exist universal constants A > 0 and V > 0 such that for any

Fn ⊂ F with envelope function ‖Fn‖,

sup
Q

N1 (εQFn, Q,Fn) ≤ Aε−V , sup
Q

N2

(
ε
(
QF 2

n

)1/2
, Q,Fn

)
≤ Aε−V ,

where N1 (·) and N2 (·) are covering numbers defined in Pollard (1984) (p 25 and p 31) for

probability measures Q.

Our discussion of the asymptotic distribution will rely on U-statistic projections which are ex-

pressed by a marginal expectation of the kernel function. This expectation is likely to be con-

tinuous in the parameters. Formally,

ASSUMPTION 3. The projections µ (z, θ) are Lipschitz-continuous in θ uniformly over z.

This assumption depends on the distribution of Zi. For instance, when the kernel of the U-

statistic is defined by indicator functions, the expectation of this kernel will be continuous in the

parameter for sufficiently smooth distribution of Zi. Assumption 3controls the impact of numer-

ical differentiation on the projection term by the maximum inequality for Lipschitz-continuous

functions (see for example Theorem 3.2.5 in Van der Vaart and Wellner (1996)):

Ez sup
d(θ,θ0)=o(1)

∣∣∣∣∣ 1√
n

n∑
i=1

(µ (Zi, θ + εn)− µ (Zi, θ − εn)− g(θ + εn) + g(θ − εn))

∣∣∣∣∣ ≤ Cεn,

for some C > 0.

We now consider the application of the finite difference formula to the objective function of

the U-statistic. We start with the case where our goal is only to estimate the gradient of

the population objective function at the point of interest θ0, G(θ0) = ∂g(θ0)
∂θ

using Lεn1,pĝ(θ̂) =(
L
εn,θ̂j

1,p ĝ(θ̂), j = 1, . . . , d
)

(where θ̂ is typically a
√
n consistent estimator of θ0).

For convenience we decompose the error of approximation of G(θ0) via the finite-difference

formula applied to the sample analog Lεn1,pĝ
(
θ̂
)

into three components: Lεn1,pĝ(θ̂) − G(θ0) =

Ĝ1(θ̂) +G2(θ̂) +G3(θ̂), where

Ĝ1(θ̂) = Lεn1,pĝ
(
θ̂
)
− Lεn1,pg

(
θ̂
)
, (2.3)



9

and

G2

(
θ̂
)

= Lεn1,pg
(
θ̂
)
−G

(
θ̂
)
, G3

(
θ̂
)

= G
(
θ̂
)
−G (θ0) .

The term G3(θ̂) is responsible for the error of approximating θ0 with the estimate θ̂, and thus it

does not depend on the step size in the finite difference formula εn. The term G2

(
θ̂
)

represents

the bias due to approximating the derivative with a finite difference formula and can be controlled

if the bias reduction is uniformly small in a neighborhood of θ0. Finally, the term Ĝ1(θ̂) is

responsible for replacement of the population objective function with its sample analog.

The following lemma states a set of weak sufficient conditions to ensure consistency of the

estimated derivative.

LEMMA 1. Suppose ‖F‖ = supθ∈N(θ0) |f (Zi, Zj, θ) | � C < ∞. Under Assumption 2, if

n2εn/ log2 n→∞,

sup
d(θ,θ0)=o(1)

‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ = op(1).

Consequently, Ĝ1

(
θ̂
)

= op (1) if d
(
θ̂, θ0

)
= op (1), as defined in (2.3).

The consistency of the numerical derivatives of U-statistics then follows directly from Lemma 1.

THEOREM 1. Under assumptions 1 and 2 and the conditions of lemma 1, Lεn1,pĝ
(
θ̂
)

p−→ G (θ0)

if εn → 0 and nε2n/ log2 n→∞, and if d
(
θ̂, θ0

)
= op (1).

As in the case of the empirical process, this theorem establishes a very weak condition on the step

size for numerical differentiation when the envelope function of the differenced moment function

does not necessarily decrease with the shrinking step size. We note that the resulting condition

for the step size is weaker in the case of the U-statistics relative to the case of the empirical sums.

This is an artifact of the property that the projection of U-statistics tends to be smoother than

the kernel function itself leading to a smaller modulus of continuity of the U-process.

We further note that these rate conditions for derivative estimation are substantial improvements

over those previously found in the literature. For instance, Sherman (1993) uses the rate of n−1/4.
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Our rate of log n2/n2 is, for instance, compatible with the rate n−3/2 thus allowing the step size

to approach to zero faster than the sample size.

3 Numerical gradient-based estimation with U-statistics

3.1 Numerical optimization and numerical gradients

Consider extremum estimation where a population objective function is replaced with its sample

analog. In cases where the sample analog represents a one-fold summation of the kernel function,

the corresponding estimator is called an M-estimator. The maximizers of U-statistics represent a

different class of extremum estimators where the sample analog represents a two-fold summation.

A common method for approachin the maximization problem is by solving a system of nonlinear

equations represented by the first-order condition. In this section we analyze the problem of

finding the solution of the first-order condition when the gradient of the objective function is

replaced by its finite difference approximation and the objective function itself is replaced with

its sample analog.

Consider the problem of estimating the parameter θ0 in a metric space (Θ, d) with metric d.

The true parameter θ0 is assumed to uniquely maximize the limiting objective function Q (θ) =

Ezzf (Z,Z ′; θ). We define an extremum estimator θ̂ of θ0 as the maximizer of the U-statistic

corresponding to the above expectation

θ̂ = arg max
θ∈Θ

ĝ (θ) , (3.4)

where ĝ (θ) = 1
n(n−1)

Sn (f). Most sample objective functions ĝ (θ) used in practice do not have

a closed form solution and maximization has to be performed numerically. Computerized opti-

mization routines often use numerical derivatives either explicitly or implicitly. In this section

we show that numerical differentiation leads to an implicit smoothing of the objective function

and thus numerical derivatives can be used in place of the actual derivatives of the smoothed

objective function, thus, facilitating the computations of the estimators. In particular, while

numerical differentiation does not affect the asymptotic distribution for smooth models (under
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suitable conditions on the step size sequence), for nonsmooth models a numerical derivative

based estimator can possess different statistical properties than the maximizer of the objective

function.

We consider the solution of the numerical first-order condition where the gradient is replaced

with its finite-difference approximation described in Section 2.2. We explicitly represent the new

estimator as a finite-difference approximation of the first order condition for problem (3.4). A

numerical gradient-based optimization routine effectively substitutes (3.4) with the approximate

solution to the non-linear equation

||Lεn
1,pĝ

(
θ̂
)
|| = op

(
1√
n

)
, (3.5)

for some sequence of step sizes εn → 0. We do not require the zeros of the first order condition to

be exact in order to accommodate nonsmooth models. Many popular optimization packages use

p = 1, corresponding to D̂εn

(
θ̂
)
≡ Lεn

1,1ĝ
(
θ̂
)

= op

(
1√
n

)
. The cases with p ≥ 2 correspond to

a more general class of estimators that will have smaller asymptotic bias in nonsmooth models.

As we show, estimators (3.4) and (3.5) can have the same properties for models with continu-

ous moment functions, but for non-smooth models both their asymptotic distributions and the

convergence rates can be substantially different.

3.2 Consistency

Our first step is to provide a consistency result for θ̂. Many commonly used models have multiple

local extrema, leading to multiple roots of the first-order condition. To facilitate our analysis we

assume that the researcher is able to isolate a subset of the parameter space that uniquely contains

the global maximum. For simplicity we will associate this subset with the entire parameter space

Θ. This discussion is formalized in the following identification assumption.

ASSUMPTION 4. The map defined by D (θ) = ∂
∂θ
Ezz [f (Z,Z ′, θ)] identifies θ0 ∈ Θ. In other

words from lim
n→∞

‖D (θn) ‖ = 0 it follows that lim
n→∞

‖θn − θ0‖ = 0 for any sequence θn ∈ Θ.

Moreover, g(θ) = Ezz [f (Z,Z ′, θ)] is locally quadratic at θ0 with g(θ)− g(θ0) ≤ −H̄d (θ, θ0)2, for

some 0 < H̄ <∞ amd all ‖θ − θ0‖ < δ for some δ > 0.
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For global consistency we require the population objective function to be sufficiently smooth

not only at the true parameter, but also uniformly in the entire parameter space Θ, so that we

can rely on the previous Assumption 1 to establish uniform consistency for the estimate of the

derivative of the sample moment function. In some cases when the objective function is not

continuous, the value that sets the first-order condition to zero might not exist, in which case

we choose the point that will set the first-order condition very close to zero. Note that in this

section we will only consider the distribution results regarding the first numerical derivative.

First, we establish the basic result for consistency of the maximizer of the U-statistic which is

based on the result of Lemma 1.

THEOREM 2. Under Assumptions 2 and 3, and 4, provided that
√
εnn/ log n → ∞ and√

nε1+p
n = O(1), for any sequence θ̂ such that ||Lεn

1,pĝ
(
θ̂
)
|| = op

(
1√
n

)
:

d(θ̂, θ0) = op(1).

Having established consistency, we next investigate the convergence rate of the resulting estima-

tor.

3.3 Asymptotic distribution

To estiablish the convergence rate for the maximizer of the U-statistic, we maintain Assumption 2

and 3 for the class of kernels of the U-statistic and the identification assumption 4. We note that

we can improve upon the result of Lemma 1, which establishes that as long as n2εn/ log2 n→∞,

sup
d(θ,θ0)=o(1)

‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ = op(1).

Moreover, we can apply Lemma 10 in Nolan and Pollard (1987) which states that for tn ≥

max{ε1/2n , log n
n
} we have (for some constant β > 0)

P

(
sup
Fn

|Sn(f)| > β2n2t2n

)
≤ 2A exp (−ntn)
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However, we note that provided that log n
√
εn/n → ∞, we can strengthen this result. In fact,

provided that for sufficiently large n tn =
√
εn, we can show that

sup
d(θ,θ0)=o(1)

n2εn

log2 n
‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ = Op(1).

We next repeat the steps that we construct a “nesting” argument to find the rate of convergence

for the estimator of interest. In this argument, in the first step we find the largest size of the

shrinking neighborhood of the true parameter that contains the estimator. Then we establish

the local stochastic equicontinuity result adapted to that shrinking neighborhood. The latter

result will further be used to find the convergence rate for the maximizer of the U-statistic.

LEMMA 2. Suppose θ̂
p−→ θ0 and Lε1,pĝ

(
θ̂
)

= op

(
1√
nεn

)
. Suppose that Assumptions 2 and 3

hold

(i) If n
√
εn/ log n→∞, and

√
nε1+p = O (1), then n2εn

log2 n
d
(
θ̂, θ0

)
= oP (1).

(ii) If
√
nε1+p

n = o (1), and nεn

log n
→∞ we have

sup
d(θ̂,θ0)=O

“
log2 n

n2εn

”
(
Lεn1,pĝ

(
θ̂
)
− Lεn1,pĝ (θ0)− Lεn1,pg

(
θ̂
)

+ Lεn1,pg (θ0)
)

= op

(
1

n

)
.

In this lemma we, first establish the “maximum” radius of the shrinking neighborhood containing

the parameter. In the next step we considered the behavior of the objective function in the small

neighborhood of order O
(

log2 n
n2εn

)
of the true parameter. As we show below, we can improve upon

the rate of the objective function using the envelope property.

We can use this result to establish the rate of convergence of the resulting estimator.

THEOREM 3. Suppose θ̂
p−→ θ0 and Lε1,pĝ

(
θ̂
)

= op

(
1√
n

)
. Under Assumptions 1, 2 and 3, if

nεn/ log n→∞, and
√
nε1+p = O (1), then

√
nd
(
θ̂, θ0

)
= OP (1).

Proof. We note that by Lemma 2 in small neighborhoods of the true parameter the U-statistic

part is of stochastic order op
(

1
n

)
. As a result, the sum will be dominated by the projection term.

Provided that the projection is Lipschitz-continuous, we can apply the standard rate result in
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Newey and McFadden (1994) which gives the stochastic order for the first term Op

(
1√
n

)
and

thereby ensures parametric convergence.

The last relevant result concerns the asymptotic distribution of the estimator.

ASSUMPTION 5. Suppose that for any θ1 and θ2 in the neighborhood of θ0 there exists a

function µ̇(·) such that

|µ(z, θ1)− µ(z, θ2)| ≤ µ̇(z)‖θ1 − θ2‖,

with E [µ̇(Z)µ̇(Z)′] = Ω <∞. Moreover, for this function

E
[(
µ(θ, Z)− µ(θ0, Z)− (θ − θ0)′ µ̇(Z)

)2
]

= o
(
‖θ − θ0‖2

)
.

This assumption allows us to obtain the following characterization of the asymptotic distribution

of the estimator corresponding to the zero of the numerical gradient of the U-statistic.

THEOREM 4. Suppose Assumptions 1, 2, 3 and 5 hold. In addition, assume that the Hessian

matrix H (θ) of g (θ) is nonsingular. Then

√
n
(
θ̂ − θ0

)
d−→ N

(
0, H (θ0)−1 ΩH (θ0)−1) .

Proof. Consider the problem Lε1,pĝ
(
θ̂
)

= op

(
1√
n

)
. Using the result in Lemma 2 we can replace

the numerical derivative of the sample objective function with

Lεn1,pĝ (θ0) + Lεn1,pg
(
θ̂
)
− Lεn1,pg (θ0) = op

(
1√
n

)
.

Then by the property of the finite-difference formula Lεn1,pg (θ0) = O(ε2p
n ). It follows that

Lεn1,pg
(
θ̂
)

= D(θ̂) +O(ε2p
n ) = H(θ0)(θ̂ − θ0) +O(

1

n
+ ε2p

n )

by Theorem 3. Finally, by the U-statistic projection result,

ĝ(θ0) =
1

n

n∑
i=1

µ(zi, θ0) + op

(
1√
n

)
,
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which we combine with Assumptions 5 and 3 to conclude that

Lεn1,p
1

n

n∑
i=1

µ(zi, θ0) =
1

n

n∑
i=1

µ̇(zi) + op

(
1√
n

+ ε2p
n

)
.

Assembling terms, we obtain that

H(θ0)(θ̂ − θ0) +
1

n

n∑
i=1

µ̇(zi) = op

(
1√
n

)
,

provided that
√
nεp+1

n = o(1). Then given that the data are i.i.d. and the function µ̇(·) has a

finite second moment, we can apply the Lindeberg-Levy CLT and the result follows.

4 Adaptive Choice of the Step Size

The choice of step size for computing numerical derivatives is an important practical question.

The choice of the step size is akin to the choice of the smoothing parameter in nonparametric

analysis. A survey of works on the choice of bandwidth for density estimation can be found in

Jones, Marron, and Sheather (1996) with related results for non-parametric regression estimation

and estimation of average derivatives in Hardle and Marron (1985) and Hart, Marron, and

Tsybakov (1992) among others. The rest of this section focuses on consistent estimation of the

derivatives.

Following the nonparametric estimation literature, we use the integrated mean-squared error as

the criterion for the choice of the step size (although we can also consider other loss functions).

Previously we considered the decomposition: Lεn
1,pĝ

(
θ̂
)
− G(θ0) = Ĝ1

(
θ̂
)

+ G2

(
θ̂
)

+ G3

(
θ̂
)

.

We now consider the problem of the optimal constant choice using the mean-squared error as

the criterion for the choice of the step size

MSE (ε) = E‖Lεn
1,pĝ

(
θ̂
)
−G(θ0)‖2,

which we approximate by the leading terms G1 and G2 since G3 does not depend on the step

size. Assuming that the function g(·) has at least p+ 1 derivatives,

Lεn1,pg(θ) =
1

ε

p∑
l=−p

clg (θ + lε) = g′(θ) + εpng
(p+1) (θ)

p∑
l=−p

cl l
p

(p+ 1)!
+ o (εpn) .
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Ĝ1(θ̂) can be approximated upto first order by Ĝ1(θ0) and G2(θ̂) can be approximated by G2(θ0).

Thus G2(θ) = εpng
(p+1) (θ)

p∑
l=−p

cl l
p

(p+1)!
+ o (εpn). We can evaluate the variance of Ĝ1(θ) as

Var (G1) = Ez

[
1

εn

p∑
l=−p

cl (µ (Z, θ + lεn)− g (θ + lεn))

]2

=
Vεn

n2εn
= O(ε−1

n n−2),

where

Vεn = Ez

[
p∑

l=−p

cl (µ (Z, θ + lεn)− g (θ + lεn))

]2

≥ min
θ
Ez [(µ (Z, θ)− g (θ))]2

p∑
l=−p

c2
l > 0.

Another component that needs to be considered is the operating precision of the computer. This

error is known and fixed and we denote it [δ g]. The overall bias will contain two components:

the bias due to the approximation of the derivative by the finite-difference formula and the bias

due to machine rounding:

bias (ε) ≈ ε2p
n

(
g(p+1) (θ)

p∑
l=−p

cl l
p

(p+ 1)!

)2

+O

(
[δ g]

εn

p∑
l=−p

cl|l|p
)
.

The square-root of mean-squared error is given by

MSE1/2 (ε) ≈ ε2p
n

(
g(p+1) (θ)

p∑
l=−p

cl l
p

(p+ 1)!

)2

+ ε−1/2
n n−1V 1/2

εn
+O

(
[δ g]

εn

p∑
l=−p

cl|l|p
)
.

Therefore, we can see that the mean-squared error will start increasing whenever εn = O([δg]1/(2p+1)).

Thus we can choose εn = max{ C
nr , [δg]1/(2p+1)}, where r is the selected rate for εn. We next con-

sider the choice of C. In most applications, however, the derivative g(p+1) is unknown. One

simple way of choosing C is an analog of biased cross-validation. We choose a simple first-order

formula for g(p+1) and pick a preliminary (over-smoothed) step size ε∗∗n then evaluate

ĝ(p+1) (θ) =
1

ε∗∗n

[p/2]∑
k=0

g
(
θ + (−1)k ε∗∗n

)
.

Plugging this expression into the expression for the mean-squared error, we can obtain the

optimal step sizes. Provided that the order of the (mean-square) variance term is n−1ε
−1/2
n , this

term will always be dominated by the machine precision term. As a result, the choice of the step
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size is necessarily determined by the computer approximation error and the constant needs to

be selected such that

C∗∗ =


p! (p+ 1)! [δ g]

p∑
l=−p

cl(
ĝ(p+1) (θ)

p∑
l=−p

cl lp

)2


1/(2p+1)

which minimizes the mean-squared error. We note that this finding is in a striking contrast

with that in Hong, Mahajan, and Nekipelov (2012) where it was found that the optimal choice

of the step size of numerical differentiation for the objective functions of M-estimators may be

determined by the statistical properties of those objective functions rather than the machine

precision.

In case where one can compute the function in a relatively straightforward way, the calibration

of the constants of interest can be performed by minimizing the approximate expression for the

mean-squared error with respect to C.This approach is equivalent to the plug-in approach in the

bandwidth selection literature.

5 Application and Monte-Carlo Evidence

We illustrate our results with a semiparametric panel data model with random censoring con-

sidered in Khan and Tamer (2007) and consider a simplified version of that setup applied to

cross-sectional settings. Khan and Tamer (2007) consider estimation of the linear index coeffi-

cients in a fixed effects model with (potentially endogenous) random censoring. They provide

restrictions on the support of the censoring variables that allow identification of the parameters

of interest in case of arbitrary correlation between the censoring points and the regressors. Cen-

soring with this structure is commonplace in the proportional hazard models as well as in the

competing risks and survival analysis literatures.

Khan and Tamer (2007) introduce a distribution-free estimator and specify an objective function

involving a second order U-statistic. Since economic theory rarely provides specific functional
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form relationships, such distribution free estimators are attractive from a purely economic per-

spective as well and are also tractable since they do not suffer from the curse of dimensionality

that is common to fully non-parametric estimation procedures.

We consider a simplified version of the estimator used in Khan and Tamer (2007). In our setup

the latent variable Y ∗ is generated by the index equation

Y ∗ = X1 + θ X2 + ε,

where X1, X2 and ε follow a standard normal distribution. We consider the case of independent

censoring where the censoring point C has a standard normal distribution. The observed variables

can be characterized by the pair

Y = Y ∗ (1−D) + C D,

D = 1{Y ∗ > C}.

We then consider the problem of estimating a single parameter θ. We denote z = (y, x1, x2)′ and

define the objective function with the maximum rank correlation structure with kernel

f(zi, zj, θ) = 1{yi > yj}1{x1i + θ x2i > x1j + θ x2j}.

The objective function can be then represented by ĝ(θ) = 1
n(n−1)

Sn(f). Note that the projection

of the U-statistic kernel is smooth due to the smoothness of the joint distribution of Z.

We use a numerical gradient approach to approximate the extremum for this objective function.

To construct the numerical gradient, we use finite difference formulas of different orders. The

step size εn depends on the sample size. In particular, the first-order right derivative formula is

D̂1

(
θ̂
)

= Lεn
1,1 =

ĝ
(
θ̂ + εn

)
− ĝ

(
θ̂
)

εn
,

and analogously for the left derivative formula. The second-order formula is

D̂2

(
θ̂
)

= Lεn
1,2 =

ĝ
(
θ̂ + εn

)
− ĝ

(
θ̂ − εn

)
2εn

,
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and the third-order formula is

D̂3

(
θ̂
)

= Lεn
1,3 =

−ĝ
(
θ̂ − 2εn

)
+ 8ĝ

(
θ̂ − εn

)
− 8ĝ

(
θ̂ + εn

)
+ ĝ

(
θ̂ + 2εn

)
12εn

.

The estimator is then re-defined as a solution to the numerical first-order condition

D̂k

(
θ̂
)

= op

(
1√
n

)
, (5.6)

which mimics the solution obtaind using a numerical gradient-based maximization routine. We

can anticipate the properties of the analyzed estimator by analyzing its behavior analytically.

For illustration we can use the numerical derivative formula D̂2

(
θ̂
)

. Application of this formula

to the sample objective function leads to the expression

D̂2

(
θ̂
)

=
1

nεn

n∑
i=1

1{yi ≥ yj}U
(

1

εn

(
θ +

x1i − x1j

x2i − x2j

))
.

It is clear that in small samples where the step size of numerical differentiation is “small” the

sample first-order condition can have multiple roots. Given the structure of the objective func-

tions the roots will either be contained in disjoint convex compact sets or will be singletons. To

facilitate root finding, we use a dense grid over the state space of the model. For the step size

εn we choose the size of the grid cell to be O (εn/ log n). This will guarantee that the error

(measured as the Hausdorff distance between the true set of roots and the set of roots on the

grid) will vanish at a faster rate than the numerical error from approximating the gradient using

a finite-difference formula. For simplicity we use a uniform grid on [−2, 2] such that the cell

size is ∆n = C εn

log n
, the number of grid points is N∆n =

[
2 log n
C εn

]
+ 1 and the grid points can

be obtained as θg = −1 + ∆ (g − 1) and so forming the set G∆n = {θg}
N∆n
g=1 . The grid search

algorithm will identify the set of points

Zn =

{
θ ∈ G∆n :

∣∣∣D̂k (θ)
∣∣∣ ≤√ log n

εnn

}
.

We call this set the set of roots of the numerical first-order condition on a selected grid. Our

Monte-Carlo study will analyze the structure of the set of roots on the grid to evaluate the

performance of the numerical gradient-based estimator. The Monte-Carlo study proceeds in the

following steps.
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1. We generate 1000 Monte-Carlo samples with the number of observations from 10 to 1000.

Each simulation sample is indexed by s and the sample size is denoted ns.

2. We choose sample-adaptive step of numerical differentiation as ε = C (ns)
q. We choose

C = 2 and q from 0.2 to 2.

3. Using this step size, we set up the function that we associate with the empirical first-order

condition with D̂k

(
θ̂s
)

for different orders of numerical derivatives.

4. Using the grid over the support [−1, 1] (which we described above) we find all solutions

satisfying (5.6). This will form the set of roots on the grid Zns .

5. We store all roots on the grid and report the statistics averaged across the roots.

6. If #Zns is the number of roots found in simulation s, we evaluate the mean-squared errors

of estimation as:

MSE
(
θ̂
)

=

√√√√ 1

S

S∑
s=1

1

#Zns

#Zns∑
r=1

(
θ̂rs − θ0

)2

Our simulation results are represented in Tables 1 and 2. The tables show the trade-offs between

bias and variance for different choices of the rates at which the step size approaches zero. The

constants were chosen on using cross-validation. The tables demonstrate that the bias of the

estimates is lower if one uses a higher-order formula for the numerical derivative. The variance,

on the other hand, remains stable across different formulas. We can see a slight increase in the

variance towards the higher-order derivative formulas if the step size sequence approaches zero

slowly and the sample is small.

This is an indication that in the cases of objective functions defined by the U-statistics, there is

no dramatic manifestation of the bias-variance tradeoff in cases of “standard” choices of the step

sizes. Moreover, our analysis demonstrates that the distribution of estimates does not change

even when one chooses the step size to approach to zero at the same rate as the sample size.

This is evidence that the previously existing guidelines for choosing the step size for numerical
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differentiation to be of order n−1/4 are excessive. One can choose the step size to be much smaller

at little to no cost in terms of the impact on the resulting asymptotic distribution.

[Table 1 about here.]

[Table 2 about here.]

6 Conclusion

In this paper we analyze the use of numerical finite-difference approximations for computing

derivatives and solving the first-order conditions corresponding to objective functions defined by

second-order U-statistics. Using finite-difference approximations is computationally attractive

because both smoothing the U-statistic kernel and evaluating the objective function directly can

be computationally infeasible particularly in large data settings.

We establish sufficient conditions on the step size of the finite difference formulas that guarantee

uniform consistency of the resulting estimators of the derivatives of the objective function. We

find that the lower bound on the rate at which the step size sequence converges to zero is of

order log n2/n2 which substantially improves a widely used practical guideline of order n−1/4.

From this it follows that numerical derivatives can be precisely evaluated even if the step size

approaches zero at the same rate or faster than (the inverse of) the sample size.

We also find that such a step size sequence yields consistent estimators of the extremum esti-

mators defined by minimizing U-statistic based objective functions. We consider an estimation

procedure that replaces maximum search with the solution to a finite-difference approximation

to the first order conditions. This opens the door to a much simpler way of computing extremum

estimators defined by U-statistics: instead of smoothing the objective function and employing

a gradient-based procedure with a very small step size, one can use a numerical gradient-based

procedure with a data-dependent step size. As a result, U-statistics based estimators can be

applied to large samples, something that was impractical using previous approaches.
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A Appendix

A.1 Proof of Lemma 1

The result of the theorem can be obtained by using the argument in the proof of Theorem 9 of Nolan

and Pollard (1987). We define the class of functions Fn = {εnLεn1,pg (·, ·, θ) , θ ∈ N (θ0), with envelope

function F , such that PF ≤ C. Then we can write

sup
d(θ,θ0)≤o(1)

εn‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ ≤ 1
n (n− 1)

sup
f∈Fn

|Sn(f)|.
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Noting (2.2), lemma 1 can be shown separately for the µ̂n (θ) and Sn (u) /n(n − 1) components of the

decomposition. Therefore the result of lemma 1 holds for the µ̂n (·) component as long as εn satisfies the

rate assumptions n
√
εn/ log n→∞. Given this, without loss of generality we focus on Sn(u) component

and assume that the U-statistic’s kernel f (·, ·, θ) is degenerate.

Due to Assumption 2, for each f ∈ Fn, E|f |2 = E
∣∣∣εnLεn1,pg (·, θ)

∣∣∣2 = O (εn). Define tn ≥ max{ε1/2n , log n
n }

as in Lemma 10 of Nolan and Pollard (1987). Under the condition n
√
εn/ log n → ∞ in lemma 1, for

large enough n, tn = εn. Denote δn = µ t2n n
2. By the Markov inequality,

P

(
sup
f∈Fn

|Sn(f)| > δn

)
≤ δ−1

n P sup
f∈Fn

|Sn(f)|.

By assumption 2, the covering integral of Fn is bounded by a constant multiple ofH(s) = s [1 + log (1/s)].

The maximum inequality in Theorem 6 of Nolan and Pollard (1987) implies that

P sup
f∈Fn

|Sn(f)|/n ≤ C P H

[
sup
f∈Fn

|Tn f2|1/2/n

]
.

where Tn is the symmetrized U-statistic constructed analogously to the symmetrized empirical process

from the Radamacher sequences (see Nolan and Pollard (1987)). The right-hand side can be further

bounded by Lemma 10 in Nolan and Pollard (1987). This lemma states that there exists a constant β

such that

P

(
sup
f∈Fn

|S2n (f) | > β2 4n2 t2n

)
≤ 2A exp (−2n tn) ,

where A is the Euclidean constant in assumption 2. Since f(·) is globally bounded, |f(·)|2 ≤ B|f(·)| for

a constant B. In addition, note that |S2n (f) | ≥ |Tnf |. Therefore, we find that |Tnf2| ≤ B|S2n (f) |,

which implies

P

(
sup
f∈Fn

|Tn f2| > 4β2

B
n2 t2n

)
≤ 2A exp (−2n tn) .

Also note that H[·] achieves its maximum at 1 and is increasing for its argument less than 1. For



25

sufficiently large n the term 4β2

B t2n � 1. Then

P H

[
sup
f∈Fn

|Tn f2|1/2/n

]
= P

(
H

[
1
n

sup
f∈Fn

|Tn f2|1/2
]
1

{
sup
f∈Fn

|Tn f2| > 4β2

B
n2 t2n

}

+H

[
1
n

sup
f∈Fn

|Tn f2|1/2
]
1

{
sup
f∈Fn

|Tn f2| < 4β2

B
n2 t2n

})

≤ 1 · P

(
sup
f∈Fn

|Tn f2| > 4β2

B
n2 t2n

)
+H

[
2β√
B
tn

]
· 1

≤ 2A exp (−2n tn) +H

(
2β√
B
tn

)
.

Substituting this result into the maximum inequality one can obtain

P

(
sup
f∈Fn

|Sn(f)| > δn

)
≤nδ−1

n

(
H

(
2β√
B
tn

)
+ 2A exp (−2n tn)

)
=(tn n)−1 + (ntn)−2 exp (−2n tn)− (tn n)−1 log tn.

By assumption tnn >> log n→∞, the first term vanishes. The second term also vanishes by showing

that n−1t−2
n exp (−2n tn) → 0, because it is bounded by, for some Cn → ∞, 1/

(
log nnCntn

)
. Fi-

nally, considering the term t−1
n n−1 log tn, we note that it can be decomposed into t−1

n n−1 log (ntn) −

t−1
n n−1 log n. Both terms converge to zero because both tnn→∞ and tnn

log n →∞. We have thus shown

that for any µ > 0

P

(
sup
f∈Fn

| 1
n (n− 1)

Sn(f)| > µεn

)
= o(1).

This proves the statement of the theorem.

A.2 Proof of Lemma 2

Proof. (i)

We note that for the projection part

sup
d(θ,θ0)=o(1)

1√
n
‖Lεn1,pµ̂ (θ)− Lεn1,pµ (θ) ‖ = op(1).

As a result the U-process part will dominate and the convergence rate will be determined by its order
log2 n
n2εn

.
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(ii)

Consider a class of functions

Gn =
{
g (·, θn + εn)− g (·, θn − εn)− g (·, θ0 + εn) + g (·, θ0 − εn) , θn = θ0 + tn

log2 n

n2εn

}
,

with εn → 0 and tn = O(1). We can evaluate the L2 norm of the functions from class Gn using

Assumption 2 (ii). Note that

E
[
(g (Zi, z, θn + εn)− g (Zi, z, θn − εn))2

]
= O (εn) ,

with the same evaluation for the second term. On the other hand, we can change the notation to

θ1n = θ0 + εn + tn
2

log2 n
n2εn

and θ1n = θ0 + εn
2 + tn

log2 n
n2εn

. The we can group the first term with the third

and the second one with the fourth. For the first group this leads to

E

[(
g

(
Zi, z, θ1n +

tn
2

log2 n

n2εn

)
− g

(
Zi, z, θ1n −

tn
2

log2 n

n2εn

))2
]

= O

(
log2 n

n2εn

)
,

and for the second group

E

[(
g
(
Zi, z, θ2n +

εn
2

)
− g

(
Zi, z, θ2n −

εn
2

))2
]

= O (εn) .

Thus, two different ways of grouping the terms allow us to obtain two possible bounds on the norm of

the entire term. As a result, we find that

P f2 = O

(
min

{
εn,

log2 n

n2εn

})
, f ∈ Gn.

Next we denote δn = min
{
εn,

log2 n
n2εn

}
.

Due to assumptions of the theorem, for each f ∈ Fn, E|f |2 = E
∣∣∣εnLεn1,pg (·, θ)

∣∣∣2 = O (εn). Define

tn ≥ max{δ1/2
n , log n

n } as in Lemma 10 of Nolan and Pollard (1987) then for n
√
δn/ log n→∞

sup
Fn

‖ 1
n(n− 1)

Tn(f2)‖ = op
(
δ2
n

)
,

where Tn is the symmetrized measured defined in Nolan and Pollard (1987). By Assumption 2 (iii), the

covering integral of Fn is bounded by a constant multiple of H(s) = s [1 + log (1/s)]. The maximum

inequality in Theorem 6 of Nolan and Pollard (1987) implies that

P sup
f∈Fn

|Sn(f)|/n ≤ C P H

[
sup
f∈Fn

|Tn f2|1/2/n

]
.
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Then the stochastic order of 1
nεn

supf∈Fn
|Sn(f)| can be evaluated as

√
n

εn

1
nεn

sup
f∈Fn

|Sn(f)| = Op

(
δn
εn

log δn

)
= Op

 log
(
n2εn
log n

)
n2ε2n
log n

 = op(1).

This delivers the result in the Lemma.
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Table 1: Variance, MSE and Bias of Estimated Parameters

Sample Size
10 100 200 500 1000

εn ∼ n−1

Variance
Derivative (1) 0.317 0.229 0.195 0.160 0.133
Derivative (2) 0.317 0.227 0.192 0.158 0.129
Derivative (3) 0.302 0.202 0.172 0.137 0.092
Derivative (4) 0.288 0.211 0.182 0.145 0.111
MSE
Derivative (1) 0.327 0.320 0.301 0.260 0.214
Derivative (2) 0.327 0.320 0.299 0.260 0.200
Derivative (3) 0.328 0.303 0.276 0.217 0.128
Derivative (4) 0.329 0.318 0.284 0.243 0.160
Abs(Bias)
Derivative (1) 0.102 0.302 0.327 0.317 0.285
Derivative (2) 0.096 0.305 0.327 0.320 0.266
Derivative (3) 0.160 0.318 0.323 0.283 0.190
Derivative (4) 0.201 0.326 0.320 0.313 0.220

εn ∼ n−1/2

Variance
Derivative (1) 0.282 0.112 0.062 0.022 0.011
Derivative (2) 0.307 0.152 0.065 0.022 0.010
Derivative (3) 0.289 0.106 0.055 0.021 0.010
Derivative (4) 0.288 0.115 0.057 0.021 0.011
MSE
Derivative (1) 0.372 0.168 0.106 0.044 0.023
Derivative (2) 0.351 0.154 0.067 0.026 0.013
Derivative (3) 0.369 0.112 0.062 0.024 0.012
Derivative (4) 0.357 0.119 0.060 0.023 0.011
Abs(Bias)
Derivative (1) 0.301 0.238 0.211 0.147 0.113
Derivative (2) 0.210 0.040 0.052 0.068 0.056
Derivative (3) 0.283 0.080 0.087 0.057 0.048
Derivative (4) 0.264 0.059 0.054 0.035 0.026
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Table 2: Variance, MSE and Bias of Estimated Parameters

Sample Size
10 100 200 500 1000

εn ∼ n−1/4

Variance
Derivative (1) 0.284 0.160 0.105 0.032 0.012
Derivative (2) 0.303 0.181 0.113 0.035 0.012
Derivative (3) 0.301 0.149 0.081 0.026 0.010
Derivative (4) 0.304 0.161 0.094 0.029 0.011
MSE
Derivative (1) 0.340 0.245 0.139 0.039 0.014
Derivative (2) 0.334 0.232 0.128 0.037 0.012
Derivative (3) 0.362 0.184 0.093 0.029 0.011
Derivative (4) 0.355 0.207 0.111 0.031 0.012
Abs(Bias)
Derivative (1) 0.236 0.292 0.184 0.084 0.046
Derivative (2) 0.176 0.224 0.124 0.037 0.010
Derivative (3) 0.247 0.188 0.108 0.048 0.022
Derivative (4) 0.225 0.215 0.127 0.047 0.025


