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a b s t r a c t

Finite-difference approximations are widely used in empirical work to evaluate derivatives of estimated
functions. For instance, many standard optimization routines rely on finite-difference formulas for
gradient calculations and estimating standard errors. However, the effect of such approximations on the
statistical properties of the resulting estimators has only been studied in a few special cases. This paper
investigates the impact of commonly used finite-difference methods on the large sample properties of
the resulting estimators. We find that first, one needs to adjust the step size as a function of the sample
size. Second, higher-order finite difference formulas reduce the asymptotic bias analogous to higher order
kernels. Third, we provide weak sufficient conditions for uniform consistency of the finite-difference
approximations for gradients and directional derivatives. Fourth, we analyze numerical gradient-based
extremum estimators and find that the asymptotic distribution of the resulting estimators may depend
on the sequence of step sizes.We state conditions under which the numerical derivative based extremum
estimator is consistent and asymptotically normal. Fifth, we generalize our results to semiparametric
estimation problems. Finally, we demonstrate that our results apply to a range of nonstandard estimation
procedures.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

When the analytical gradient of the objective function used in
an extremum estimation problem is not available, numerical op-
timization routines often use finite-difference approximations to
the analytical gradient instead. This involves the choice of a step
size parameter. The approximation algorithm in the optimization
routine introduces statistical noise but typically this noise is not ac-
counted for while performing inference. In this paper, we provide
weak conditions for the consistency of numerical derivative esti-
mates and demonstrate that the use of finite approximation can
affect both the rate of convergence and the asymptotic distribu-
tion of the resulting estimator. This result has important implica-
tions for the practical use of numerical optimization routines. In
particular, the choice of the numerical step size should depend on
the sample size. Further, in some situations the asymptotic distri-
bution may depend on the particular step size sequence chosen.
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We consider a general framework where the objective function
is computed from an i.i.d. sample and the numerical gradient-
based optimization routine uses finite-difference formulas to
approximate the gradient of the objective function (which can
depend on finite or infinite-dimensional unknown parameters).
Our framework applies generally in empirical work which
includes, for example, search models that use simulated method
of moments. Aspects of this problem have received some
attention in the previous literature. Pakes and Pollard (1989),
Newey and McFadden (1994) and Murphy and Van der Vaart
(2000) provided sufficient conditions for numerical derivative
approximations to consistently estimate the asymptotic variance
in a parametric model. The properties of numerical derivatives
have predominantly been investigated only for smooth models.
For instance, Anderssen and Bloomfield (1974) analyzed derivative
computations for functions that are approximated by polynomial
interpolation. L’Ecuyer and Perron (1994) considered asymptotic
properties of numerical derivatives for the class of general smooth
regression models, while Andrews (1997) developed a stopping-
rule for approximate global optimization for GMM objective
functions. However, to the best of our knowledge understanding
the impact of numerical differentiation on the statistical properties
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of general extremum estimators is still an open question. In this
paper, we analyze local optimization algorithms that are less
general than global optimizers and that are only consistent when
local and global identification conditions coincide, but we take
into account the numerical errors involved in computing the local
optimizer.

In an important recent paper, Kristensen and Salanié (2010,
2013) considered a high level framework for bias reduction tech-
niques and higher order improvement properties in estimators
that are based on approximations of objective functions. This high
level framework includes many approximate estimators, includ-
ing the numerical differentiation based optimizationmethods that
we study as special cases. Our results complement their paper and
enrich their high level framework. We focus on first order asymp-
totics.While beyond the scope of this paper, it will be interesting in
future work to investigate the possibility of higher order improve-
ments along the lines of Kristensen and Salanié (2010, 2013).

Our results include fairlyweak sufficient conditions required for
consistency, rates of convergence and the asymptotic distribution
for several classes of numerically computed extremum estimators.
We find that the choice of the step size for consistency and
the limiting distribution depend on the interplay between the
order of the numerical differentiation and the properties of the
sample objective function. Specifically, we find that if the sample
objective function is very smooth, then the step size for numerical
differentiation can be chosen to approach zero at an arbitrarily
fast rate. For a non-differentiable objective function, however, the
step size should not converge to zero too rapidly as the sample
increases.

More generally, we make no normative claims about the use
of finite-difference based approximations but rather demonstrate
that commonly used procedures based on numerical derivatives
may have profound implications for the large sample properties
of the resultant estimators, an issue that has heretofore been rela-
tively neglected. As a result, we do not consider the issue of ‘‘cor-
recting’’ the behavior of the numerical gradient-based estimation
procedures, for instance, by smoothing the objective function. But
rather we focus on the specific smoothing implied by commonly
used numerical optimization routines that are standard in empiri-
cal work. We conjecture that the behavior for the step size should
resemble the choice of a bandwidth in a smoothed case.

The paper is organized as follows. Section 2 analyzes uniformly
consistent numerical estimation in the context of the Jacobian of a
moment model. Section 3 studies the impact of numerical deriva-
tive based optimization method on the asymptotic properties of
the resulting parametric extremum estimators. Section 4 presents
Monte Carlo simulation evidence. Finally Section 5 concludes.

2. Consistent derivative estimation

2.1. Numerical differentiation using finite differences

Finite difference methods (e.g. Judd (1998)) are often used
for the numerical approximation of derivatives. To illustrate the
implementation of the finite-difference formula for a univariate
function g (y), we can use a step size ϵ and construct a one-sided
derivative estimate ĝ ′ (y) =

g(y+ϵ)−g(y)
ϵ

, or a two-sided derivative
estimate ĝ ′ (y) =

g(y+ϵ)−g(y−ϵ)

2ϵ . More generally, the kth derivative
of g (y) for a d-dimensional y, where k =

d
j=1 kj, can be estimated

by a linear operator, denoted by Lϵ
k,pg (y), that makes use of a pth

order two-sided formula:

Lϵ
k,pg (y) =

1
ϵk

p
l1=−p

. . .

p
lD=−p

cl1...lDg


y +

d
j=1

ljϵej


.

In the above ej are vectors of the same dimensionality as argument
x with one entry equal to one and other entries equal to zero. The
usual two sided derivative formula refers to the case when p = 1.
When p ≥ 1, these are called higher order finite differences. For
a given p, when the weights cl1,...,ld are chosen appropriately, the

error in approximating ∂kg(y)

∂y
k1
1 ...∂y

kd
d

with Lϵ
k,pg (y) will be small:

Lϵ
k,pg (y) −

∂kg(y)

∂yk11 . . . ∂ykdd
= O(ϵ2p+1−k).

To obtain the coefficients cl1,...,ld for the finite-difference approxi-
mation we need to evaluate the order of approximation error for
a derivative of interest to guarantee that the formula with r terms
delivers a precise expression for the first derivative of all polyno-
mials of degree less than or equal to r . For instance, consider for
the case where d = 1 and r = 2p, the following Taylor expansion:

Lϵ
k,pg (y) =

1
ϵk

p
l=−p

cl


r

i=0

g(i)(y)
i!

(lϵ)i + O

ϵr+1

=

r
i=0

g(i)(y)
ϵ i

ϵk

p
l=−p

clli

i!
+ O


ϵr+1−k .

The coefficients cl are therefore determined by a system of
equations where δi,k is the Kronecker symbol that equals 1 if i = k
and is zero otherwise:

p
l=−p

clli = i!δi,k, for i = 0, . . . , r.

Wearemostly concernedwith first derivativeswhere k = 1. In this
case we use L

ϵ,yj
1,p to highlight the element of y to which the linear

operator applies.
The usual two sided formula corresponds to p = 1, c−1 =

−1/2, c0 = 0 and c1 = 1/2. For second order first derivatives
where p = 2 and k = 1, c1 = 1/12, c−1 = −1/12, c2 =

−2/3, c−2 = 2/3, c0 = 0. In addition to the central numerical
derivative, left and right numerical derivatives can also be defined
analogously. Since they generally have larger approximation errors
than central numerical derivatives, we will generally focus on
central derivatives.

In general the step size ϵ can be chosen differently for different
elements of the argument vector. It might also be possible to adapt
the equal distance grid to a variable distance grid of the form
Lϵ
k,pg (y) =

1
ϵk

p
l=−p clg (y + tlϵ) for a scalar y, where tl can be

different from l. In addition both the step size and the grid distance
can be made data-dependent. We leave this for future research.

Finally, formost of the statistical analysis in the rest of the paper
we assume awaymachine imprecision.Machine precision imposes
a lower bound on the step size in conjunction with the statistical
lower bound.

2.2. Weak sufficient conditions for consistent Jacobian estimation

In this sectionwe provide conditions on the step size for consis-
tent derivative estimation, as required for instance, in variance es-
timation. These conditions aremuchweaker than those previously
established in the literature. In particular, as long as a local uni-
formity condition holds, there is no interaction between the step
size choice and the statistical uncertainty in parameter estimation.
We focus on the unconditional parametric case in this section to
best convey intuition, and develop the conditional semiparametric
cases in the Appendix.

Consider a parametric unconditionalmomentmodel defined by
the sample and population moment conditions: ĝ(θ) =

1
n

n
i=1
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g(Yi, θ) and g(θ) = Eg(Yi, θ) where g(θ) = 0 if and only if
θ = θ0, which lies in the interior of the parameter space Θ . The

goal is to estimate G(θ0) =
∂g(θ0)

∂θ
using Lϵn

1,pĝ(θ̂) =


L
ϵn,θ̂j
1,p ĝ(θ̂), j =

1, . . . , d

, where θ̂ is typically a

√
n consistent estimator of θ0. The

main intuition of this section can be understood by focusing on the
case when both g(Yi, θ) and θ are scalars.

In the following, we decompose the error of approximating
G(θ0) with Lϵn

1,pĝ

θ̂

into three components: Lϵn

1,pĝ(θ̂) − G(θ0) =

Ĝ1(θ̂) + G2(θ̂) + G3(θ̂), where

Ĝ1(θ̂) = Lϵn
1,pĝ


θ̂


− Lϵn
1,pg


θ̂


, (2.1)

and

G2


θ̂


= Lϵn
1,pg


θ̂


− G

θ̂


, G3


θ̂


= G

θ̂


− G (θ0) .

In the above,G3


θ̂

represents the estimation error induced by the

difference between θ̂ and θ0. G2


θ̂

represents the bias induced

by replacing analytic derivativeswith numerical differentiation. Fi-
nally, G1


θ̂

represents an ‘‘empirical process’’ term that controls

the sampling variation induced by estimating the population mo-
ment condition with its empirical analog. We discuss how to con-
trol each of these three terms in turn. Notice first that the sample
size dependent step size ϵn does not play a role in G3(θ̂). The bias
term G2


θ̂

can be controlled if the bias reduction is uniformly

small in a neighborhood of θ0.
Throughout the paper we maintain the following suitable

measurability requirement, which we will not refer to explicitly
for the sake of brevity.

Assumption 1. The parameter spaceΘ ⊂ Rp has a compact cover.
For each n, there exists a countable subset Tn ⊂ Θ such that

P

sup
θ∈Θ

inf
θ ′∈Tn

∥ĝ (θ) − ĝ

θ ′

∥
2 > 0


= 0.

This condition states that the values of the moment function
on the parameter space Θ can be approximated arbitrarily well
(with probability one) by its values on a countable subset of Θ .
This condition is satisfied when the moment condition is right
continuous, and thus allows for discontinuous moment functions.
More precisely, Assumption 1 is a sufficient condition for the
moment function to be image admissible Suslin. As discussed in
Dudley (1999) and Kosorok (2008) this property will be required
to establish the functional uniform law of large numbers needed
for consistency.

Assumption 2. Amean value expansion of order 2p+ 1 applies to
the limiting function g (θ) uniformly in a neighborhood N (θ0) of
θ0. For all sufficiently small |ϵ| and r = 2p + 1,

sup
θ∈N (θ0)

g (θ + ϵ) −

r
l=0

ϵ l

l!
g(l) (θ)

 = O

|ϵ|r+1 .

An immediate consequence of this assumption is that G2


θ̂


=

O

ϵ
2p+1
n


when θ̂ is consistent for θ0. We are left with Ĝ1


θ̂

.

The weakest possible condition to control Ĝ1


θ̂


that covers
all the models that we are interested in seems to come from a
convergence rate result in Pollard (1984).
Assumption 3. For each j = 1, . . . , d, consider functions g(y, θ)
contained in class Fj =


g(·, θ + ej ϵ), θ ∈ Θ


for ϵ > 0. Assume

(i) All g ∈ Fj are globally bounded such that ∥F∥ = supθ∈Θϵ

|g (Yi, θ) | < C1 ≪ ∞, where Θϵ
= {θ : infθ ′∈Θ d


θ, θ ′


≤

C2ϵ} for d

θ, θ ′


being the Euclidean distance between θ and

θ ′.
(ii) Themoment function is Lipschitz-continuous inmean square

in someneighborhood of θ0. That is for sufficiently small ϵ > 0
there exists a constant C3 such that for each j = 1, . . . , p

sup
θ∈N (θ0)

E


g

Yi, θ + ϵej


− g


Yi, θ − ϵej

2
≤ C3ϵ.

(iii) The graphs (defined on p. 27 of Pollard (1984)) of functions
from Fj form a polynomial class of sets for any ϵ → 0 and for
all j, in the sense of Definition 13 of Pollard (1984) (p. 17).

Many functions used in applications fall in this category.
These include moment conditions that are Lipschitz continuous
in parameters, and discontinuous moment conditions that involve
the indicator function. In certain simulated method of moment
models, for example those considered by Pakes and Pollard (1989),
an example of the moment function g(yi, θ) takes a form that is
similar to

g (yi, θ) =
1
S

S
s=1

zi

wi − 1


x′

iθ − ϵis ≥ 0


,

where zi is a set of bounded instrumental variables, ϵis is the
simulated error term, and S is the finite number of simulations for
each observation. In this particular simulated method of moment
problem, Assumption 3(iii) holds because of Lemma 28 in Pollard
(1984). In particular, Pakes and Pollard (1989) (p. 1043) advocates
the use of numerical differentiation for gradient estimation. We
will show that their conditions are too strong. Our results do
not yet cover simulation estimators in which the number of
simulations for each observation increases without bound, such as
the maximum simulated likelihood estimator.

By Lemmas 25 and 36 of Pollard (1984), Assumption 3 defines
the Euclidean property of a class of functions, and implies that
there exist universal constants A > 0 and V > 0 such that for
any Fn ⊂ F with envelope function ∥Fn∥,

sup
Q

N1 (ϵ QFn, Q, Fn) ≤ Aϵ−V ,

sup
Q

N2


ϵ

QF 2

n

1/2
, Q, Fn


≤ Aϵ−V ,

where N1 (·) and N2 (·) are covering numbers defined in Pollard
(1984) (p. 25 and p. 31) for probability measures Q.

Lemma 1. Under Assumption 3, if nϵn/ log n → ∞, then for δ small
enough,

sup
d(θ,θ0)≤δ

∥Lϵn
1,pĝ (θ) − Lϵn

1,pg (θ) ∥ = op(1).

Consequently, Assumption 3 implies that Ĝ1


θ̂


= op (1) if

d

θ̂ , θ0


= op (1).

Proof. The argument follows directly from Theorem 2.37 in
Pollard (1984) by verifying its conditions. For each n and each ϵn,
consider the class of functions Fn = {ϵnL

ϵn
1,pg (·, θ) , θ ∈ N (θ0)},

with envelope function F , such that PF ≤ C . Then we can write

sup
d(θ,θ0)≤o(1)

ϵn∥L
ϵn
1,pĝ (θ) − Lϵn

1,pg (θ) ∥ ≤ sup
f∈Fn

|Pnf − Pf |.
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For each f ∈ Fn, note that Ef 2 = E

ϵnL

ϵn
1,pg (·, θ)

2
= O (ϵn)

because of Assumption 3(ii).1 The lemma then follows immediately
by taking αn = 1 and δ2

n = ϵn in Theorem 2.37 of Pollard
(1984). �

Theorem 1. Suppose Assumptions 2 and 3 hold and ϵn → 0, nϵn/
log n → ∞ and d


θ̂ , θ0


= op (1). Then, Lϵn

1,pĝ

θ̂


p
−→G (θ0).

In most situations d

θ̂ , θ0


= Op


n−γ


for some γ > 0. Typically

γ = 1/2. One might hope to further weaken the requirement
of the log n term when uniformity is only confined to a shrinking
neighborhood of size n−γ . However, this is not possible unless the
moment function satisfies additional smoothness conditions.

The result of Theorem 1 can be improved to allow for ϵn to ap-
proach zero at a rate even faster than log n/n ifwe arewilling to im-
pose the following stronger assumption, which holds for smoother
Hölder-continuous functions. In the following E∗ and E∗

P stand for
outer expectation and outer expectation under measure P .

Assumption 4. In addition to Assumption 3, for all sufficiently
small ϵ and all θ ∈ Θ , if we define Gn (θ) =

1
√
n

n
i=1(g (Zi, θ) −

g (θ)), then

E∗ sup
θ ′,θ∈N (θ0),d(θ,θ ′)≤δ

|Gn

θ ′

− Gn (θ) | . φn (δ) ,

for functions φn (·) such that δ → φn (δ) /δγ is non-increasing for
some γ > 0.

A sufficient lower level condition that implies Assumption 4 with
γ = 1 is when g (Yi, θ) is Lipschitz continuous in θ with a stochas-
tically bounded Lipschitz constant.

In the above, . indicates that the left side is bounded by a
constant times the right side. Assumption 4 is more stringent
than that in Theorem 3.2.5 in Van der Vaart and Wellner
(1996), and may fail in cases where Theorem 3.2.5 holds, for
examplewith indicator functions. Theorem3.2.5 only requires that
E∗ supd(θ,θ0)<δ |Gn (θ) − Gn (θ0) | . φn (δ) . For i.i.d data, the tail
bounds method used in Van der Vaart and Wellner (1996) can be
modified to obtain Assumption 4. In particular, define a class of
functions Mϵ

δ = {g (Zi, θ1) − g (Zi, θ2) , d (θ1, θ2) ≤ δ, d (θ1, θ0) <
ϵ, d (θ2, θ0) < ϵ}. Then Assumption 4, which requires bounding
E∗

P ||Gn||Mϵ
δ
, can be obtained by invoking themaximum inequalities

in Theorems 2.14.1 and 2.14.2 in Van der Vaart andWellner (1996).
These inequalities provide that for Mϵ

δ an envelope function of the
class of functions Mϵ

δ ,

E∗

P ||Gn||Mϵ
δ

. J

1, Mϵ

δ

 
P∗

Mϵ

δ

21/2
,

E∗

P ||Gn||Mϵ
δ

. J[]

1, Mϵ

δ , L2 (P)
 

P∗

Mϵ

δ

21/2
,

where J

1, Mϵ

δ


and J[]


1, Mϵ

δ , L2 (P)


are the uniform and
bracketing entropy integrals defined in Section 2.14.1 of Van der
Vaart and Wellner (1996), and are finite for most parametric
classes of functions used in practice. Therefore φn (δ) depends

mostly on the variance of the envelope functions

P∗

Mϵ

δ

21/2.
For reasonably smooth functions that are Hölder-continuous, Mϵ

δ

depends only on δ as required by Assumption 4.

Theorem 2. Suppose Assumptions 2 and 4 hold and ϵn → 0, nϵ2−2γ
n

→ ∞ and d

θ̂ , θ0


= op (1). Then, Lϵn

1,pĝ

θ̂


p
−→G (θ0).

1 Here and further we use f (y) = O(g(y)) notation to indicate that there exists a
constantM < ∞ such that |f (y)| ≤ M|g(y)|.
Proof. Recall from (2.1) that Lϵn
1,pĝ(θ̂) − G(θ0) = Ĝ1(θ̂) + G2(θ̂) +

G3(θ̂). As both θ̂ − θ0
p

−→ 0 and ϵn → 0, G3(θ̂)
p

−→ 0 and G2(θ̂)
p

−→ 0 by their definitions. It remains to consider Ĝ1


θ̂1


, which

can be written as

Ĝ1


θ̂1


= Lϵn

1,p


ĝ

θ̂


− g

θ̂


=
1

√
nϵn

p
l=1

cl


G

θ̂ + lϵnej


− G


θ̂ − lϵnej


.

By Assumption 4 and the Markov inequality, this is bounded by
Op


1

√
nϵ1−γ


, which approaches 0 when nϵ2−2γ

n → ∞. �

This result shows that for continuous functions g(Zi, θ) that are
Lipschitz in θ (for which γ = 1), the only condition needed for
consistency is ϵn → 0. The result of Theorem 2 demonstrates that
when the moment function does not have discontinuities, one can
choose the step size to decrease as a polynomial rate in the sample
size. If the moment function is discontinuous, Theorem 2 does not
apply. In this case one has to rely instead on the more general
Theorem 1, which prescribes a slower logarithmic rate of decrease
in the step size.

Example 1. Consider the simple quantile case where the moment
condition is defined by g (yi; θ) = 1 (yi ≤ θ) − τ . In this case a
numerical derivative at θ0 is given by

Lϵn
1,2ĝ


θ̂


=
1
n

n
i=1

1

yi ≤ θ̂ + ϵn


− 1


yi ≤ θ̂ − ϵn


2ϵn

.

This is basically the uniform kernel estimate of the density of yi at
θ̂ :

f̂y

θ̂


=
1
n

n
i=1

1
2ϵn

1


|yi − θ̂ |

ϵn
≤ 1



=
1
n

n
i=1

1
2ϵn

1

 |yi − θ0 −


θ̂ − θ0


|

ϵn
≤ 1

 .

The consistency conditions given in Powell (1984) and Newey and
McFadden (1994), both of which require

√
nϵn → ∞, are too

strong. Under this condition, the second part of the estimation
noise due to θ̂ − θ0,

θ̂−θ0
ϵn

, will vanish. However, for the purpose

of consistency this is not necessary. As long as f̂y (θ) is uniformly
consistent for fy (θ) for θ in a shrinking neighborhood of 0, it

will follow that f̂y

θ̂


p
−→ fy (θ0) . Notably, Kato (2012) derives

the asymptotic normality of Powell (1984)’s kernel estimator
allowing for dependent data and also obtains the optimal rate of
convergence.

As this example illustrates, in one dimension, numerical differ-
entiation resembles smoothing using a uniform kernel function.
Higher order numerical derivatives are related to higher order
kernel functions created by taking linear combinations of uniform
kernels with different supports, as they both reduce the bias to
either the order of the kernel function or the order of the numeri-
cal differentiation which depends on the number of points for tak-
ing linear combinations. The relation in the one dimensional case
has analogs in the multivariate parameter setting. There is a large
literature on replacing non-smooth components in irregular esti-
mators by smooth approximations. Examples include Brown and
Wang (2005), Horowitz (1992), Johnson and Strawderman (2009),
Seo and Linton (2007),Wang et al. (2009) and Zinde-Walsh (2002),
among others. The bandwidth parameter that controls the bias
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of the approximation is closely related to the choice of the step
size. A key difference is that researchers replacing irregular com-
ponents with a smooth approximation typically choose both the
kernel function and the resulting bandwidth. In numerical differ-
entiation typically only the step size is the parameter of choice, and
there is less freedom for choosing among a variety of kernel func-
tions. In addition, the rate condition on the step size resembles one
dimensional nonparametric convergence rates.

3. Numerical derivative based optimization of sample func-
tions

3.1. Definitions

Extremum estimators are defined by maximizers of the sample
objective function. While many derivative-free methods for
optimization exist such as simulated annealing, it is often the
case that, either by explicit researcher choice or by an implicit
choice made by the maximization routine in the optimization
software, the extremum estimator problem is replaced by the
search for the zero of the numerically computed gradient. In this
section we study the properties of the specific estimators based on
numerically solving the first-order conditions for likelihood-type
objective functions.

Consider the problemof estimating the parameter θ0 in ametric
space (Θ, d) with the metric d. The true parameter θ0 is assumed
to uniquely maximize the limiting objective function Q (θ) = Eg
(Yi; θ). An M-estimator θ̂ of θ0 is typically defined as

θ̂ = argmax
θ∈Θ

Q̂ (θ) , (3.2)

where Q̂ (θ) =
1
n

n
i=1 g (Yi; θ). However, in practice, most sam-

ple objective functions Q̂ (θ) of interest cannot be optimized
analytically and are optimized instead through numerical compu-
tation. The optimization routine often uses numerical derivatives
either explicitly or implicitly. In this section we show that while
numerical differentiation does not affect the asymptotic distribu-
tion for smooth models (under suitable conditions on the step size
sequence), for nonsmoothmodels a numerical derivative based es-
timator can translate a nonstandard parametric model into a non-
parametric one.

We focus on the class of optimization procedures based on
numerical gradients that are evaluated using the finite-difference
formulas described in Section 2.1. We start by presenting a finite-
difference numerical derivative version of the M-estimator in
(3.2). A numerical gradient-based optimization routine effectively
substitutes (3.2) with an approximate solution to the non-linear
equationLϵn

1,pQ̂

θ̂
  = op


1

√
n


, (3.3)

for some sequence of step sizes ϵn → 0. In some cases discussed
below the convergence rate in (3.3) can be slower. We do not
require the zeros of the first order condition to be exact in order
to accommodate nonsmooth models. Many popular optimization
packages use p = 1, corresponding to D̂ϵn


θ̂


≡ Lϵn
1,1Q̂


θ̂


=

op


1
√
n


. The cases with p ≥ 2 correspond to a more general class

of estimators that will have smaller asymptotic bias in nonsmooth
models. As will be shown, the estimators (3.2) and (3.3) may have
the same properties for models with smooth moment functions,
but for non-smooth models both the asymptotic distributions and
the convergence rates can be substantially different.
3.2. Consistency

Our first step is to provide a consistency analysis for θ̂ . Many
commonly used models have multiple local extrema, leading to
multiple roots of the first-order condition. To facilitate our analysis
we assume that the researcher is able to isolate a subset of the
parameter space that uniquely contains the global maximum. For
simplicity we will associate this subset with the entire parameter
space Θ . The above discussion is formalized in the following
identification assumption.

Assumption 5. The map defined by D (θ) =
∂
∂θ

E [g (Yi, θ)] identi-
fies θ0 ∈ Θ , in the sense that, from limn→∞ ∥D (θn) ∥ = 0 it follows
that limn→∞ ∥θn − θ0∥ = 0 for any sequence θn ∈ Θ . Moreover,
g(θ) = E [g (Yi, θ)] is locally quadratic at θ0 with g(θ) − g(θ0) ≤

−H̄d (θ, θ0)
2, for some 0 < H̄ < ∞ and all ∥θ − θ0∥ < δ for some

δ > 0.

For global consistency we require the population objective
function to be sufficiently smooth not only at the true parameter,
but also uniformly in the entire parameter space Θ , so that we
can rely on a version of Assumption 2 that is uniform over Θ to
establish uniform consistency for the estimate of the derivative
of the sample moment function. We consider objective functions
generated by classes of functions that have polynomial bounds
on finite differences. These classes include Lipschitz and Hölder-
continuous functions.

The conditions in this section also remain valid for cases where
the objective function exhibits substantially irregular behavior;
e.g. when its first derivative approaches infinity in the vicinity
of the maximum or minimum, for example when g(Yi, θ) =√

|Yi − θ |.
We note that on the one hand, a version of Assumption 4 that

is uniform over Θ restricts our analysis to functions that have
a polynomial envelope on their finite differences. On the other
hand, provided that γ can be very close to zero, it allows the finite
increment in the parameter to lead to a change in the objective
function exceeding the change in the argument. Finite differences
of the objective function g (Yi, θ) =

√
|Yi − θ | around the origin

will be proportional to 1/
√

ϵ and will not shrink too quickly with
the decrease in ϵ. It turns out that this still allows us to provide
consistency for the numerical gradient-based estimators.

The following result establishes consistency under a condition
on the step size sequence that is a function of the sample size and
the modulus of continuity of the empirical process. It is essentially
a replica of Theorem 2 and hence stated without proof.

Corollary 1. Under Assumption 5, as long as ϵn → 0 and nϵ2−2γ
n →

∞, if Assumptions 2 and 4 hold uniformly over Θ instead of only over
N (θ0), then

sup
θ∈Θ

||Lϵn
1,pQ̂ (θ) − G (θ) || = op (1) .

Consequently, if ||Lϵn
1,pQ̂


θ̂


|| = op (1), then θ̂
p

−→ θ0.

For models that have Lipschitz-continuous sample objective
functions (which include models with smooth sample objective
functions) where γ = 1, the restriction nϵ2−2γ

n → ∞ holds
trivially. This implies that for smooth models the sequence of step
sizes can approach zero arbitrarily fast.2

2 There are, however, additional problems that are associated with ‘‘too fast’’
convergence of the step size sequence to zero. These problems, however, are not
statistical and are connected with the machine computing precision.
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3.3. Rate of convergence and asymptotic distribution

In the following theorem we establish the rate of convergence
for the extremum estimator with the objective function from the
considered class.

Theorem 3. Suppose θ̂
p

−→ θ0 such that L
ϵn
1,pQ̂


θ̂


= op


1

√
nϵ1−γ

n


.

Under Assumptions 1 and 4, if nϵ2−2γ
n → ∞ and

√
nϵ1−γ+2p

n =

O (1), and suppose that the Hessian matrix H (θ) of g (θ) is
continuous, nonsingular and finite at θ0, then

√
nϵ1−γ

n d

θ̂ , θ0


=

OP (1).

For a regular parametric model, γ = 1, and there is no change
in the convergence rate. This result is a Z-estimator version of
Theorem 3.2.5 in Van der Vaart and Wellner (1996). Note that
given consistency, the conditions required for obtaining the rate
of convergence are weaker.

The following theorem, which combines a stochastic equicon-
tinuity condition with verification of the Lindeberg condition, es-
tablishes the asymptotic normality of the numerical-derivative
based estimator with an additional assumption of the conver-
gence of the variance. Define H (θ0) =

∂
∂θ

Eg (Y , θ0) and Ω =

limϵ→0 ϵ2−2γ Var

Lϵ
1,pg (Yi, θ0)


.

Theorem 4. Assume that the conditions of Theorem 3 hold but with
√
nϵ1+2p−γ

n = o (1). If
√
nϵ2−γ

n → ∞. Then
√
nϵ1−γ

n


θ̂ − θ0


d

−→N

0,H (θ0)

−1 ΩH (θ0)
−1 .

The additional assumption
√
nϵ2−γ

n → ∞, which essentially
requires ϵn to be larger than the convergence rate of 1

√
nϵ1−γ

n
es-

tablished in Theorem 3 in order to show stochastic equicontinuity,
turns out to be stronger for smooth models than for nonsmooth
models. This is because we are relying on Assumption 4 and the
convergence rate result in Theorem 3 to obtain stochastic equicon-
tinuity.Whenγ = 1, the conditions are consistent as long as p ≥ 1,
or as long as a two sided central derivative is used. However, for
smooth models when γ = 1, one may impose stronger assump-
tions on the sample objective function (e.g. Lemma 3.2.19 in Van
der Vaart and Wellner (1996)) to weaken this requirement. We
demonstrate this in Proposition 1.

Proposition 1. Suppose the conditions of Theorem 4 hold except
√
nϵ2−γ

n → ∞. Suppose further that g (yi, θ) is mean square differ-
entiable in a neighborhood of θ0: for measurable functions D (·, ·) :

Y × Θ → Rp such that

E

g (Y , θ) − g (Y , θ2) − (θ2 − θ1)

′ D(Y , θ1)
2

= o

∥θ1 − θ2∥

2 ,
E∥D (Y , θ1) ∥

2 < ∞ for all θ1, and θ2 ∈ Nθ0 . Define qϵ (zi, θ) =

Lϵ
1,pg (yi; θ) − D (y, θ) , assume that

sup
d(θ1,θ0)=o(1),ϵ=o(1)

[Gnqϵ (yi, θ1) − Gnqϵ (yi, θ0)] = op (1) ,

and D (yi, θ) is Donsker in d (θ1, θ0) ≤ δ (in the sense of (2.1.1.),
pp 81, Van der Vaart andWellner (1996)), then the conclusion of The-
orem 4 holds.

Note that we still require
√
nϵ2

n → 0 to remove the asymptotic
bias, and nϵn → ∞, but we no longer require

√
nϵn → ∞.

The conditions of this theorem are perhaps best understood in
the context of a quantile regression estimator. Consider g (y, θ) =

|y − θ |, and p = 2, so that D (y, θ) = sgn (y − θ) and

qϵ (y, θ) =
(y − θ)

ϵ
1 (|y − θ | ≤ ϵ) .
Then we can bound qϵ (y, θ1) − qϵ (y, θ0) by, depending on which
of d (θ, θ0) and ϵ is larger, the product between 1

ϵ
max


|y −

θ |, |y−θ0|

and themaximumof 1 (|y − θ |) ≤ ϵ+1 (|y − θ0| ≤ ϵ),

and [1 (θ − ϵ ≤ y ≤ θ + ϵ0) + 1 (θ0 − ϵ ≤ y ≤ θ0 + ϵ0)]. Since
max (|y − θ |, |y − θ0|) ≤ ϵ when qϵ (y, θ) − qϵ (y, θ0) is nonzero,
the last condition in Theorem 1 is clearly satisfied by the Euclidean
property of the indicator functions. Alternatively, the qϵ (y, θ)

function in the last condition can also be replaced directly by
Lϵ
1,pg (y, θ).

4. Monte Carlo evidence

To illustrate the theoretical relationship between the smooth-
ness of themoment conditions and the convergence rate of the step
size, we consider the problem of estimating the standard errors for
M-estimators using the standard ‘‘sandwich’’ formula where the
Hessian of the objective function is computed numerically. Con-
sider the objective function that is defined by a continuously dis-
tributed scalar covariate Z

Q (θ) = E

|Z − θ |

1+γ

,

where γ ∈ (0, 1) is a known constant and θ is the parameter of in-
terest. We note that if Z has unbounded support that does not de-
pend on θ and the density of Z is continuously differentiable, then
the objective function Q (·) has a continuous second derivative.

The corresponding sample analog is constructed from the
sample {zi}ni=1 such that

Q (θ) =
1
n

n
i=1

|zi − θ |
1+γ .

The sample objective function is continuously differentiable when
γ > 0, which leads to the equation that determines the estimator

∂Q (θ)

∂θ
=g(θ) = −(1 + γ )

1
n

n
i=1

sign

zi − θ  |zi −θ |

γ
= 0.

(4.4)

Assuming the population objective function is differentiable, the
resulting estimator is consistent and converges to the maximizer
of Q (θ) at the parametric rate. If the Hessian of the population
objective function H(θ0) were known, then the variance of the
estimator could be obtained from

Vθ = H(θ0)
−1VgH(θ0)

−1,

where Vg = (1 + γ )2E

|Z − θ |

2γ

. However, the first derivative

of the sample objective function is not differentiable. Instead,
it is Hölder-continuous with the degree of Hölder-continuity γ .
Thus, the Hessian cannot be obtained by a straightforward twice
differentiation of the sample objective function. To obtain the
Hessian we use the finite difference formulas:

H+

1

θ  = Lϵn
1,1g θ  =

g θ + ϵn

−g θ 

ϵn
,

for the right derivative, and for the left derivative formula.

H−

1

θ  = Lϵn
1,1g θ  =

g θ −g θ − ϵn


ϵn
.

The second-order formula is

H2
θ  = Lϵn

1,2g θ  =
g θ + ϵn


−g θ − ϵn


2ϵn

,
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Fig. 1. The shape of the envelope function for class Fδ,γ ,ϵ centered at a given y.
and the third-order formula is

H3
θ  = Lϵn

1,3g θ 
=

−g θ − 2ϵn

+ 8g θ − ϵn


− 8g θ + ϵn


+g θ + 2ϵn


12ϵn

.

The idea of the Monte Carlo will be the following. We generate
the data for Z from the standard normal distribution, meaning
that the true minimizer of the objective function Q (·) is θ0 =

0. Using (4.4) we obtain the parameter estimate θ . Then using
the sample analog of the formula for Vg as well as each of the
formulas for the numerical derivatives, we construct the estimator
for Vθ . Then we form a t-statistic to test the null hypothesis H0 :

θ0 = 0. We compare the empirical test size with the nominal
size by computing the probability Pr


|t| > q1−α/2


, where q1−α/2 is

1−α/2 quantile of the standard normal distribution. We consider
the designs with γ = 0.25, 0.5, 0.75. For the step size we use
the sequence ϵn = C1 log n/nr . with r = 0.5, 1, 1.5, 2. The
constant C1 is calibrated such that the step size coincides for all
specifications for the minimal chosen sample size.

First, we provide the expression for the Hessian of the popula-
tion objective function. To express the Hessian we notice that

H(θ) =
∂

∂θ
{(1 + γ )E [sign(y − θ) |y − θ |

γ ]}

=
∂

∂θ


(1 + γ )


+∞

−∞

φ(θ + t)sign(t) |t|γ dt


= −(1 + γ )


+∞

−∞

φ(θ + t)sign(t) (t + θ)|t|γ dt,

where φ(·) is the density of the standard normal distribution. As
a result, H(θ0) = −(1 + γ )E


|Y |

1+γ

. To determine the theoret-

ical properties of the estimator for the Hessian, consider the class
of functions

Fδ,γ ,ϵ = {sign(· − θ − ϵ)| · −θ − ϵ|γ

− sign(· − θ + ϵ)| · −θ + ϵ|γ : ∥θ − θ0∥ ≤ δ}.
Provided that this class is indexed by a compact set, its entropy is
a power function of δ, meaning that the corresponding covering
integral is finite. This class also has a finite envelope Fδ,γ ,ϵ(y). This
envelope can be evaluated by noticing that for each θ , functions in
Fδ,γ ,ϵ will take the form of the ‘‘smoothed step function’’. In fact,
note that for each y we can express each function f ∈ Fδ,γ ,ϵ as

−f (y; θ, ϵ) =


|y − θ + ϵ|γ − |y − θ − ϵ|γ , if y − θ > ϵ,
|θ + ϵ − y|γ + |y − θ + ϵ|γ , if y − θ ∈ [−ϵ, ϵ]
|θ + ϵ − y|γ − |θ − ϵ − y|γ , if y − θ < −ϵ.

Note that |f | is decreasing when θ > y and increasing when θ < y.
It is strictly convex when |y − θ | > ϵ and strictly concave when
|y − θ | < ϵ. The Hessian of |f | when |y − θ | < ϵ is equal to

−γ (1 − γ )(|θ + ϵ − y|γ−2
+ |y − θ + ϵ|γ−2)

which approaches zero as γ → 0 meaning that |f | approaches to
a step function on |y− θ | < ϵ for small γ . |f | attains its maximum
at θ = y with value 2 ϵγ . When ϵ ≪ 1, then the maximum of |f |
increases as γ → 0. This means that |f | approaches to an indicator
function on [−ϵ, ϵ] with the height of the step size 2 ϵγ for small
γ . In Fig. 1 we demonstrate the general shape of the envelope.

We now evaluate the variance of the envelope for Fδ,γ ,ϵ . We do
so by considering separately the regions |y−θ | > ϵ and |y−θ | < ϵ.
We start with the region |y − θ | > ϵ. Consider some fixed y. We
note that as |θ | → ∞, we can make the following representation

|θ + ϵ − y|γ − |θ − ϵ − y|γ

= |θ |
γ

1 −
y − ϵ

θ

γ − |θ |
γ

1 −
y + ϵ

θ

γ
= |θ |

γ−12γ ϵ + o(|θ |
γ−1),

where we used the Taylor expansion |1 + y|γ = 1 + γ y + o(x)
for y → 0. As a result |f |/ϵ approaches zero in the limit at the
rate 2γ |θ |

1−γ . As a result, the variance of |f | (and, therefore, its
envelope) for |x − θ |

γ can be majorized by a constant multiple of
γ 2

|θ0|
2−2γ ϵ2.

Now we consider the variance of the envelope for |y − θ | <
ϵ. Provided that for small γ |f | approaches the step function on
[−ϵ, ϵ] of height ϵγ , the variance of the envelope can bemajorized
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Table 1
Rejection rates for H0 with γ = 0.25, α = 0.05.

n ϵn

log n/n2 log n/n1.5 log n/n log n/n0.5

H+

1 (θ0)

10 0.2690 0.2690 0.2690 0.2690
20 0.2370 0.2365 0.2355 0.2350
50 0.1795 0.1790 0.1780 0.1740

100 0.1530 0.1525 0.1515 0.1485
200 0.1360 0.1355 0.1345 0.1280
500 0.1115 0.1120 0.1120 0.1060

1 000 0.0945 0.0940 0.0930 0.0820
2 000 0.0910 0.0895 0.0875 0.0780
5 000 0.0865 0.0865 0.0865 0.0750

10 000 0.0805 0.0810 0.0790 0.0695
20 000 0.0715 0.0712 0.0685 0.0720
50 000 0.0605 0.0614 0.0602 0.0601

100 000 0.0510 0.0505 0.0500 0.0502

H−

1 (θ0)

10 0.2705 0.2705 0.2705 0.2705
20 0.2345 0.2360 0.2350 0.2365
50 0.1800 0.1790 0.1785 0.1765

100 0.1525 0.1525 0.1525 0.1535
200 0.1360 0.1350 0.1335 0.1300
500 0.1115 0.1095 0.1065 0.1015

1 000 0.0945 0.0945 0.0945 0.0865
2 000 0.0910 0.0900 0.0885 0.0815
5 000 0.0865 0.0865 0.0865 0.0785

10 000 0.0805 0.0805 0.0800 0.0634
20 000 0.0715 0.0712 0.0691 0.0712
50 000 0.0603 0.0614 0.0602 0.0601

100 000 0.0510 0.0505 0.0500 0.0510

by the area under the step function supported between −ϵ and ϵ
with the step height∝ ϵ2γ . When γ ≥ 1/2 such an evaluation will
not be accurate because the envelopewillmove away from the step
function. In particular, we note that on |y − θ | < ϵ, any envelope
for γ > 1/2 will lie below the envelope for γ = 1/2. At the same
time for |y − θ | < ϵ
|θ + ϵ − y|1/2 + |y − θ + ϵ|1/2

2
≤ θ + ϵ − y + y − θ + ϵ

= 2ϵ.

This gives a more accurate characterization of the square of the
envelope for γ ≥ 1/2.

Now we combine our variance evaluations for |y − θ | > ϵ and

|y − θ | ≤ ϵ: E

F 2
δ,γ ,ϵ(Y )

1/2
≤ C1ϵ + C2ϵ

1/2+γ
≤ (C1 + C2)ϵ

1/2+γ

whenever γ < 1/2 and E

F 2
δ,γ ,ϵ(Y )

1/2
≤ C1ϵ + C3ϵ whenever

γ ≥ 1/2. The component C1ϵ comes from the majorant on the
variance for |y − θ | > ϵ while the second component comes from
the evaluation on |y − θ | < ϵ.

Provided that the covering integral is finite, the class of
functions with such an envelope admits the evaluation in
Assumption 4 which means that the empirical process associated
with the objective function can be bounded in outer expectation

by a constant multiple of E

F 2
δ,γ ,ϵ(Y )

1/2
, which allows us to apply

Theorem 2. As a result, the sufficient condition for consistency will
require the step size sequence ϵn to be chosen such that n ϵ

1−2γ
n →

∞ whenever γ < 1/2. For γ ≥ 1/2 there is no restriction on the
choice of the step size sequence.

We note that, given that the estimator for θ0 obtained from
solving the first-order condition is consistent, the estimator for the
Hessian, and thus, the standard errors will be consistent, as long as
ϵ
1−2γ
n n → ∞. In Tables 1–3we show the results of theMonte Carlo

simulations for quantile α = 0.05. Smaller values of γ correspond
to less smooth objective functions. Table 1 shows that for the least
smooth case, the chosen step size sequences lead to a decline in the
Table 2
Rejection rates for H0 with γ = 0.25, α = 0.05.

n ϵn

log n/n2 log n/n1.5 log n/n log n/n0.5

H2(θ0)

10 0.2710 0.2710 0.2710 0.2710
20 0.2365 0.2355 0.2355 0.2355
50 0.1805 0.1805 0.1785 0.1780

100 0.1530 0.1530 0.1525 0.1540
200 0.1370 0.1360 0.1360 0.1330
500 0.1115 0.1120 0.1115 0.1130

1 000 0.0945 0.0945 0.0950 0.0900
2 000 0.0910 0.0900 0.0910 0.0840
5 000 0.0865 0.0865 0.0875 0.0775

10 000 0.0805 0.0805 0.0810 0.0696
20 000 0.0715 0.0710 0.0702 0.0720
50 000 0.0611 0.0610 0.0605 0.0601

100 000 0.0508 0.0502 0.0502 0.0502

H3(θ0)

10 0.2700 0.2700 0.2700 0.2700
20 0.2370 0.2350 0.2330 0.2350
50 0.1805 0.1800 0.1775 0.1760

100 0.1525 0.1515 0.1520 0.1495
200 0.1370 0.1360 0.1335 0.1310
500 0.1115 0.1115 0.1105 0.1110

1 000 0.0945 0.0940 0.0920 0.0905
2 000 0.0910 0.0895 0.0900 0.0835
5 000 0.0865 0.0860 0.0865 0.0821

10 000 0.0805 0.0805 0.0795 0.0731
20 000 0.0703 0.0685 0.0685 0.0680
50 000 0.0593 0.0590 0.0592 0.0590

100 000 0.0500 0.0502 0.0502 0.0501

Table 3
Rejection rates for H0 with γ = 0.5, α = 0.05.

n ϵn

log n/n2 log n/n1.5 log n/n log n/n0.5

H+

1 (θ0)

10 0.1326 0.1326 0.1326 0.1326
20 0.1006 0.0996 0.0996 0.0996
50 0.0771 0.0771 0.0781 0.0781

100 0.0626 0.0626 0.0621 0.0631
200 0.0581 0.0566 0.0566 0.0566
500 0.0506 0.0501 0.0501 0.0486

1 000 0.0470 0.0470 0.0465 0.0460
2 000 0.0575 0.0575 0.0575 0.0580
5 000 0.0515 0.0515 0.0510 0.0515

10 000 0.0540 0.0540 0.0540 0.0555
20 000 0.0515 0.0512 0.0515 0.0515
50 000 0.0505 0.0505 0.0505 0.0501

100 000 0.0500 0.0500 0.0500 0.0500

H−

1 (θ0)

10 0.1356 0.1356 0.1356 0.1356
20 0.1011 0.1011 0.1006 0.1001
50 0.0771 0.0771 0.0781 0.0786

100 0.0626 0.0626 0.0631 0.0621
200 0.0576 0.0576 0.0576 0.0586
500 0.0511 0.0511 0.0506 0.0506

1 000 0.0470 0.0470 0.0470 0.0460
2 000 0.0575 0.0575 0.0575 0.0570
5 000 0.0515 0.0515 0.0515 0.0510

10 000 0.0540 0.0540 0.0540 0.0540
20 000 0.0515 0.0512 0.0515 0.0525
50 000 0.0505 0.0505 0.0505 0.0499

100 000 0.0500 0.0500 0.0500 0.0500

rejection probability towards the nominal rejection rate. However,
the best results are observed for the slowest sequences of step
sizes. Even for the slowest chosen sequences thenominal rate is not
achieved even in samples of size 10,000. As the objective function
becomes smoother, the test rejection rate becomes closer to the
nominal one as seen in Tables 2 and 3. Moreover, Table 3 shows
that for smoother objective function the choice of a particular
step size sequence becomes less relevant leading to the rejection
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Fig. 2. Root-mean squared error and bias for formula H3 with sequence log n/n2 and γ = 0.25.
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Fig. 3. Root-mean squared error and bias for formula H3 with sequence log n/n2 and γ = 0.5.
probabilities that are the same up to the fourth significant digit.
This is compatible with our theoretical results that connect the
smoothness of the objective function and the importance of the
choice of the step size sequence.

We also analyze the performance of the root-mean square error,
standard deviation and bias of the obtained estimator for the
variance. To do so we notice that if Z is a standard normal random
variable, then the maximizer of the population objective function
is θ0 = 0. As a result, we can express

Vg = (1 + γ )2E

|Y |

2γ  .
Thus, the formula for the variance of the estimator can be written
as

Vθ = E

|Y |

1+γ
−2

E

|Y |

2γ  . (4.5)

We computed the variance using formula (4.5) via Monte Carlo
integration with 500,000 random draws. Then we compared the
result with the empirical estimates. Figs. 2–4 demonstrate the
decline of the root-mean squared error and the absolute bias with
the sample size for the third-order finite difference formula used to
compute theHessian. It is clear that the decline occursmore rapidly
for the smoother objective function (compare the rate of decline for
γ = 0.25 versus γ = 0.75). The absolute bias declines at the same
rate as the root-mean squared error. The precision of the estimates
substantially improves towards the large samples with the rate of
improvement close to geometric, (see Tables 4–6).

5. Conclusion

In this paper we study the impact of using numerical finite-
difference approximations on the properties of estimates of deriva-
tives of estimated functions, focusing on the case where the
function is computed from a cross-sectional data sample. We
provide weak sufficient conditions for uniformly consistent es-
timation of the gradients and the directional derivatives of
semiparametric moments. Such results can be used to examine
numerically evaluated Hessians (in estimating asymptotic vari-
ances), efficient weighting matrices and optimal instruments used
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Fig. 4. Root-mean squared error and bias for formula H3 with sequence log n/n2 and γ = 0.75.
Table 4
Rejection rates for H0 with γ = 0.5, α = 0.05.

n ϵn

log n/n2 log n/n1.5 log n/n log n/n0.5

H2(θ0)

10 0.1341 0.1341 0.1341 0.1341
20 0.1011 0.1011 0.1006 0.1006
50 0.0771 0.0771 0.0776 0.0776

100 0.0626 0.0631 0.0631 0.0631
200 0.0576 0.0571 0.0571 0.0576
500 0.0506 0.0506 0.0501 0.0501

1 000 0.0470 0.0470 0.0465 0.0465
2 000 0.0575 0.0575 0.0575 0.0580
5 000 0.0515 0.0515 0.0515 0.0510

10 000 0.0540 0.0540 0.0540 0.0540
20 000 0.0515 0.0512 0.0515 0.0525
50 000 0.0505 0.0505 0.0505 0.0499

100 000 0.0500 0.0500 0.0500 0.0500

H3(θ0)

10 0.1341 0.1341 0.1341 0.1341
20 0.1011 0.1011 0.1006 0.1006
50 0.0771 0.0771 0.0776 0.0776

100 0.0626 0.0631 0.0631 0.0621
200 0.0576 0.0576 0.0571 0.0576
500 0.0506 0.0506 0.0506 0.0496

1 000 0.0470 0.0470 0.0465 0.0470
2 000 0.0575 0.0575 0.0575 0.0575
5 000 0.0515 0.0515 0.0515 0.0510

10 000 0.0540 0.0540 0.0540 0.0550
20 000 0.0515 0.0512 0.0515 0.0505
50 000 0.0505 0.0505 0.0505 0.0500

100 000 0.0500 0.0500 0.0500 0.0500

in applied research. We study M-estimators where the optimiza-
tion routine uses a finite-difference approximation to the gradi-
ent. Finite-point approximation formulas use tuning parameters
such as the step size. We find that the presence of such parame-
ters may affect the statistical properties of the resultant extremum
estimator, and that the properties of the estimator obtained from
the numerical optimization routine depend on the interaction be-
tween the precision of approximation, and the smoothness of the
population and sample objective functions. Furthermore, in ongo-
ing research we also extend the results in this paper to rank-type
criterion functions that involve U-statistics with multiple sample
summations (Hong et al. (2012)).
Table 5
Rejection rates for H0 with γ = 0.75, α = 0.05.

n ϵn

log n/n2 log n/n1.5 log n/n log n/n0.5

H+

1 (θ0)

10 0.0861 0.0861 0.0861 0.0861
20 0.0726 0.0725 0.0725 0.0725
50 0.0570 0.0570 0.0570 0.0570

100 0.0565 0.0565 0.0565 0.0565
200 0.0560 0.0560 0.0560 0.0560
500 0.0495 0.0495 0.0495 0.0495

1 000 0.0535 0.0535 0.0535 0.0535
2 000 0.0535 0.0535 0.0535 0.0535
5 000 0.0520 0.0520 0.0520 0.0520

10 000 0.0510 0.0510 0.0510 0.0510
10 000 0.0510 0.0510 0.0510 0.0510
20 000 0.0500 0.0500 0.0500 0.0500
50 000 0.0500 0.0500 0.0505 0.0500

100 000 0.0500 0.0500 0.0500 0.0500

H−

1 (θ0)

10 0.0856 0.0856 0.0856 0.0856
20 0.0726 0.0726 0.0726 0.0726
50 0.0570 0.0570 0.0570 0.0570

100 0.0565 0.0565 0.0565 0.0565
200 0.0560 0.0560 0.0560 0.0560
500 0.0495 0.0495 0.0495 0.0495

1 000 0.0535 0.0535 0.0535 0.0535
2 000 0.0535 0.0535 0.0535 0.0535
5 000 0.0520 0.0520 0.0520 0.0520

10 000 0.0510 0.0510 0.0510 0.0510
10 000 0.0510 0.0510 0.0510 0.0510
20 000 0.0500 0.0500 0.0500 0.0500
50 000 0.0500 0.0500 0.0505 0.0500

100 000 0.0500 0.0500 0.0500 0.0500
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Table 6
Rejection rates for H0 with γ = 0.75, α = 0.05.

n ϵn

log n/n2 log n/n1.5 log n/n log n/n0.5

H2(θ0)

10 0.0861 0.0861 0.0861 0.0861
20 0.0726 0.0726 0.0726 0.0726
50 0.0570 0.0570 0.0570 0.0570

100 0.0565 0.0565 0.0565 0.0565
200 0.0560 0.0560 0.0560 0.0560
500 0.0495 0.0495 0.0495 0.0495

1 000 0.0535 0.0535 0.0535 0.0535
2 000 0.0535 0.0535 0.0535 0.0535
5 000 0.0520 0.0520 0.0520 0.0520

10 000 0.0510 0.0510 0.0510 0.0510
10 000 0.0510 0.0510 0.0510 0.0510
20 000 0.0500 0.0500 0.0500 0.0500
50 000 0.0500 0.0500 0.0505 0.0500

100 000 0.0500 0.0500 0.0500 0.0500

H3(θ0)

10 0.0861 0.0861 0.0861 0.0861
20 0.0726 0.0726 0.0726 0.0726
50 0.0570 0.0570 0.0570 0.0570

100 0.0565 0.0565 0.0565 0.0565
200 0.0560 0.0560 0.0560 0.0560
500 0.0495 0.0495 0.0495 0.0495

1 000 0.0535 0.0535 0.0535 0.0535
2 000 0.0535 0.0535 0.0535 0.0535
5 000 0.0520 0.0520 0.0520 0.0520

10 000 0.0510 0.0510 0.0510 0.0510
10 000 0.0510 0.0510 0.0510 0.0510
20 000 0.0500 0.0500 0.0500 0.0500
50 000 0.0500 0.0500 0.0505 0.0500

100 000 0.0500 0.0500 0.0500 0.0500

Appendix

A.1. Uniform consistency of directional derivatives for semiparamet-
ric models

This subsection extends the weak consistency condition to
directional derivatives of semiparametric conditional moment
models.

Consider a general conditional moment model defined by, for
known m (·) and unknown ρ (·),

m (z, θ, η (·)) = E [ρ (Y , θ, η (·)) |Z = z] = 0,
if and only if (θ, η (·)) = (θ0, η0 (·)) .

The parameters above comprise a finite-dimensional compo-
nent, θ ∈ Θ ⊂ Rd, and an infinite-dimensional component η (·) ∈

H that is contained in the Banach space H . This setup includes
the unconditional parametric moment as a special case where the
‘‘instrument’’ z is a constant and η(·) is not present. Because the
moment condition m (·) can be multi-dimensional, this setup also
includes two step and multi-step step estimators, when some of
the moment conditions corresponding to initial stage estimators
only depend on the infinite-dimensional functions η (·). Semipara-
metric estimators for this general model and their asymptotic dis-
tributions are studied extensively in the literature. In somemodels,
the moment conditions ρ (y, θ, η (·)) depend only on the value of
the function η (·) evaluated at the argument y. In some other mod-
els, such as in dynamic discrete choicemodels and dynamic games,
ρ (y, θ, η (·))maydepend on the entire function ofη (·) in complex
ways, e.g. through value function iterations.

The sieve approach, studied in a sequence of papers by Chen
and Shen (1998), Ai and Chen (2003) and Chen and Pouzo
(2009), approximates the class of infinite dimensional functions
H using a parametric family of functions Hn whose dimension
increases to infinity with the sample size n. Given the complexity
of conditional moment functions in many relevant applications,
finding a closed form expression of the variance of the finite-
dimensional parameters in semiparametric problems can be
challenging or infeasible.

A variance formula for the semiparametric minimum distance
estimators in Ai and Chen (2003) [hereafter AC] can illustrate the
use of numerical derivative approximation. For any w ∈ H and
α = (θ, η), denote by

∂m (Z, α)

∂η
[w] =

dm (Z, θ, η + τw)

dτ


τ=0

the directional derivative of m (Z, α) with respect to the η

component in the w direction. Under conditions given in AC, θ̂
(Equation (4), pp 1798 in AC, where η̂ is also defined) is

√
n

consistent and asymptotically normal while η̂ obtains the optimal
nonparametric convergence rate for η. Consistent inference for
θ requires estimation of the ordinary derivative of the objective
function with respect to the finite-dimensional parameter and
the directional derivative with respect to the infinite-dimensional
parameter

Dwj (z) ≡
∂m (Z, α)

∂θj
−

∂m (Z, α)

∂η


wj


(A.6)

uniformly consistently in various directions wj. Ackerberg et al.
(2012) further show that treating the entire estimation pro-
cedure for α as parametric and reading off the variance of θ̂
from the upper-left block of an estimate of the asymptotic vari-
ance–covariance matrix of α̂ =


θ̂ , η̂


will give consistent

estimates of the asymptotic variance of the parametric com-
ponent. A related method for consistent asymptotic variance
estimation when kernel methods are used to estimate the non-
parametric component was developed in Newey (1994). However,
in many practical estimation problems, the derivatives of ∂m̂(Z,α̂)

∂θj

and ∂m̂(Z,α̂)
∂η


wj

do not have analytic solutions and have to be eval-

uated numerically. See, e.g., Aradillas-Lopez (2010) and Hong and
Shum (2010). This might be the case even if ρ (·) is linear in the
infinite-dimensional function η (·). For example in dynamic mod-
els typically ρ (y; θ0, η0(·)) = η0(z) − Γ (η0(x)) − f (x, z; θ) for a
known parametric function f (x, z; θ) and y = (x, z). Typically the
unknown conditional expectation function m (z, θ, η (·)) needs to
be estimated from the data nonparametrically.

In this section we focus on two special cases where the
conditional moment function is estimated nonparametrically
using orthogonal series and when it is estimated using kernel
smoothing. The infinite-dimensional parameter η is assumed to
be estimated using sieves. The series estimator used to recover
the conditional moment function is based on the vector of basis
functions pN(z) = (p1N(z), . . . , pNN(z))′,m (θ, η, z)

= pN′(z)


1
n

n
i=1

pN(zi)pN′(zi)

−1
1
n

n
i=1

pN(zi)ρ (yi, θ, η) . (A.7)

The kernel estimator is defined using a multi-dimensional kernel
function K(·) and a bandwidth sequence bn as

m (θ, η, z) =


1

nbdzn

n
i=1

K


zi−z
bdzn

−1
1

nbdzn

×

n
i=1

K


zi−z
bn


ρ (yi, θ, η) . (A.8)

In either case, we will denote the resulting estimate bym (θ, η, z). It turns out that the numerical derivative consistency
results for η apply without any modification to the parametric
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component θ . Therefore without loss of generality below we will
focus on differentiating with respect to η.

The directional derivative ofmwith respect to η in the direction

w ∈ H − η0, Gw =
dm(θ0,η0+τw,z)

d τ


τ=0

, is estimated using Lϵn,w
1,p m

θ̂ , η̂, z

, where an additional index is used to emphasize the

direction for which the derivative is taken,

Lϵn,w
1,p m θ̂ , η̂, z


=

1
ϵn

p
l=−p

clm θ̂ , η̂ + lw ϵn, z


.

Given that the direction w itself has to be estimated from the
data, we desire consistency results that hold uniformly both
around the true parameter value and the directions of numerical
differentiation. As in our analysis of parametric models, we focus
on i.i.d data samples. We also impose standard assumptions on the
basis functions as in Newey (1997). Well known conditions that
satisfy Assumption 6 are available in, for example, the handbook
chapter by Chen (2007).

Assumption 6. For the basis functions pN(z) the following holds:

(i) The smallest eigenvalue of E

pN(Zi) pN′(Zi)


is bounded away

from zero uniformly in N .3
(ii) For some ζ0 (N) such that ζ0(N)2N/n → 0, supz∈Z ∥pN(z)∥ ≤

ζ0 (N).
(iii) The population conditional moment belongs to the comple-

tion of the sieve space and for some α > 0,

sup
(θ,η)∈Θ×H

sup
z∈Z

m (θ, η, z) − proj

m (θ, η, z) | pN(z)


= O


N−α


.

When all the basis functions are uniformly bounded, typically
ζ0 (N) =

√
N . In the above

proj

m (θ, η, z) | pN(z)


= pN (z)′


EpN(z)pN(z)′

−1
EpN(z)m (θ, η, z) .

The following assumption on the moment function ρ(·) does not
require smoothness or continuity (Shen and Wong, 1994; Zhang
and Gijbels, 2003).

Assumption 7. (i) The moment functions are uniformly boun-
ded: supθ,η,y ∥ρ(y, θ, η)∥ ≤ C . The density of covariates Z is
uniformly bounded away from zero on its support.

(ii) Suppose that 0 ∈ Hn and for ϵn → 0 and some C > 0,

sup
z ∈ Z, η,w ∈ Hn, |η|, |w| < C,

θ ∈ N (θ0)

Var (ρ (Yi, θ, η + ϵnw)

−ρ (Yi, θ, η − ϵnw) | Zi = z) = O (ϵn) ,

(iii) For each n, the class of functions Fn = {ρ (·, θ, η + ϵnw) −

ρ (·, θ, η − ϵnw) , θ ∈ Θ, η, w ∈ Hn} is Euclidean whose
graphs form a polynomial class of sets and whose coefficients
depend on the number of sieve terms. There exist constants A,
and 0+

≤ r0 < 1
2 such that the covering number satisfies

log N (δ, Fn, L1) ≤ A n2r0 log

1
δ


,

and for r0 = 0+, n0+ is defined as log n.

3 We note that the considered series basis may not be orthogonal with respect to
the semi-metric defined by the distribution of Zi .
Sufficient primitive conditions. Assumption 7(iii) is a high
level condition and its verification will depend upon the applica-
tion at hand. In general, this assumption imposes a joint restriction
both on the class of functions Hn containing sieve estimators for η
and the class of conditional moment functions parameterized both
by θ andη. It is possible to provide lower level sufficient conditions.
In some cases the entropy bounds required in Assumption 7(iii) can
be provided in terms of the entropy of the class Hn. This includes
the case when ρ(·) is (weakly) monotone in η for each θ and Hn is
an orthogonal basis of dimensionality K(n). For example, ρ (·) can
be an indicator function in a nonparametric quantile regression.
Lemma 5 in Shen andWong (1994) suggests that the L1-metric en-
tropy of the class of sieve Fn has order K(n) log 1

ϵ
for sufficiently

small ϵ > 0 and ∥ηn−η0∥L1 < ϵ. Then by Lemma 2.6.18 in Van der
Vaart and Wellner (1996), if the function ρ(·) is monotone, its ap-
plication to η (for fixed θ ) does not increase the metric entropy. In
addition, the proof of Theorem 3 in Chen et al. (2003) shows that
the metric entropy for the entire class Fn is a sum of metric en-
tropies that are obtained by fixing η and θ . The choice K(n) ∼ n2r0

delivers condition 7(iii).
Denote πnη = arg infη′∈Hn ∥η′

− η∥. Let d(·) be the metric
generatedby the L1 norm. The following result extends Theorem37
of Pollard (1984) to the case of sieve estimators. A related idea for
unconditional sieve estimation has been used in Zhang and Gijbels
(2003).

Lemma 2. Suppose that d (πnη, η) = O

n−φ


. Under Assump-

tions 6 and 7

sup
d(θ,θ0)=o(1),d(η,η0)=o(1),η∈Hn

Lϵn,w
1,p m (θ, η, z) − Lϵn,w

1,p m (θ, η, z)


= op(1)

uniformly in z and w, provided that ϵn → 0 and min{Nα, nφ
}ϵn →

∞, and nϵn
ζ0(N)2N n2r0 log n

→ ∞.

Next we provide a similar result for the case where the conditional
moment function is estimated via a kernel estimator. We begin
with formulating the requirement on the kernel.

Assumption 8. The kernel function K(·) satisfies condition (iii) in
Assumption 3. Moreover, it integrates to 1, is bounded and of qth
order, and is square-integrable.

We formulate the following lemma replicating the result of
Lemma 2 for the case of the kernel estimator. For uniformity we
rely on Assumption 7(i) that requires the density of covariates to
be uniformly bounded away from zero.

Lemma 3. Under Assumptions 7 and 8

sup
d(θ,θ0)=o(1),d(η,η0)=o(1),η∈Hn

Lϵn,w
1,p m (θ, η, z) − Lϵn,w

1,p m (θ, η, z)


= op(1)

uniformly in w and z where f (z) is strictly positive for the kernel
estimator provided that ϵn → 0, bn → 0, ϵn min{b−q

n , nφ
} → ∞

and nϵnb
dz
n

n2r0 log n
→ ∞.

Using Lemmas 2 and 3 we can formulate the consistency result
for the directional derivative.

Theorem 5. Under Assumptions 2 and 7, and either 6 or 8, Lϵn,w
1,p m

θ̂ , η̂, z


p
−→

∂m(θ,η,z)
∂η

[w], uniformly in z and w, if ϵn → 0, N →

∞, ϵn min{Nα, nφ
} → ∞, and nϵn

ζ0(N)2N n2r0 log n
→ ∞ for series esti-

mator, and ϵn, bn → 0, ϵn min{b−q
n , nφ

} → ∞, and nϵnb
dz
n

n2r0 log n
→ ∞

for kernel-based estimator, provided that d

θ̂ , θ0


= op (1) and

d

η̂, η0


= op (1).
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This theoremallows us to use finite-difference formulas to eval-
uate directional derivatives. An interesting feature of this result
is that it only depends on the rate of convergence of the infinite-
dimensional parameter indirectly throughAssumption 7(iii)which
implicitly bounds the number of sieve terms that one can use by
n2r0 with r0 < 1

2 , i.e. it has to increase slower than the sample size.

Remark. Our results in this section apply to the case where one
is interested in obtaining a finite-difference based estimator for
the directional derivative that is uniformly consistent over z. Such
a need may arise where the direction of differentiation is also
estimated, an example of which is the efficient sieve minimum
distance estimator in Ai and Chen (2003). If one only needs to
estimate the numerical derivative pointwise the conditions on
the choice of the step size can be weakened. Such results may
be relevant when one is interested in estimating the directional
derivative at a point and a given direction.

A.2. Proof of Theorem 3

Proof. The rate of convergence adapts the proof of Theorem 3.2.5
of Van der Vaart andWellner (1996) to our case. Denote the rate of
convergence for the estimatorθ by ρn. Then we can partition the
parameters space into sets Sj,n =


θ : 2j−1 < ρn d (θ, θ0) < 2j


.

Thenwe evaluate the probability of a large deviationρnd
θ , θ0


>

2M for some integer M , where ρn =
√
nϵ1−γ

n . We know that the
estimator solves, for rn = ϵ

1−γ
n

√
nrnL

ϵn
1,pQn

θ  = op (1) .

If ρnd

θ̂ , θ0


is larger than 2M for a given M , then over the θ in

one of the shells Sj,n,
√
nrnL

ϵn
1,pQn (θ) achieves a distance as close as

desired to zero. Hence, for every δ > 0,

P

ρn d

θ , θ0


> 2M
≤


j ≥ M

2j < δρn

P


sup
θ∈Sj,n


−
Lϵn

1,pQn (θ)
 ≥ −op


1

√
nrn



+ P

2 d
θ , θ0


≥ δ


.

Note thatmean square differentiability implies that for every θ in a
neighborhood of θ0, g (θ)−g (θ0) . −d2 (θ, θ0). Thenwe evaluate
the population objective, using the fact that it has p mean-square
derivatives:Lϵn

1,pQ (θ)
 ≥ C d (θ, θ0) + C ′ϵν−1

n ,

where θ0 is the zero of the population first-order condition and
the approximated derivative has a known order of approximation
∥Lϵn

1,pQ (θ0) ∥ = C ′ϵν−1
n for some constant C ′. Substitution of this

expression into the argument of interest leads toLϵn
1,pQ (θ) − Lϵn

1,pQn (θ)
 ≥

Lϵn
1,pQ (θ)

−
Lϵn

1,pQn (θ)


≥ C d (θ, θ0) + C ′ϵν−1
n + op


1

√
nrn


.

Then applying theMarkov inequality to the re-centered process for
θ ∈ Sj,n

P

rn

√
n
Lϵn

1,pQ (θ) − Lϵn
1,pQn (θ)

 ≥ C rn
√
n d (θ, θ0)

+ C ′rn
√
nϵν−1

n + o (1)


≤ C ′r−1
n n−1/2


2j

ρn

−1

.

Then ρn =
√
n in the regular case and ρn = rn

√
n in cases where

γ ≠ 1.
Finally also note that the evaluation for the expectation holds
for θ = θ0±tkϵn, as shownabove. ByMarkov’s inequality according
to Theorem 2.5.2 from van der Vaart andWellner (1998) it follows
that the process rn

√
nLϵn

1,pQn (θ0) indexed by ϵn is P-Donsker. �

A.3. Proof of Theorem 4

Proof. The result will follow if we can demonstrate that
√
nrn


Lϵn
1,pĝ


θ̂


− Lϵn
1,pĝ (θ0) − G


θ̂


+ G (θ0)


= op (1) . (A.9)

Because of the assumption that
√
nϵν−γ

n → ∞, the bias is
sufficiently small. Therefore this is equivalent to showing that
√
nrn


Lϵn
1,pĝ


θ̂


− Lϵn
1,pĝ (θ0) − ELϵn

1,pĝ

θ̂


+ ELϵn
1,pĝ (θ0)


= op (1) .

Because of the convergence rate established in Theorem 3, this will
be implied by, with rn = ϵn

1−γ :

sup
d(θ,θ0).O


1

√
nϵn1−γ

√
nrn


Lϵn
1,pĝ (θ) − Lϵn

1,pĝ (θ0) − ELϵn
1,pĝ (θ)

+ ELϵn
1,pĝ (θ0)


= op (1) .

The left hand side can be written as a linear combination of the
empirical processes:

sup
d(θ,θ0).O


1

√
nϵn1−γ

√
n
rn
ϵn

[Gn (θ + tϵn) − Gn (θ − tϵn)

− Gn (θ0 + tϵn) − Gn (θ0 − tϵn)] .

Because of Assumption 4, it is bounded stochastically by

Op


rn
ϵn

min (d (θ, θ0) , ϵn)
γ


.

When
√
nϵn2−γ

→ ∞, d (θ, θ0) . O


1
√
nϵn1−γ


= o (ϵn). Hence

the above display is op (1). Therefore (A.9) holds.
Recall that θ̂ is defined by

√
nrn(L

ϵn
1,pĝ(θ̂)) = op (1). Then (A.9)

implies that, using a first order Taylor expansion of G (θ):
√
nrn


Lϵn
1,pĝ (θ0) − ELϵn

1,pĝ (θ0)

+ H (θ0)

√
nrn


θ̂ − θ0


= op (1) . �
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