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Abstract

This paper studies the problem of identification and estimation in nonparametric regression

models with a misclassified binary regressor where the measurement error may be correlated

with the regressors. We show that the regression function is non-parametrically identified in

the presence of an additional random variable that is correlated with the unobserved true un-

derlying variable but unrelated to the measurement error. Identification for semi-parametric

and parametric regression functions follows straightforwardly from the basic identification

result. We propose a kernel estimator based on the identification strategy and derive its

large sample properties and also discuss alternative estimation procedures.

KEYWORDS: Non-Classical Measurement Error, Identification, Non-Linear Models, Mis-

classification.



1 Introduction

Measurement error in non-linear models introduces difficulties whose solutions require tech-

niques that are quite distinct from those usually called for in linear models. Ordinary

instrumental variable estimation is no longer feasible and estimation typically proceeds by

making strong distributional assumptions and/or introducing further information. Such

evidence as is available on the validity of some of these assumptions suggests that they may

not be a reasonable approximation of the true data generating process. In particular, the

assumptions of the classical measurement error model – that the measurement error is inde-

pendent of the true value and of other variables in the model2 – have been shown not to hold

in a number of studies. This paper attempts to shed light on the effect of relaxing these

assumptions in non-linear models by examining in detail the case of misclassified regressors

in non-parametric regression models.

When a mismeasured variable is binary (or more generally has a known finite support)

– commonly referred to as the problem of misclassification – the independence assumption

between the measurement error and the true values of the variable invoked by the classical

model for measurement error is particularly untenable. More generally, the phenomenon of

negative correlation between the errors and the true values (referred to as “mean reversion”)

has been found to exist for a number of quantities of interest. Evidence of such a pattern

has been found in earnings data by Bound and Krueger (1991) and Bollinger (1998).3 In

their article on measurement error in survey data, Bound, Brown, and Mathiowetz (2000)

report similar dependencies for a number of variables including hours worked, union status,

welfare program participation, and employment status.

A second assumption usually imposed on error models is the independence between the

measurement error and the other explanatory variables in the model. Again, there is

evidence from studies that suggests otherwise. For instance, Bollinger and David (1997)

note that the probability of misreporting AFDC status was highest amongst the poorest

households. Mellow and Sider (1983) conclude that over-reporting of hours worked varied

systematically with education and race. Summarizing work on unemployment data, Bound,

Brown, and Mathiowetz (2000) report that misclassification rates tended to vary by age and

sex.4

2Unlike linear models where uncorrelatedness suffices for identification (instrumental variable approaches
for instance), most non-linear models require some sort of independence assumption. The classical measure-
ment error or “errors-in-variables” model in these contexts is usually given by x = x∗ + ε and ε is assumed
independent of the unobserved x∗ and the other regressors in the model.

3Also see the caveat therein.
4Their paper also provides a comprehensive overview of the current empirical evidence on the nature of

measurement error in survey data.
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This paper examines the effect of relaxing these assumptions on the identification and

estimation of a non-parametric regression model. The object of interest is the effect of a

binary random variable x∗ on the conditional expectation of an outcome y while controlling

for other explanatory variables z. The econometrician observes x, an error-ridden measure of

x∗. Since the unobserved variable is binary, the measurement error is necessarily correlated

with the true value x∗. Importantly, we also allow the measurement error to depend upon

the other explanatory variables in the model.

This paper provides sufficient condition for point identification of the conditional expec-

tation of y given x∗ and z. In a related paper Mahajan (2003) obtains sharp bounds for

a similar model. The bounds demonstrate that the regression function is in general not

point identified in the presence of misclassified regressors. Therefore, further information

is needed for identification. In this paper we introduce additional information in the form

of what is referred to as an ILV (Instrument-Like Variable) because it is required to satisfy

analogues of the conditions for an instrumental variable in a standard linear model. How-

ever, it is not equivalent to the standard IV as it is required to satisfy a further condition

explained below. This additional information is enough to achieve point identification, and

we propose simple estimation strategies for the parameters of interest.

Section 2 provides a review of related work in the non-linear measurement error and

misclassification literature, following which we begin our first study of the problem. Section

3 describes the general model and presents the fundamental identification result. The

section also provides identification results for semi-parametric and fully parametric regression

functions which will be shown to follow straightforwardly from the basic identification result.

Section 4 outlines an estimation strategy based on the identification result and details the

large sample properties of the proposed estimator. Section 5 outlines alternative estimation

strategies including one based on the method of sieves that is relatively straightforward to

implement. Section 6 discusses testing for mislassification and proposes a simple test based

on an exclusion restriction and Section 7 concludes.

2 Related Literature

There has been a fair amount of work on measurement error in non-linear models over the

past two decades. A useful survey of the statistics literature can be found in Carroll, Rup-

pert, and Stefanski (1995). Hausman, Newey, Ichimura, and Powell (1991) address the issue

of measurement error in polynomial regression models by introducing auxiliary information

either in the form of an additional indicator or an instrument. Their identification and

estimation strategy relies on the classical measurement error model requiring independence
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between the measurement error and the true value of the mismeasured variable as well as

independence between the error and the correctly measured covariates.5 Under a similar set

of conditions Schennach (2004a) proposes an estimation strategy for a much more general

class of non-linear models.

Amemiya (1985) considers instrumental variable estimation for non-linear models in the

presence of classical measurement error and is able to show consistency and asymptotic nor-

mality for his estimator as long as the variance of the measurement error shrinks to zero fast

enough (see also Chesher (1991)). Stefanski and Buzas (1995) consider instrumental variable

estimation for the binary choice model with classical measurement error and derive “approx-

imately consistent” methods whose accuracy depends upon the degree of non-linearity in

the model. Buzas and Stefanski (1996) discuss estimation of generalized linear models with

known link functions in the presence of classical measurement error. Identification in their

paper rests on the existence of an instrumental variable with a parametrically specified dis-

tribution that is unrelated to the measurement error and the outcome. Estimation follows

from a modification of the usual score equations to obtain a set of unconditional moment

conditions. Newey (2001) also considers instrumental variable estimation for general non-

linear models with measurement error and uses the method of simulated moments while

Lewbel (1996) considers instrumental variable estimation of Engel curves with measurement

error and imposes distributional assumptions to identify and estimate the model. More

recently, Schennach (2004b) considers instrumental variable estimation of non-linear models

in the presence of classical measurement error.

Another class of models achieves identification by supplementing the classical indepen-

dence assumptions with a distributional assumption on the measurement error. Taupin

(2001) proposes a consistent estimator for a nonlinear regression model by imposing normal-

ity on the measurement error, while Hong and Tamer (2001) derive estimators for a broader

class of moment based models by assuming a Laplace distribution for the error term. An-

other set of papers rely on the availability of a validation data set (that is, a sample where

both the mismeasured as well as the true value of the variable are observed). Carroll and

Wand (1991) use validation data to estimate a logistic regression with measurement error,

as do Lee and Sepanski (1995) for a non-linear regression model.

All these papers assume some variant of the classical additive measurement error model

and independence between the correctly measured covariates and the measurement error.

Work departing from the classical measurement error assumptions can be found in Horowitz

and Manski (1995). In their work, the observed data are a mixture of the variable of interest

5The full independence assumption is imposed, however, only on one of the error terms in the repeated
measurements.
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and another random variable and the error is allowed to depend upon the variable of interest

(see also the important work by Molinari (2004)). Chen, Hong, and Tamer (2002) relax

the independence assumptions between errors and the true values of the variables in the

presence of an auxiliary data set and derive distribution theory for estimates based on non-

linear unconditional moment restrictions. Imbens and Hyslop (2000) interpret the problem

within a prediction model in which the errors are correlated with the true values and discuss

the bias introduced in estimation procedures if measurement errors followed their model.

Measurement error in binary variables is necessarily non-classical in nature since the

error term is perforce negatively correlated with the true outcome. Under a minimal set

of assumptions, Molinari’s (2004) work can be used to derive restrictions on the oberved

probability distributions in the presence of misclassified data. If the misclassified variable

is a response variable, Horowitz and Manski’s (1995) work can be used to derive bounds for

the unidentified parameters of the conditional distribution of interest. Abrevaya, Hausman,

and Scott-Morton (1998) examine the effect of a mismeasured left hand side binary variable

within a parametric maximum likelihood as well as a semiparametric framework (see also

Lewbel (2000)). The issue of misclassified binary regressors was first addressed by Aigner

(1973) and subsequently by Bollinger (1996) in the context of a linear regression model. In

the absence of further information, they show that the model is not identified and both papers

obtain sharp bounds for the parameters of interest. With the addition of further information

in the form of a repeated measurement, Black, Berger, and Scott (2000) obtained point

identification for the slope coefficient in a univariate regression using a method of moments

approach. An essentially similar approach was used by Kane, Rouse, and Staiger (1999) to

study the effect of mismeasured schooling on returns to education and Card (1996) studies

the effect of unions on wages taking misclassification of union status explicitly into account

using a validation data set. All these papers make the assumption that misclassification

rates are independent of the other regressors in the model.6 This paper is very closely

related to Lewbel (2004) who discusses bounds and the estimation of the marginal effect of

a misclassified treatment in a very similar context under various related sets of assumptions.

The present paper makes three contributions to the literature on measurement error

in non-linear models. First and most importantly, it provides identification results for

a large class of non-linear models with measurement error of a fundamentally non-classical

nature. Second, we propose an estimator based on the identification argument and establish

its large sample properties. Finally, we develop a relatively straightforward maximum

likelihood estimator based on the method of sieves for the special case of misclassification in

a parametric binary choice model.

6Although, Abrevaya, Hausman, and Scott-Morton (1998) discuss a case where this is not true.
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3 The Model and Identification

In this section we provide identification results for the regression function in the presence of

misclassified regressors in models of the form

E [y − g(z̃)|z̃] = 0 (I)

where the conditional expectation function g (·) is unknown.

We assume that the random vector z̃ can be partitioned as (x∗, z) where x∗ is a binary

random variable and z is an observed dz × 1 random vector. Instead of observing x∗ we

observe x, a misclassified version of x∗ (known as a “surrogate” in the literature). In addition

to the surrogate we also observe another random variable v (with properties to be specified

below) and the model satisfies

E [y − g (z̃) |z̃, x, v] = 0 (1)

The assumption that the conditional mean of y is unaffected by knowledge of x once x∗

is known is referred to as the assumption of non-differential measurement error and asserts

that the misclassification rates themselves are uninformative about the outcome of interest

given the truth and the other covariates z. The conditional statement is important since

the misclassification rates may be informative about responses through their correlation with

the other explanatory variables in the model. In their survey paper on measurement error,

Bound, Brown, and Mathiowetz (2000) provide instances when such an assumption is likely

or unlikely to hold.7 In the linear context with a convolution model for measurement error,

this assumption is analogous to the assumption that the error term in the outcome equation

is conditionally mean independent of the measurement error in the mismeasured regressor.

The specification (1) also requires that the variable v be excluded from the outcome

equation conditional on all the other covariates (and the surrogate) and is analogous to the

exclusion restriction in standard linear instrumental variable models. It is for this reason

(and a further analogy explained below) that we refer to v as an ILV (“Instrument Like

Variable”).8 It is related to the identification argument in Lewbel (2000) (see also Abrevaya

and Hausman (1999)) which requires the existence of an included regressor that does not

affect the misclassification probabilities. The differences between those papers and this one

7For instance, as a referee has pointed out, non-differential measurement error in the program evaluation
context (where x∗ denotes treatment status) rules out placebo effects.

8A referee has pointed out that it is also possible to interpret this variable exactly as an instrument by
imposing the additional structure that x = h (x∗, z, e) where e ⊥ (x∗, z) and requiring v to be independent
of e and conditionally correlated with x∗. In the paper, however, we do not impose this additional structure
since it is not required at any other point.
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are that v must be an excluded variable in the model (1) here and that misclassification in

Lewbel (2000) is occurs in the left-hand side of a binary choice model.

The identification argument relies on four important assumptions: 1) identification of

model (I) in the absence of misclassification, 2) restrictions on the extent of misclassification,

3) independence between the misclassification rates and the ILV conditional on the other

regressors and 4) a dependency relationship between the unobserved regressor and the ILV.

For simplicity, I assume that the ILV v is binary (taking on values (v1, v2)). This clarifies

the arguments and is sufficient for identification. These four assumptions and an additional

one are outlined below and remarks follow. Throughout, we assume that the econometrician

observes an i.i.d. sample {yi, xi, zi, vi}ni=1. Let za ∈ Sz denote an arbitrary element of the

support of z (Sz)and we use the shorthand P (·|za) to denote P (·|z = za)

ASSUMPTION 1 (Identification in the absence of Misclassification) The regression func-

tion g (x∗, za) in the model (I) is identified given knowledge of the population distribution of

{y, x∗, z}.

ASSUMPTION 2 (Restriction on the extent of Misclassification)

P (x = 1|x∗ = 0, za)︸ ︷︷ ︸
η0(za)

+ P (x = 0|x∗ = 1, za)︸ ︷︷ ︸
η1(za)

< 1 (2)

ASSUMPTION 3 (Conditional Independence between the surrogate and the ILV)

x ⊥ v | (x∗, za) (3)

ASSUMPTION 4 (Dependency Condition) v1 6= v2 and

P (x∗ = 1|za, v1) 6= P (x∗ = 1|za, v2) (4)

ASSUMPTION 5 (Relevance of x∗)

g(1, za) 6= g(0, za) (5)

Assumption 1 is straightforward and requires that the conditional expectation g (x∗, za)

in the model (I) is identified in the absence of misclassification. Assumption 2 ensures

that the misclassification is not “too bad” in the sense that the surrogate is (conditionally)

positively correlated with the unobserved x∗. While we allow for misclassification rates to

differ across the explanatory variables (e.g. more educated people are less likely to misreport)
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we require that the relationship is stable in the sense of Assumption 2. It is possible to

weaken this assumption to non-zero correlation between the surrogate and x∗ (conditional on

z) and knowledge of the sign of the correlation. This information will allow the researcher to

relabel the variables so as to satisfy Assumption 2.9 In its unconditional form, Assumption

2 is referred to as the Monotonicity Assumption by Abrevaya, Hausman, and Scott-Morton

(1998) and is crucial for identification as discussed below.

Under just assumptions 1 and 2 the regression function g (x∗, za) is not identified. We

can, however, obtain sharp bounds on the regression function which are detailed in Mahajan

(2003).10 The bounding results imply that we need further information to point identify

the model and the additional information provided by assumptions 3 and 4 provides us with

sufficient variation to identify the regression function.

Assumption 3 requires that the ILV be conditionally independent of the misclassification

probabilities. This is a strong assumption but it is difficult to relax it and retain point

identification. It is analogous to assumptions placed on the repeated measurement in models

of measurement error in non-linear models (see for instance Hausman, Newey, Ichimura, and

Powell (1991), Schennach (2004a), Li (1998) and for the linear case Kane, Rouse, and Staiger

(1999)) and is similar in spirit to the requirement that the instrument be uncorrelated with

the measurement error in the standard IV approach to dealing with classical measurement

error in linear models. The statement is, however, conditional on the other regressors z so

it is possible that the ILV and x are unconditionally correlated with each other.

Assumption 4 is particular to the model in this paper and requires that the ILV be

informative about x∗ even after conditioning on the other covariates. It is analogous to

the requirement in IV models that the instrument be related to the endogenous regressor

conditional on all the other regressors (although obviously the analogy is imperfect since x∗

is unobserved) and is like the identification assumption in Theorem 2.1 of Das (2004). This

points to a link between the proposed model above and endogenous regression models and is

discussed in some detail below. Given the other assumptions, Assumption 4 can be tested in

principle since it is equivalent to the statement P (x = 1|za, v1) 6= P (x = 1|za, v2) and both

quantities are directly identified.

Finally, Assumption 5 ensures that x∗ is not redundant in the sense that E [y|x∗, za] 6=
E [y|za] . This assumption can be verified in principle since its negation implies E [y|x = 1, z] =

E [y|x = 0, z] which is a testable implication since all quantities are directly identified. If

9Essentially, all that is required is that for a pair of misclassification probabilities, (η0 (za) , η1 (za)) , the
pair (1− η0 (za) , 1− η1 (za)) is not a permissible pair of misclassification rates. I thank two referees for
these points.

10For instance in the case where E (y|x = 1, z) > E (y|x = 0, z), the sharp bounds are g (1, z) ∈
[E (y|x = 1, z) ,∞) and g (0, z) ∈ (−∞,E (y|x = 0, z)].
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Assumption 5 does not hold, the regression function is trivially identified although the mis-

classification rates are not. The assumptions above are very close to those in Lewbel (2004)

for the case of a two-valued instrument except that we do not require his assumptions (B6)

or the second assumption in (A3).

Under these conditions we can now state the central result of the paper.

THEOREM 1 Under Assumptions 1-5, g (x∗, za) and the misclassification rates η0 (za) and

η1 (za) in model (1) are identified.

Remark 1 If Assumptions 1-5 are modified to hold for almost all z ∈ Sz (by appending “a.e.

Pz” to the displays 2,4 and 5, then the entire regression function g (·) and the misclassification

rates η0 (·) and η1 (·) in model (1) are identified.

Note that the regression function is identified even though x∗ is measured with error that

does not conform to the classical error in variables assumptions. The proof is detailed in

the appendix but we outline the main steps here. In the first step, we show that if the

misclassification rates are identified, then the regression function at (x∗, za) is identified. In

the second step, we show that the misclassification rates are identified.

To motivate the argument, consider

P (x = 1|za, v)︸ ︷︷ ︸
η2(za,v)

=
∑

s∈{0,1}

P (x = 1|x∗ = s, za, v) P(x∗ = s|za, v)

Let η∗2 (za, v) ≡ P (x∗ = 1|za, v) . Assumption 3 implies

η∗2 (za, v) =
η2 (za, v)− η0 (za)

1− η0 (za)− η1 (za)
(6)

where the denominator above is a.e. strictly positive because of Assumption 2. The func-

tion η2 (za, v) is directly identified since {x, z, v} are observed. Therefore, if the functions

{η0 (za) , η1 (za)} are identified, then η∗2 (za, v) is also identified.

The first step of the argument concludes that if the misclassification rates {η0 (za) , η1 (za)}
are identified, then assumptions 1, 4 and 5 ensure that g (x∗, z) is identified. To see the ar-

gument, note that we can write the identified moment E [y|za, v] as

E [y|za, v] = g (0, za) (1− η∗2 (za, v)) + g (1, za) η
∗
2 (za, v) (7)

If the misclassification rates are identified, then we can use the variation in v and Assumptions

1 and 5 to deduce straightforwardly (indeed it is a linear system of equations) that g (x∗, za)
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is identified. 11

In the final part of the proof we show that the ILV and the directly observed moments

ensure identification up to a “probability flip” – that is to say given a set of misclassification

probabilities (η0 (za) , η1 (za)), the ILV ensures that all elements of the identified set (of ob-

servationally equivalent regression functions and misclassification rates at the point za must

have misclassification rates
(
η̃0 (za) , η̃1

(za)
)

= (1− η1 (za) , 1− η0 (za)). These probabili-

ties, however, are ruled out by Assumption 2 (since then η̃0 (za) + η̃1 (za) > 1) and therefore

the misclassification rates are identified.

In fact, Apppendix A.1 shows that we can directly identify the misclassification rates as

a function of the observed moments of w = (y, x, xy)

η1 (za) = (1− h1 (E (w|za, v1) ,E (w|za, v2)) + h0 (E (w|za, v1) ,E (w|za, v2))) 2−1 (8)

η0 (za) = (1 + h1 (E (w|za, v1) ,E (w|za, v2)) + h0 (E (w|za, v1) ,E (w|za, v2))) 2−1 (9)

for known smooth functions h1 (·) and h0 (·) whose precise form is given in (41) and (40)

respectively.

The misclassification rates identified above then are used to identify η∗2 (z, v) using (6),

which in turn are then used to solve for g (x∗, z) using (7). This yields (for a smooth well

defined known function q (·) whose precise form is given by (46) (see Appendix A.4)

g (1, za) =
1

2
q (E (w|za, v1) ,E (w|za, v2))

+
1

2
h0 (E (w|za, v1) ,E (w|za, v2))

E (y|za, v1)− E (y|za, v2)

E (x|za, v1)− E (x|za, v2)

g (0, za) =
1

2
q (E (w|za, v1) ,E (w|za, v2))

−1

2
h0 (E (w|za, v1) ,E (w|za, v2))

E (y|za, v1)− E (y|za, v2)

E (x|za, v1)− E (x|za, v2)

The formula for the marginal effect implied by the two equations above is instructive and

provides a connection to the literature on estimation of endogenous regression models:

g (1, z)− g (0, z) =
E (y|za, v1)− E (y|za, v2)

E (x|za, v1)− E (x|za, v2)
h0 (E (w|za, v1) ,E (w|za, v2))

The first term on the right hand side is akin to the Wald estimator of the marginal effect of

11I thank a refree for pointing this out (see Appendix A.1 for details).
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x on y using v as an instrument. The second term can be thought of as a correction term to

account for the fact that in the presence of binary misclassification, the Wald-IV estimator

does not identify the marginal effect.12

The form of the marginal effect also suggests that the model may be extended to allow

for endogeneity of the true (unobserved) x∗ in a regression model with additively separable

errors. In particular, we can retain identification for the function g∗ (x∗, z) when

y = g∗ (x∗, z) + ε (10)

where E (ε|z, v) = 0 which is the usual IV assumption so that x∗ is endogenous as well as

misclassified. To account for the mismeasurement, we need to impose the analogue of (I)

which is

E (y|x∗, z, x, v) = E (y|x∗, z) (11)

Inspection of the proofs of Theorem 1 reveals that the function g∗ (x∗, za) is identified even

in this model (a formal argument is provided at the end of the proof Theorem 1 in Appendix

A.2) without modification. Finally, under the modifications outlined in Theorem 1, the

result can be extended to yield identification of the entire regression function g∗ (x∗, ·) .
These results are related to those in Das (2004) and the main difference is that for the model

under consideration here the endogenous regressor is unobserved but restricted to be binary.

3.1 Semiparametric Models

The identification of semi-parametric regression models, such as single-index models follows

in a straightforward manner from the identification result above. In this sub-section we

provide identification results in the presence of misclassified regressors for the parameter θ0

in models of the form

E [y − g (τ(z̃; θ0)) |z̃] = 0 (12)

where g (·) and the parameter vector θ0 are unknown and τ (·) is a known index function.

The assumption of non-differential measurement error and the exclusion restriction that

motivated the additional conditional moment restrictions in (1) can now be written as

E [y − g (τ (z̃; θ0)) |z̃, x, v] = 0

The following modifications are sufficient for identification of the parameter θ0.

12In fact, the marginal effect above is the nonparametric analogue to the formula in the linear regression
case stated in Kane, Rouse, and Staiger (1999).
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ASSUMPTION 6 The parameter θ0 and the function g (·) in the model (12) are identified

in the model given knowledge of the population distribution of {y, x∗, z} .13

ASSUMPTION 7 τ(1, z, θ0) 6= τ(0, z, θ0) a.e. Pz

Lemma 1 If Assumptions 2-4,6 and 7 are modified to hold for almost all z ∈ Sz by appending

“a.e. Pz” to the displays (2) and (5), then the parameter vector θ0 and the misclassification

rates η0 (·) and η1 (·) in the model (12) are identified.

3.2 Parametric Models

Identification for parametric models also follows from the identification result above. An im-

portant special case (see Zinman (2004) for an application of the model discussed here) is that

of the parametric binary choice model. The appropriate modifications to the identification

result yield the identification of the binary choice coefficients as well as the misclassification

rates. In this context, the model is given by

P (y = 1|x∗, z, x, v) = F (θ10 + θ20x
∗ + θ30z) (13)

for some known strictly increasing function F (·) . If assumptions 2, 4 are modified to hold

almost everywhere Pz and we modify assumptions 1 and 5 to

ASSUMPTION 8 E ([1, x∗, z]′[1, x∗, z]) > 0 and

ASSUMPTION 9 θ20 6= 0

then the parameter vector θ0 and the misclassification rates are identified using similar

arguments as in the main identification theorem. Assumption 8 is the usual identification

assumption in a binary choice model while Assumption 9 ensures that x∗ is not redundant in

(13). Similar approaches can be applied to other conditional maximum likelihood models.

4 Estimation

We next discuss estimation of the regression function g (x∗, za) non-parametrically and also

outline semi-parametric estimation procedures for some of the other models discussed above.

13Sufficient conditions are standard in the literature and detailed in Ichimura (1993) and collected for
instance in Theorem 2.1 of Horowitz (1998). The assumptions require (roughly) non-constant, non-periodic
and differentiable index function g (·), continuously distributed z with E (zz′) > 0, parameter vector normal-
izations and conditions on the support of the index.
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Detailed estimation strategies for the semi-parametric (single-index) and parametric (maxi-

mum likelihood binary choice) models are discussed in Mahajan (2004).

The estimation strategy follows directly from the identification argument. In particular,

Theorem 1 showed that the regression function (g (0, z) , g (1, z)) is a smooth function of

the observed coditional moments E (w|za, va) where w = (x, y, xy). We estimate these

conditional expectations non-parametrically and apply the continuous mapping theorem to

study the consistency and asymptotic distribution of the proposed estimator. It is convenient

to introduce some notation to describe the kernel smooths that will be useful in the sequel.

Let f (z|va) denote the density of z conditional on v = va and let γ1
a (z) ≡ f (z|va) P (v = va) .

For a ∈ {1, 2} define

γxa (z) ≡ P (v = va) f (z|va) E [x|z, va] (14)

γya (z) ≡ P (v = va) f (z|va) E [y|z, va] (15)

γxya (z) ≡ P (v = va) f (z|va) E [xy|z, va] (16)

and define their empirical counterpart (for s ∈ {1, x, y, xy})

γ̂sa (za) =
1

nhdz

n∑
i=1

siK

(
zi − za
hn

)
I {vi = va}

for a kernel function K (·) and a choice of bandwidth sequence {hn} with properties specified

below. The estimator for the conditional expectations of interest is then

Ê (w|za, va) =
1

γ̂1
a (za)

 γ̂xa (za)

γ̂ya (za)

γ̂xya (za)



=
1∑n

j=1K
(
zj−za

hn

)
I {vj = va}

n∑
i=1

 xi

yi

xiyi

K (zi − za
hn

)
I {vi = va}

The regression function can then be estimated as

ĝ (1, za) =
1

2
q
(
Ê (w|za, v1) , Ê (w|za, v2)

)
+ (17)

1

2
h0

(
Ê (w|za, v1) , Ê (w|za, v2)

) Ê (y|za, v1)− Ê (y|za, v2)

Ê (x|za, v1)− Ê (x|za, v2)
(18)

12



ĝ (0, za) =
1

2
q
(
Ê (w|za, v1) , Ê (w|za, v2)

)
− (19)

1

2
h0

(
Ê (w|za, v1) , Ê (w|za, v2)

) Ê (y|za, v1)− Ê (y|za, v2)

Ê (x|za, v1)− Ê (x|za, v2)
(20)

and the marginal effect

ĝ (1, z)− ĝ (0, z) =
Ê (y|za, v1)− Ê (y|za, v2)

Ê (x|za, v1)− Ê (x|za, v2)
h0

(
Ê (w|za, v1) , Ê (w|za, v2)

)
The misclassification rates are similarly estimable by substituting the estimator for E (w|za, va)
into the formulae in (9) and (8).

Consistency of the estmators ĝ (1, za) and ĝ (0, za) follows from the continuous mapping

theorem and the consistency of the estimator Ê (w|za, va) which can be shown using results

familiar from the non-parametric estimation literature. Similarly, the large sample distri-

bution of the proposed estimator follows from a standard asymptotic normality result for

Ê (w|za, va) and the “delta” method. We state a set of sufficient conditions for the asymp-

totic normality result as detailed in Bierens (1987) for the case of regression estimation

with discrete and continuous regressors. We assume, as before, that the IVL v only takes

on 2 values. Let σsk (za, va) = E (wk − E (wk|za, va))s and f (z|va) denote the density of z

conditional on v = va

For each of k = 1, 2, 3 and both values of v, the following conditions hold

ASSUMPTION 10 There exists a δ > 0 such that σ2+δ
k (z, va) f (z|va) is continuous and

uniformly bounded in z

ASSUMPTION 11 The functions (E (wk|z, va))2 f (z|va),σ2
k (z, va) f (z|va) are continuous

and uniformly bounded in z.

ASSUMPTION 12 The functions f (z|va) , (E (wk|z, va) f (z|va)) have first and m ≥ 2

partial derivatives that are continuous and uniformly bounded in z

ASSUMPTION 13 The Kernel function K : Rdz → R satisfies for some m ≥ 2

∫
(z1)i1 ... (zdz)idz K (z) dz =

{
1 if i1 = .. = idz = 0

0 if 0 < i1 + ...+ idz < m

for non-negative integers (i1, ..., idz) and
∫
‖z‖iK (z) dz <∞ for i = m.

ASSUMPTION 14 hn → 0, nhdz
n →∞ and

√
nhdz

n h
m → 0

13



These are standard conditions for deriving large sample properties of kernel estimators

and are for instance expounded in Bierens (1987). Under these conditions

Lemma 2 Suppose that 10-14 hold. Then for each va ∈ {v1, v2}

√
nhdz

(
Ê (w|za, va)− E (w|za, va)

)
⇒ N (0, Va)

where

Va =

 V ar (x|za, va) Cov (x, y|za, va) Cov (x, xy|za, va)
Cov (x, y|za, va) V ar (y|za, va) Cov (y, xy|za, va)
Cov (x, xy|z, v) Cov (y, xy|za, va) V ar (xy|za, va)

 ∫
K (z)2 dz

f (z|va) P (v = va)

and the vectors √
nhdz

(
Ê (w|za, v1)− E (w|za, v1)

)
and √

nhdz

(
Ê (w|za, v2)− E (w|za, v2)

)
are asymptotically independent.

The result follows directly from Theorem 3.2.1 in Bierens (1987) and the Cramer-Wold

device. We can then apply the “delta” method to conclude

Lemma 3 Suppose that Assumptions 1-5 and 10-14 hold. Then, the estimators ĝ (1, z)

and ĝ (0, z) defined in (17) and (19) above converge weakly as follows:

√
nhdz (ĝ (1, za)− g (1, za))⇒ N (0,Ω1)

√
nhdz (ĝ (0, za)− g (0, za))⇒ N (0,Ω0)

and the marginal effect

√
nhdz ((ĝ (1, za)− ĝ (0, za))− (g (1, za)− g (0, za)))⇒ N (0,ΩM)

where

Ω1 =
f1 (E (w|za, v1) ,E (w|za, v2) , V (w|za, v1) , V (w|za, v2))

2 [(E (y|za, v1)− E (y|za, v2)) (E (x|za, v1)− E (x|za, v2))]2 (1− η0 (za)− η1 (za))

Ω0 =
f0 (E (w|za, v1) ,E (w|za, v2) , V (w|za, v1) , V (w|za, v2))

2 [(E (y|za, v1)− E (y|za, v2)) (E (x|za, v1)− E (x|za, v2))]2 (1− η0 (za)− η1 (za))
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ΩM =
fM (E (w|za, v1) ,E (w|za, v2) , V (w|za, v1) , V (w|za, v2))

2 [(E (y|za, v1)− E (y|za, v2)) (E (x|za, v1)− E (x|za, v2))]2 (1− η0 (za)− η1 (za))

for positive functions f1 (·) , f0 (·) and fM (·) and where V (w|za, vk) denotes the conditional

variance-covariance matrix of the vector (x, y, xy) .

The proof follows from an application of the “Delta” method, as expounded for instance

in van der Vaart (1998). The denominator terms in the asymptotic variances are of some

independent interest because they highlight the relationship between the identifying assump-

tions (which ensure that none of the three terms in the denominator is zero) and the weak

convergence result. The variances can be estimated consistently for instance by the boot-

strap ( see e.g. Jones and Wand (1995) or Shao and Tu (1996)) .

We now briefly discuss estimation of the average marginal effect. Recall that the marginal

effect (conditional on z) is consistently estimable by

ĝ (1, z)− ĝ (0, z) =
Ê (y|z, v1)− Ê (y|z, v2)

Ê (x|z, v1)− Ê (x|z, v2)
h0

(
Ê (w|z.v1) , Ê (w|z.v2)

)
Here we outline the estimation of the marginal effect averaged over (a fixed subset of) the

support of z.14 The object of interest for this sub-section is the averaged marginal effect

βm = E (l (z) (g (1, z)− g (0, z)))

where l (z) is a fixed trimming function. A consistent estimator of this parameter is

β̂m =
1

n

n∑
i=1

l (zi) (ĝ (1, zi)− ĝ (0, zi)) (21)

and asymptotic normality at the
√
n rate can be obtained by verifying conditions for Theorem

8.11 of Newey and McFadden (1994) and we omit details here.

5 Semiparametric Estimation

We briefly discuss estimation strategies for the single-index model (12) in the case where

τ (z̃, θ0) = z̃′θ0 = x∗θ10 + z′θz0 (details can be found in Mahajan (2004)). Estimation of

the single index model in this context can in principle be carried out in different ways. One

is to use series approximations for each of the functions (g (·) , η0 (·) , η1 (·) , η2 (·)) and carry

14The choice of a variable trimming device (not explored here) would enable consistent estimation of the
marginal effect averaged over the entire support of z.
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out sieve estimation, thereby generalizing the approach in Section 5.1 below (indeed this

approach could also be applied to the case where the index function is not linear as for

instance in Newey and Stoker (1993)15). An alternative approach, pursued here, is to apply

a single index estimation scheme along the lines of Powell, Stock, and Stoker (1989).

The motivation for the estimation scheme follows directly from the identification argu-

ment and enables us to identify θ up to scale for those elements of z that are continuously

distributed. Suppose for simplicity that all elements of the random vector z are jointly

distributed continuously over a compact set Sz ⊆ Rdz , then the subvector θz0 corresponding

to the covariate vector z is identified up to scale by the estimation procedure outlined below.

As previously, the estimator is motivated by the identification strategy by examining the

observed moments E [w|z, v] and relating them to the parameter vector θz0. In particular

we show in Appendix B that the directly identified function q (·) (defined in (46)) satisfies

q (z) = G (z′θz0) (22)

so that the model (22) is of the single index form with (unknown) differentiable link function

G : R→ R.

The parameter θz0 can now be estimated up to scale using average weighted derivative

estimation techniques. In particular, if the kth variable zk is continuously distributed and

the function G (·)16

∇zk
q (z) = ∇G (z′θz0) θz0[k]

where θz0[k]
denotes the coefficient on zk. Further, for any (z measurable) weight function

l (z) we can compute the average weighted derivative

E [l (z)∇zk
q (z)] = E [l (z)∇g̃ (z′θz0)] θz0[k]

= Klθz0[k]

where Kl is a constant that depends upon the weighting function.

Using the notation introduced in Appendix A we can write q (·) as a function of the

functions γ (·)

q (z, γ) ≡ qu (z, γ)

ql (z, γ)
=

[γy2 (z) γx1 (z)− γx2 (z) γy1 (z) + γxy1 (z) γ1
2 (z)− γxy1 (z) γ1

2 (z)]

(γx1 (z) γ1
2 (z)− γ1

1 (z) γx2 (z))

With the choice l (z) = (ql (z, γ0))2 we eliminate the ‘random denominator’ problem from

the estimation which obviates the use of a trimming device. The object of interest is then

15I thank a referee for pointing this out.
16For a function f (z) , let ∇zk

f (z̃) = ∂f
∂zk

∣∣∣
z=z̃

and ∇zf (z̃) denotes the entire vector of partial derivatives.
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the average weighted derivative corresponding to this choice of weight function and is given

by

β0 ≡ E
[
ql (z, γ)2∇G (z′θz0)

]
θz0

which can be rewritten as

β0 = E
[
ql (z, γ)2∇zq (z, γ)

]
= E [ql (z, γ)∇zqu (z, γ)− qu (z, γ)∇zql (z, γ)]

A natural estimator for β0 then is the plug-in estimator

β̂ = n−1

n∑
i=1

(ql (zi, γ̂)∇zqu (zi, γ̂)− qu (zi, γ̂)∇zql (zi, γ̂))

where γ̂ denotes a nonparametric kernel based estimator of γ. The asymptotic properties of

the estimator are discussed in greater detail in Mahajan (2004) where it is shown that under

suitable conditions the proposed estimator β̂ is
√
n consistent and asymptotically normal.

5.1 Parametric Specifications of g (x∗, z)

An important special case of the model occurs when the regression function is parametrically

specified. We consider here the case of the binary choice model with misclassification

given by (13) and assumptions 2-4, 8 and 9. There are at least two alternative methods

for proceeding with estimation in this context. The first method is a minimum distance

estimator along the lines of Example 2 Newey (1994a) and the second is a sieve maximum

likelihood estimator which in practice reeduces to a parametric estimation procedure and

is therefore relatively straightforward to implement. We first outline the sieve estimation

technique.

Using (13) and Assumptions 3 the conditional probability P (y, x|z, v) can be written as

P (y, x|z, v) =
∑

x∗∈{0,1}

P (y|x∗, z) P (x|x∗, z) P (x∗|z, v) (23)

where

P (y|x∗, z) = F (β1 + β2x
∗ + β3z)y (1−F (β1 + β2x

∗ + β3z))1−y

As before, we place no functional form assumptions on the misclassification probabilities

P (x|x∗, z) and the probability P (x∗|z, v). To ensure that the approximations to these

probabilities lie between zero and one we use the log-odds ratio parameterization of the

probabilities in the likelihood (23). Let λk (·) for k = 1, 2, 3 denote the log-odds ratio for the
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probabilities P (x|x∗ = 0, z) , P (x|x∗ = 1, z) and P (x∗|z, v) respectively. Defining the logit

transformation L (x) = exp(x)
1+exp(x)

we can write the probabilities

P (x|x∗ = 0, z) = (L (λ1 (z)))x (1− L (λ1 (z)))1−x

P (x|x∗ = 1, z) = (L (λ2 (z)))1−x (1− L (λ2 (z)))x

P (x∗|z, v) = L (λ3 (z, v))

Using the notation above, the likelihood (23) is a function of the parameters α = (β, λ) =

(β, λ1 (·) , λ2 (·) , λ3 (·)) and we denote it by P (y, x|z, v;α) . The parameter α belongs to the

space A =B×Λ where B is a compact subset of Rdz+2. The space Λ = Π3
k=1Λk where Λ1

and Λ2 are sets of functions defined over the support of z and Λ3 is a set of functions defined

over the support of (z, v) and (under Assumption 2) satisfy L (λ1 (z)) + L (λ2 (z)) < 1 for

any λ1 ∈ Λ1 and λ2 ∈ Λ2.

To define the sieve approximation to the spaces Λj j = 1, 2, 3, let {rj,m}∞m=1 represent

a set of basis functions (such as power, Fourier series or splines) for Λj. Let Rj,kn (x) =

(r1 (x) , ..., rkn (x)) denote a kn × 1 vector of basis functions and Πj,n a conformable vector

of constants. Then we define Λj,n = {Rj,knΠj,n : |Πj,n| ≤ cn} for an arbitrary sequence

cn → ∞17 and the sieve space An = B × Λn = B×Λ1,n × Λ2,n × Λ3,n. For more details on

the sequence of basis functions and the construction of the sieve see Mahajan (2004) and Ai

and Chen (2001).

Estimation of α is carried out in a semi-parametric maximum likelihood setting using

the method of sieves to estimate the infinite dimensional parameters. In the special case

where we are willing to assume that the misclassification rates are independent of the other

explanatory variables or when the support of the explanatory variables is finite, estimation

reduces to standard maximum likelihood.

The log likelihood is given by

l (w, α) = ln P (y, x|z, v;α)

= ln{(1−F (b1 + b3z))1−y F (b1 + b3z)y λ1 (z)x (1− λ1 (z))1−x (1− λ3 (z, v))

+ (1−F (b1 + b2 + b3z))1−y F (b1 + b2 + b3z)y λ2 (z)1−x (1− λ2 (z))x λ3 (z, v)}

where w = (y, x, z, v) and the parameter α ∈ A= B×Λ. We observe a random sample on

17The bound cn is not typically imposed in estimation but is required to ensure that the sieve space Λn

is compact for each n as required in the consistency argument (though one could also consider adopting a
penalized likelihood approach).
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w and define the Sieve Maximum Likelihood estimator as

α̂ ≡
(
b̂, λ̂
)

= arg max
An

1

n

n∑
i=1

l (wi, α) (24)

so α̂n maximizes the sample log likelihood over the finite dimensional ‘sieve’ space An and

the optimization can be carried out using standard software packages. Mahajan (2004)

discusses the consistency, rate of convergence and asymptotic normality for the proposed

estimator b̂ and shows that it attains the semiparametric efficiency bound.

An alternative estimation procedure is to construct an estimator along the lines of Ex-

ample 2 in Newey (1994a) noting that the equation

F−1 (g (0, z)) = β1 + β3z

can be used to construct an estimator for (β1, β3) by choosing the parameters to minimize the

distance between the left and the right hand side. Therefore, a simple alternative estimator

for (β1, β2) is given by a least squares regression of F−1 (ĝ (0, zi)) on zi:

(
β̂1, β̂3

)
= arg min

(b1,b3)

1

n

n∑
i=1

Ii
(
F−1 (ĝ (0, zi))− b1 − b3zi

)2

where Ii is a fixed trimming set and ĝ (0, zi) is the non-parametric estimator defined in (19).

β2 can be estimated using F−1 (ĝ (1, zi)) and the estimates
(
β̂1, β̂3

)
obtained above.

6 Testing for Misclassification

A natural question is whether one can test for misclassification since in its absence, simpler

estimation procedures can be implemented. While a comprehensive discussion on hypothesis

testing in such models is not carried out in this paper, a simple exclusion restriction can

be derived to test for misclassification and is the subject of this section. In particular, for

the model (1) and under the identification assumptions discussed above, the expectation of

the outcome conditional on (x, z, v) does not depend upon the ILV v if and only if there is

no misclassification. We record this result and then use it to propose a simple test for the

absence of misclassification.

Lemma 4 Consider the model (1) under assumptions (1)-(5) and assume P (x∗ = 1|za, v) ∈
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(0, 1) . Then,

η0 (za) = η1 (za) = 0 if and only if E (y|x, za, v) = E (y|x, za) a.e.

Proof. The proof of the result is straightforward and depends upon examining the form of

the probability P (x∗|x, z, v) implied by assumptions (1)-(5).

E (y|x, za, v) =
∑

s∈{0,1}

g (s, za) P (x∗ = s|x, za, v)

=
∑

s∈{0,1}

g (s, za)
P (x|x∗ = s, za) P (x∗ = s|za, v)

P (x|za, v)

= {g (0, za) (η0 (za)x+ (1− η0 (za)) (1− x)) P (x∗ = 0|za, v) +

g (1, za) (η1 (za) (1− x) + (1− η1 (za))x) P (x∗ = 1|za, v)}P (x|za, v)−1

where the second equality follows from Bayes Rule and Assumption (3). We first show the

⇒ part. Suppose that ηs (za) = 0 for s ∈ {0, 1}, then P (x∗ = 1|za, v) = P (x = 1|za, v) and

the conditional expectation reduces to

E (y|x, za, v) = {g (0, za) (1− x) P (x = 1|za, v) + g (1, za)xP (x = 1|za, v)}P (x|za, v)−1

= g (x, za)

To prove in the other direction, note that the equality of conditional expectations implies

E (y|x, za, v1) = E (y|x, za, v2)

which in turn implies after some algebra that

(g (1, za)− g (0, za)) (P (x∗ = 1|x, za, v1)− P (x∗ = 1|x, za, v2)) = 0

Because of Assumption (5) the above implies that

P (x∗ = 1|x, za, v1)− P (x∗ = 1|x, za, v2) = 0

which can be rewriten as

(η1 (za) (1− x) + (1− η1 (za))x)

{
P (x∗ = 1|za, v1)

P (x|za, v1)
− P (x∗ = 1|za, v2)

P (x|za, v2)

}
= 0
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When x = 1 the expression above reduces to

(1− η1 (za))

{
P (x∗ = 1|za, v1)

P (x = 1|za, v1)
− P (x∗ = 1|za, v2)

P (x = 1|za, v2)

}
= 0

and by Assumption (2) the above implies that

P (x∗ = 1|za, v1)

P (x = 1|za, v1)
− P (x∗ = 1|za, v2)

P (x = 1|za, v2)
= 0

and using the fact that

P (x = 1|za, v2) = η0 (za) + (1− η0 (za)− η1 (za))

we obtain

η0 (za)

(
P (x∗ = 1|za, v1)− P (x∗ = 1|za, v2)

P (x∗ = 1|za, v1) P (x∗ = 1|za, v2)

)
= 0

and by Assumption (4) this must imply that η0 (za) = 0. A similar argument for the case

where x = 1 leads to the conclusion that η1 (za) = 0 so that the equality of conditional

expectations is also sufficient for the absence of measurement error.

Therefore, comparing the conditional expectations can serve as the basis for a test of

misclassification under the maintained assumptions 1-5 for (1). Note that the result depends

upon the maintained assumptions (1)-(5) so that the a rejection of the null hypothesis may

also be interpreted as evidence against the identifying assumptions (1)-(5).

The result implies that the statistic

T (x, za, v) = Ê (y|x, za, v)− Ê (y|x, za)

can be used to form a test of misclassification. This has the appealing feature that estimation

of the misclassification rates themselves is not required. A discussion of the power properties

of such tests in general is, however, not carried out here. We first record a standard set of

regularity conditions to study the limiting distribution of the statistic T . Let r denote a

discrete random variable (it will be either the variable x or the vector (v, x) in what follows).

Let σs (za, ra) = E (y − E (y|za, ra))s and f (z|ra) denote the density of z conditional on

r = ra. For each possible value of r the following conditions hold

ASSUMPTION 15 There exists a δ > 0 such that σ2+δ (z, ra) f (z|ra) is continuous and

uniformly bounded in z

ASSUMPTION 16 The functions (E (y|z, ra))2 f (z|ra),σ2 (z, ra) f (z|ra) are continuous

and uniformly bounded in z.
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ASSUMPTION 17 The functions f (z|ra) , (E (y|z, ra) f (z|ra)) have first and m ≥ 2 par-

tial derivatives that are continuous and uniformly bounded in z

ASSUMPTION 18 The Kernel function K : Rdz → R satisfies for some m ≥ 2

∫
(z1)i1 ... (zdz)idz K (z) dz =

{
1 if i1 = .. = idz = 0

0 if 0 < i1 + ...+ idz < m

for non-negative integers (i1, ..., idz) and
∫
‖z‖iK (z) dz <∞ for i = m.

ASSUMPTION 19 hn → 0, nhdz
n →∞ and

√
nhdz

n h
m
n → 0

Lemma 5 Consider the model (1) under assumptions (1)-(5) and suppose P (x∗ = 1|za, v) ∈
(0, 1). Suppose there is no misclassification so that η0 (za) = η1 (za) = 0. For xa ∈ {0, 1}
and va ∈ {v1, v2} Define the statistic

T (xa, za, va) =

∑n
i=1 yiK

(
zi−za

hn

)
I (xi = xa, vi = va)∑n

i=1 K
(
zi−za

hn

)
I (xi = xa, vi = va)

−

∑n
i=1 yiK

(
zi−za

hn

)
I (xi = xa)∑n

i=1K
(
zi−za

hn

)
I (xi = xa)

and suppose that assumptions 15-19 hold with r = x and r = (x, v). Then,

√
nhdT (xa, za, va)⇒ N (0, V a

T )

where

V a
T = (P (x = xa) P (x = xa, v = va) f (za|xa, va) f (za|xa))−1

∫
K (u)2 du{

[f (za|xa) P (x = xa)− 2P (x = xa, v = va)] f (za|xa, va)V ar (y|za, xa, va)
+ [P (x = xa, v = va) f (za|xa, va)]V ar (y|za, xa)

}

The proof follows directly from Theorem 3.2.1 in Bierens (1987). Implementing the test is

straightforward and only requires the use of standard kernel regression (with perhaps the use

of the bootstrap to calculate standard errors). In the context of other, parametric, models,

the proposed test usually reduces to testing for an exclusion restriction. For instance,

testing for the absence of misclassification in the binary choice model (13) the result above

implies that a direct test for the exclusion of v in the binary choice model can serve as

a test for misclassification. This test can be carried out using any of the standard test

statistics for testing such hypotheses in a maximum likelihood context and is therefore readily
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implementable.18

There are, however, other possible tests although they may require placing further struc-

ture on the form of the misclassification rates and the test statistics may have more com-

plicated limiting distributions. To take a simple example, consider the case where the

misclassification rates are independent of the other covariates and are parameterized as

ηs (z) = (ηs/ (1 + ηs)) for s = 0, 1. In this case, the hypothesis of no misclassification can

be stated as H : η = 0 against the alternative K : η ≥ 0, η 6= 0 for the bivariate vector

(η0, η1). Further, suppose that the model is parametric (for instance, given by (13)) so that

the object of interest is some finite dimensional parameter θ. In this situation, tests based

on the Lagrange Multiplier are attractive since estimation under the null hypothesis can be

carried out using standard statistical software. However, the limiting distribution of the

test statistics under the null hypothesis will be not be asymptotically normal since the true

parameter lies on the boundary of the parameter space. In the case of the binary choice

model, the Lagrange Multiplier statistic can be calculated as the solution to a quadratic

optimization problem

ξ = arg min
λ≥0

(
λ− λ̂H

)′
Q̂
(
λ− λ̂H

)
where λ̂H is the Lagrange Multiplier associated with the optimization problem under the null

hypothesis and Q̂ is an estimated weighting matrix. The limiting distribution of the LM

statistic is non-normal, in fact it will be a mixture of chi-squared distributions with weights

depending upon the true (unknown) parameter values.

7 Conclusion

The evidence on measurement error in typical data sets suggests that it does not satisfy

the independence assumptions usually required by error correction methods for non-linear

models. This paper examined the effect of relaxing these assumptions in a general class

of models. We studied the problem of parameter identification and estimation in a non-

parametric regression model when the data is measured with error and the error is related to

the regressors in the model. The paper showed that the regression functions and marginal

effect are identified in the presence of an additional random variable that is correlated with

the true unobserved underlying variable but unrelated to the measurement error (by analogy

with the linear IV case we called this a “Instrument Like” variable although the estimation

strategy is not a version of 2SLS). Next, the paper proposed various estimation strategies for

18Note that such a test will be a test of the null hypothesis that η0 (z) = η1 (z) = 0 almost everywhere
rather than just the pointwise assertion of the absence of misclassification.
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the parameters of interest in such models. Beginning with a fully non-parametric estimation

procedure, the paper further proposed a weighted partial derivative estimation scheme for

the case where the regression function satisfies a (linear) single index restriction. Next, a

sieve based estimation procedure for the special case of a parametric binary choice model

that is straightforward to implement and potentially useful in applications is discussed. 19

Finally, the paper proposed a simple test for the absence of misclassification based on an

exclusion restriction.

Mailing Address: Dept. of Economics, Stanford University, 579 Serra Mall, Stanford,

CA 94305-6072, U.S.A.; e-mail address: amahajan@stanford.edu

A Appendix

A.1 Proof of Theorem 1: Identification

Proof of Theorem 1

We first introduce some simplifications and some notation. We suppose that v is a binary

variable taking values (v1, v2) with v1 6= v2. This simplifies the exposition considerably and

is sufficient for identification. Increasing the points of support strengthens identification but

makes the notation and discussion somewhat more complicated and is therefore not pursued

here. To simplify notation further, we suppress the dependence on (z, v) unless needed and

equalities involving random variables are assumed to hold almost everywhere.20 Finally, let

the vector w denote the random variables (x, y, xy) .

The identification result proceeds in two steps: we first show that if the misclassifica-

tion rates η (za) ≡ (η0 (za) , η1 (za)) are identified, then the regression function g (x∗, za) is

identified. In the second step we show that the misclassification rates are indeed identified.

First Step

The step shows that under Assumptions 1-5, if η (za) is identified, knowledge of the mo-

ments E (xy|za, v) (≡ r (za, v)) ,E (x|za, v) (≡ η2 (za, v)) and E (y|za, v) (≡ t (za, v)) is enough

to identify g (x∗, za). The proof is done by contradiction. Suppose that η (za) is identi-

fied but the model (1) is not identified, so that g (x∗, za) is not uniquely determined by the

population distribution of the observed variables.

First, note that since (η0 (·) , η1 (·)) are identified by assumption then (by Assumption 3)

19See Zinman (2004) for a demonstration of the proposed method in an empirical application.
20Similarly for two random variables X 6= Y is taken to mean that P ({ω : X (ω) 6= Y (ω)}) > 0
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η∗2 (za, v) ≡ P (x∗ = 1|za, v) is also identified since

η∗2 (za, v) =
η2 (za, v)− η0 (za)

1− η0 (za)− η1 (za)
(25)

Next, some algebra yields

t (za, v) ≡ g (0, za) (1− η∗2 (za, v)) + g (1, za) η
∗
2 (za, v) (26)

Evaluating the equation above at the two values of the ILV v we obtain

t (za, v2) ≡ g (0, za) (1− η∗2 (za, v2)) + g (1, za) η
∗
2 (za, v2)

t (za, v1) ≡ g (0, za) (1− η∗2 (za, v1)) + g (1, za) η
∗
2 (za, v1)

which forms a linear system of equations in two unknowns (g (1, za) , g (0, za)) . By assump-

tion (4) this system has a unique solution given by[
g (1, za)

g (0, za)

]
=

1

η∗2 (za, v1)− η∗2 (za, v2)

[
1− η∗2 (za, v1) − (1− η∗2 (za, v2))

−η∗2 (za, v1) η∗2 (z, v2)

][
t (za, v2)

t (za, v1)

]

Therefore, we conclude that if the misclassification rates η0 (za) , η1 (za) are identified, then

the regression function g (x∗, za) is identified.

If Assumptions 1-5 are strengthened to hold for almost all z ∈ Sz (by appending “a.e.

Pz” to the displays 2,4 and 5) and we assume that the entire misclassification functions η (·)
are identified, then an iteration of the argument above yields the conclusion that the entire

regression function g (·) is identified.

Second Step

We now demonstrate that the misclassification rates η (za) are identified. We start by

noting two directly identified features of the model.

First, define the directly identified quantity

t̄ (za) ≡
t (za, v1)− t (za, v2)

η2 (za, v1)− η2 (za, v2)
(27)

which is akin to the Wald-IV estimator for the marginal effect of x on y using v as an

instrument. Using (27) and (25) and letting κ (za) ≡ (1− η0 (za)− η1 (za))
−1 it is seen that

t̄ (za) = κ (za) (g(1, za)− g(0, za)) (28)
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which is not equal to zero by assumption.

Second, using (1) and Assumption 3

r (za, v) = g (0, za) η0 (za) (1− η∗2 (za, v)) + g (1, za) (1− η1 (za)) η
∗
2 (za, v)

(recall that r (za, v) ≡ E (yx|za, v)). Evaluating r (za, v) at two different values of the ILV v

and taking differences

r (za, v1)− r (za, v2) = (η∗2 (za, v1)− η∗2 (za, v2)) ((1− η1 (za)) g (1, za)− η0 (za) g(0, za))

Next, using (25) define the directly identified quantity r̄ (za) as

r̄ (za) ≡
r (za, v1)− r (za, v2)

η2 (za, v1)− η2 (za, v2)

which is interpretable as the Wald-IV estimate of the marginal effect of x on the random

variable xy using v as an instrument. It is easy to show that

r̄ (za) = [(1− η1 (za)) g(1, za)− η0 (za) g(0, za)]κ (za) (29)

Putting these together, we can rewrite r (za, v) as

r (za, v) = η2 (za, v) r̄ (za)− t̄ (za) (1− η1 (za)) η0 (za)

so that the object −η0 (za) (1− η1 (za)) is identified since the left hand side below is identified

r (za, v)− η2 (za, v) r̄ (za) = −η0 (za) (1− η1 (za)) t̄ (za) (30)

and t̄ (za) on the right hand side is identified. This implies that if any one of the misclassi-

fication probabilities is the same for two different points in the parameter space, the other

probability must also coincide.

Finally, it is easily shown that

r (za, v)− t (za, v) η2 (za, v) = t̄ (za) (1− η1 (za)− η2 (za, v)) (η2 (za, v)− η0 (za)) (31)

Now, suppose that the model is not identified so that there exist (η̄ (za) , ḡ (x∗, za)) (6= (η (za) , g (x∗, za)))

that cannot be distinguished from (η (za) , g (x∗, za)) using the population distribution of the

observed variables Note that we must have η (za) 6= η̄ (za) since otherwise the model is

identified as we saw in the first step. In addition, (30) implies that we must also have
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η0 (za) 6= η̄0 (za) and η1 (za) 6= η̄1 (za) .

Since the left hand side of (31) is directly identified and the model is not identified

t̄ (za) (1− η1 (za)− η2 (za, v)) (η2 (za, v)− η0 (za)) = t̄ (za) (1− η̄1 (za)− η2 (za, v)) (η2 (za, v)− η̄0 (za))

and since g(1, za) 6= g(0, za) by assumption this can be simplified to

(1− η1 − η2) (η2 − η0) = (1− η̄1 − η2) (η2 − η̄0)

η2 (1− η1)− η2
2 + η0η2 = η2 (1− η̄1)− η2

2 + η̄0η2

η2 (1− η1 + η0) = η2 (1− η̄1 + η̄0)

suppressing the dependence of the quantities above on (za, v). This further simplifies to

η2 (η̄1 − η1 + η0 − η̄0) = 0

and evaluating the above at (za, v1) and (za, v2) and taking differences we obtain

(η2 (za, v1)− η2 (za, v2)) (η̄1 (za)− η1 (za) + η0 (za)− η̄0 (za)) = 0

so that (under Assumptions 3 and 4) η0 (za) − η1 (za) = η̄0 (za) − η̄1 (za) and define (again

suppressing the dependence on za)

d ≡ η0 + 1− η1

then

1− η̄1 = d− η̄0

1− η1 = d− η0

and substituting into (30)

η̄0 (d− η̄0) = η0 (d− η0)

d (η̄0 − η0) = (η̄0 − η0) (η̄0 + η0)

so that d = (η̄0 + η0) which in turn implies that

η̄1 = 1− η0

η̄0 = 1− η1
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but then η̄0 (za) + η̄1 (za) > 1 which violates Assumption 2. Therefore, η (za) is identified

and from the first step we can conclude therefore that g (x∗, za) is identified.

If Assumptions 1-5 are modified to hold for almost all z ∈ Sz (by appending “a.e. Pz”
to the displays 2,4 and 5) then the argument above can be modified in a straightforward

manner to show the complete misclassification functions η (·) as well as the entire regression

function g (·) are identified.

The final result is quite intuitive. We show that identification failure in the presence of

the ILV results only from the “flipping” of the misclassification probabilities as given by the

last two equalities. Once these flips are ruled out by Assumption 2, the model is identified.

A.2 Proof for Identification of the Endogenous Misclassified Model

We discuss here the extension of the basic model to the one given by (10), (11) and

E (ε|za, v) = 0. An application of Theorem 1 yields identification of the regression

E (y|x∗, za) = g∗ (x∗, za) + E (ε|x∗, za)

Next,

E (y|za, v) =
∑

s∈{0,1}

E (y|x∗ = s, za, v) P (x∗ = s|za, v)

= g∗ (0, z) (1− η∗2 (za, v)) + g∗ (1, z) η∗2 (za, v)

+
∑

s∈{0,1}

E (ε|x∗ = s, za, v) P (x∗ = s|za, v)

= g∗ (0, za) (1− η∗2 (za, v)) + g∗ (1, za) η
∗
2 (za, v)

where the last equality holds since E (ε|za, v) = 0. We can then use the variation of η∗2 (za, v)

in v (which is also identified by Theorem 1) to identify g∗ (x∗, z) exactly as we did in the

argument preceding (7).

A.3 Proof of Lemma 1

Proof: The proof is a direct application of Theorem 1.
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A.4 Estimation

We next discuss the elements required to implement the estimation strategy outlined in the

text. We directly identify the quantities g (1, za) and g (0, za) and hence also the marginal

effect g (1, za)− g (0, za) . To this end, define

q0 (za, v) ≡ t (za, v) + r̄ (za)− η2 (za, v) t̄ (za)

Using (25)-(29) it is easy to see that

q0 (za, v) = (1− η∗2 (za, v)) g(0, za) + η∗2 (za, v) g(1, za)

+ (1− η∗2 (za, v)) g(1, za) + η∗2 (za, v) g(0, za)

= g(1, za) + g(0, za)

and finally define

q (za) =
1

2
(q0 (za, v1) + q0 (za, v2))

= g(1, za) + g(0, za) (32)

which will be useful in the sequel.

Using (30) it is straightforward to show that

c̃ (za)

t̄ (za)
= −η0 (za) (1− η1 (za)) (33)

where

c̃ (za) =
1

2
{r (za, v1) + r (za, v2)− (η2 (za, v1) + η2 (za, v2)) r̄ (za)} (34)

and similar calculations yield

b̃ (za)

t̄ (za)
= η1 (za)− η0 (za) (35)

for

b̃ (za) =
1

2
{t (za, v1) + t (za, v2)− (η2 (za, v1) + η2 (za, v2)− 2) t̄ (za)− 2r̄ (za)} (36)
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which we rewrite to make its depedence on (E (w|za, v1) ,E (w|za, v2)) explicit as

b̃ (za) =
1

2
(E (y|za, v1) + E (y|za, v2)− (E (x|za, v1) + E (x|za, v2)) t̄ (E (w|za, v1) ,E (w|za, v2)))

−r̄ (E (w|za, v1) ,E (w|za, v2))

where t̄ and r̄ are defined in (44) and (45) respectively.

Equations (33) and (35) imply a quadratic equation for η1 (suppressing the dependence on

z) in terms of the directly identified quantities c̃ (z) , b̃ (z) and t̄ (z). Solving this quadratic

equation for η1 (and using the root with the negative square root term in the quadratic

formula 21) and substituting into (35) yields√√√√( b̃+ t̄

t̄

)2

− 4

(
b̃− c̃
t̄

)
= 1− η0 − η1 (37)

where it is easily seen (using the definitions of the quantities defined in (33) and (35) and

Assumption 2) that the term under the square root sign is always non-negative. Solving for

the misclassification rates

η1 (za) = (1 + h1 (E (w|za, v1) ,E (w|za, v2))− h0 (E (w|za, v1) ,E (w|za, v2))) 2−1 (38)

η0 (za) = (1− h1 (E (w|za, v1) ,E (w|za, v2))− h0 (E (w|za, v1) ,E (w|za, v2))) 2−1 (39)

where

h1 (E (w|za, v1) ,E (w|za, v2)) =
b̃ (za)

t̄ (za)
(40)

h0 (za) =

√√√√( b̃ (za) + t̄ (za)

t̄ (za)

)2

− 4

(
b̃ (za)− c̃ (za)

t̄ (za)

)
(41)

Then using (28), it is easily seen that

g (1, za)− g (0, za) = t̄ (za)

√√√√( b̃ (za) + t̄ (za)

t̄ (za)

)2

− 4

(
b̃ (za)− c̃ (za)

t̄ (za)

)
21This is because in (37) this is the root that satisfies Assumption 2.
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and using (32) above,

g (1, za) =
1

2
q (za) +

t̄ (za)

2

√√√√( b̃ (za) + t̄ (za)

t̄ (za)

)2

− 4

(
b̃ (za)− c̃ (za)

t̄ (za)

)
(42)

where each term on the right hand side is directly identified. Similarly,

g (0, za) =
1

2
q (za)−

t̄ (za)

2

√√√√( b̃ (za) + t̄ (za)

t̄ (za)

)2

− 4

(
b̃ (za)− c̃ (za)

t̄ (za)

)
(43)

so that we have directly identified the regression function g (x∗, za) .

We next discuss in greater detail the components of the directly identified terms in the

displays above as a function of the observed moments E (w|z, v1) and E (w|z, v2) (where recall

that w = (x, y, xy)). The term t̄ is what we refer to as the Wald-IV estimator of the effect

of x on y

t̄ (E (w|za, v1) ,E (w|za, v2)) =
E (y|za, v1)− E (y|za, v2)

E (x|za, v1)− E (x|za, v2)
(44)

which we abbreviate as t̄ (za) (≡ t̄n(za)
t̄d(za)

). Similarly, we abbreviate as r̄ (z) the Wald-IV ex-

pression

r̄ (E (w|za, v1) ,E (w|za, v2)) =
E (xy|za, v1)− E (xy|za, v2)

E (x|za, v1)− E (x|za, v2)
(45)

We next define

q0 (za, v) ≡ q0 (E (w|za, v)) = E (y|za, v) + r̄ (za)− E (x|za, v) t̄ (za)

and the function we abbreviate as q (za) the function q (E (w|za, v1) ,E (w|za, v2))

q (E (w|za, v1) ,E (w|za, v2)) =
1

2
(q0 (za, v1) + q0 (za, v2)) (46)

The expressions b̃ (·) and c̃ (·) are defined previously.

Estimation proceeds, as outlined in the text, by first non-parametrically estimating the

conditional expectations E (w|z, v) using kernel based methods and plugging in the estimates

into the expressions above. Consistency and asymptotic normality follow using standard

results from the kernel literature which we outline below.
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A.4.1 Proof of Lemma 2 and Lemma 3

The first proof is a direct application of Theorem 3.2.1 (and the Cramer-Wold device) in

Bierens (1987) and the conditions 10-14 in the text are precisely his conditions 3.2.1 on

p.118.

The second proof follows from the “delta” method as detailed for instance in Theorem

3.1 of van der Vaart (1998). The form of the variance matrices follows from consider-

ing the derivatives of the functions q (·) , t̄ (·) , b̃ (·) and c̃ (·) with respect to the objects

(E (w|z, v1) ,E (w|z, v2)) . More compactly, consider

g (1, za) =
1

2
q (za) +

t̄ (za)

2

√√√√( b̃ (za) + t̄ (za)

t̄ (za)

)2

− 4

(
b̃ (za)− c̃ (za)

t̄ (za)

)
= g1 (E (w|za, v1) ,E (w|za, v2))

= g1 (E (x|za, v1) ,E (y|za, v1) ,E (xy|za, v1) ,E (x|za, v2) ,E (y|za, v2) ,E (xy|za, v2))

where we emphasize in the last display that g (1, za) is a function of six arguments and we

denote by ∇g1 (·) the derivative of g (1, za) with respect to these six arguments.

Then, by the “delta” method the asymptotic variance matrix for the estimator ĝ (1, za)

will be given by

Ω1 =
(
∇g1 (E (w|za, v1) ,E (w|za, v2))′

) [ V1 0

0 V2

]
(∇g1 (E (w|za, v1) ,E (w|za, v2)))

=
f1 (E (w|za, v1) ,E (w|za, v2) , V (w|za, v1) , V (w|za, v2))

2 [(E (y|za, v1)− E (y|za, v2)) (E (x|za, v1)− E (x|za, v2))]2 (1− η0 (za)− η1 (za))

where V (w|za, vk) denotes the conditional variance-covariance matrix of the vector (x, y, xy).

The precise form of the function f1 (·) is somewhat complicated and does not add insight

and is therefore omitted.

The argument for the asymptotic variance Ω0 of ĝ (0, z) and the variance ΩM of the

marginal effect ĝ (1, z)− ĝ (0, z) follows similarly. The nonparametric bootstrap can be used

to consistently estimate the standard errors (see for instance Jones and Wand (1995) or Shao

and Tu (1996)) and we omit details here.
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B Semiparametric Estimation

Recall from Appendix A.4 that

q (z) = g(1, z) + g(0, z)

which for the single (linear) index model reduces to

q (z) = g (θz1 + z′θz0) + g (z′θz0)) ≡ G (z′θz0)

as stated in the text.
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