
B Appendix for �The Political Economy of
Environmental Policy with Overlapping Gen-
erations�

This appendix collects supplementary information alluded to in the journal
publication.

B1 Exogenous Productivity Growth

In the context of most environmental problems, the natural resource is de-
grading on the 0-tax trajectory. In our model of constant productivity and
capital, the world becomes poorer and future generations have lower welfare
on that trajectory. This Appendix introduces exogenous productivity growth
in both sectors. Let a � 0 be the growth rate of total factor productivity
in manufacturing and b � 0 the growth rate of e¢ ciency in output per unit
�ow of the resource. Sectoral output is

Mt = e
at(1� Lt)� and Ft = e

btLt
xt:

The inequality a > 0 can also be interpreted as exogenous growth in the
stock of capital. The extraction of the resource is still Lt
xt (not ebtLt
xt).
This model of resource productivity growth implies that each extracted unit
of the resource increases the supply of the resource-intensive commodity. If
we think of the resource as being energy, the assumption means that the
economy becomes less energy intensive. The assumption of exponential pro-
ductivity growth simpli�es the discussion, but the next proposition also holds
if the productivity parameters a and b decrease over time. The exponential
productivity growth implies a growth factor of e(a�b) (1 + �r(Tt; xt)) for the
price level and of ea for all other variables (wt, Rt, and �t). For the follow-
ing proposition we assume that � 2 (0; 1) is constant and that there is no
transfer between generations, i.e. � = 0.

Proposition 7 A larger value of a� b increases the stringency of the neces-
sary and su¢ cient condition under which a small constant tax increases the
welfare of the young.
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Proof. Using a derivation parallel to that contained in the proof of propo-
sition 4, we have

dUy0
d"

����
"=0

> 0, (1� �)
�
e�(a�b)� (1 + �r(0; x0))

�

1 + �
� 1
�
�T0 > 0:

The second inequality is equivalent to�
1 + �r(0; x0)

e(a�b)

��
> 1 + �: (B.1)

The left side of inequality (B.1) is decreasing in a� b, so an increase in a� b
decreases the set of parameter values and initial conditions under which the
inequality is satis�ed, i.e. the circumstances under which the young bene�t
from the tax.
Under proportional growth (a = b), the condition for the young to bene�t

from the tax is the same as when a = b = 0. The welfare e¤ect of the tax, for
the young, depends on the change in the price level. A ceteris paribus increase
in a� b increases the next period relative supply of the manufacturing good,
thereby increasing the future relative price of the resource-intensive good,
Pt+1. The higher price lowers the marginal utility of next period income,
making it �less likely� that the young are willing to forgo income today in
order to have higher income in the next period. For a > b, the young would
require a higher transfer from the old in order to agree to the tax. If,
however, the productivity in the resource sector grows much faster than in
the manufacturing sector (b >> a), the young might support a tax even
when the resource is shrinking on the 0-tax trajectory, and in the absence of
a transfer.

B2 Future generations

Merely in order to avoid uninteresting complications, we assume that for
future generations the tax is constant: �T0 = �T1 = �T2:::. The life-time welfare
of the next young generation is

Uy1 (") = �p( �T1"; x1)
��

 
w( �T1") + �R( �T1") +

�
1 + �r( �T1"; x1)

��
1 + �

(1� �)R( �T2")
!
:
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Di¤erentiating this expression with respect to " gives

dUy1
d"

=
d

d"
�P��1 (w( �T1")+�R( �T1"))+

d

d"

"
�P��1

�
1 + �r( �T1"; x1)

��
1 + �

(1� �)R( �T2")
#

Using the simpli�cations found in the proof of Proposition 4, (including

R(0) = 0 and @P��1

@x1
= �P��1 x�11 ) the expression simpli�es to

dUy1
d"

����
"=0

> 0 , �T1P
��
1 (1� �)

�
(1 + �r(0; x1))

�

1 + �
� 1
�
dR

d"

����
"=0

> � �T0w(0)
@P��1
@x1

@x1
@T0

, (1� �)
�
(1 + �r(0; x1))

�

1 + �
� 1
�
�T0 > �

�
w(0)�x�11

@x1
@T0

��
1

dR=d"j"=0

�
�T0

Comparing this condition to inequality (A.27), we see that when the stock
is degrading (i.e. �r(0; x0) < 0), a small tax is more likely to bene�t the next
period�s young generation compared to today�s, which always loses in the
absence of transfers. The di¤erence arises for two reasons: A lower stock
increases the BAU growth rate, d�r(0;xt)

dxt
= �r < 0, so that the left side is less

negative. The right side of the inequality above is negative. Therefore, the
condition here is weaker than the condition in inequality (A.27). In fact, it
is satis�ed for any initial stock value in the calibration used in Section 5.

B3 Nash Bargaining

Using equations (5) - (7), we de�ne the lifetime welfare of the two agents

U o (xt;�(xt) ; �t) = P
��eo

= p��(xt;�(xt)) [�(� (xt)) + (1� �t)R(� (xt))] + ��(xt;�(xt)):
Uy (xt;�(xt) ; �t) =

= p��(xt;�(xt)) [w(� (xt)) + �tR(� (xt))]

+ 1
1+�
p��(xt+1;�(xt+1))

�
1� �t+1

�
R(� (xt+1) :

Denote
~U o (xt) = U

o (xt; 0; �) and ~Uy (xt) = Uy (xt; 0; �) ;

the value of lifetime utility of the two agents when they impose a zero tax
in the current period. Under a 0 tax, R = 0, so the current value of �
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does not a¤ect the agents�lifetime welfare. Therefore ~U o (xt) and ~Uy (xt)
do not depend on �. They do, however, depend on the current value of
x and of course they depend on the decision rules used in the future; they
are functionals. The pair

�
~U o (xt) ; ~U

y (xt)
�
is the threat-point in the Nash

bargaining game. Total surplus equals

S (xt; Tt; �t) � U o (xt; Tt; �t) + Uy (xt; Tt; �t)�
�
~U o (xt) + ~Uy (xt)

�
:

The Nash bargaining solution maximizes the Nash product,�
U o (xt; Tt; �t)� ~U o (xt)

��
Uy (xt; Tt; �t)� ~Uy (xt)

�
:

It is well known that when there are lump sum transfers (� is unconstrained)
the bargaining solution maximizes surplus, which is equivalent to maximizing
aggregate lifetime welfare, the maximand in equation (14). That maximand
does not involve �t. The choice of � enables decisionmakers to make a lump
sum transfer between generations. In this case, the transfer is chosen to
split the surplus evenly between the two generations, implying:

U o (xt; Tt; �t)� ~U o (xt) = Uy (xt; Tt; �t)� ~Uy (xt) =)
U o (xt; Tt; �t)� Uy (xt; Tt; �t) = ~U o (xt)� ~Uy (xt)

Using the formulae for equilibrium and disagreement payo¤s and solving the
last equation for �t gives

�t = � (xt) =
1

2
+
�(� (xt))� w (� (xt))

2R(� (xt))
+

1

2p��(xt;�(xt))R(� (xt))
C

(B.2)
with the de�nition

C � ��(xt;�(xt))�
1

1 + �
p��(xt+1;�(xt+1)) (1� � (xt+1))R (� (xt+1))�

�
~U o (xt)� ~Uy (xt)

�
:

The function � appears in the de�nition of C, both explicitly and implicitly
via the de�nition of ~Uy (xt). Therefore, equation (B.2) is a functional in
�. We numerically approximate the �xed point to this equation, and to
the functional equation that determines �. If � is constrained, and the
constraint is binding, then it is no longer the case that aggregate surplus is
split equally between the two generations. In that case, the equilibrium Tt
that maximizes the Nash product, does not maximize aggregate surplus.

4



B4 Numerics

We approximate �(xt+1) and �� (xt+1;�(xt+1)) � � (xt+1) as polynomials in
xt+1, and �nd coe¢ cients of those polynomials so that the solution to

maxTt P
�� (xt; Tt)Y (Tt)+n

� (xt+1) +
1
1+�
P��(xt+1;�(xt+1)) [� (� (xt+1)) + (1� � (xt+1))R(� (xt+1))]

o
subject to xt+1 = (1 + �rt(xt; Tt))xt with x0 given.

approximately equals �(xt). Appendix B3 explains the functional equation
used to approximate � in the Nash bargaining case. In the probabilistic vot-
ing model, � is a known constant. We use 13-degree Chebyshev polynomials
evaluated at 13 Chebyshev nodes on the [0:1; 0:9] interval. At each node the
recursion de�ning ��(xt;�(xt)),

� (xt) =
1

1 + �

�
p��(xt+1;�(xt+1))� (� (xt+1)) + � (xt+1)

	
(B.3)

and the optimality condition

d
dTt

h
P�� (xt; Tt)Y (Tt) +

1
1+�


i
= 0

with 
 �
n
� (xt+1) +

1
1+�
P��(xt+1;�(xt+1)) [� (� (xt+1)) + (1� � (xt+1))R(� (xt+1))]

o
(B.4)

subject to xt+1 = (1 + �rt(xt; Tt))xt and Tt = �(xt) must be satis�ed. If � is
endogenous, we additionally require that �t = ~� (xt) = � (xt) with ~� (xt) as
explained in Appendix B3.
Starting with an initial guess for the coe¢ cients of the approximations

of � (�) and �(�) and, possibly, � (�), we evaluate the right side of equation
(B.3) for at each node. Using these function values, we obtain new coe¢ cient
values for the approximation of � (�). We then use the optimality condition
(B.4) to �nd the values of �(�) at the nodes; we use those values to update
the coe¢ cients for the approximation of �(�). For endogenous �, the new
coe¢ cients for � (�) and�(�) also allow the updating of the coe¢ cients for the
approximation of � (�). We repeat this iteration until the coe¢ cients�relative
di¤erence between iterations falls below 10�6. See chapter 6 of Miranda and
Fackler (2002) for details.
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Figure 5: Deviation of asset price (left) and policy function (right) approxi-
mation from true value outside of approximation nodes for the e¢ cient bar-
gaining (solid) and the social planner�s (dot-dashed) problems

Figures 5 graph the di¤erences (the �residuals�) between the right and
left sides of equations (B.3) and (B.4), respectively. These residuals equal
0 at the nodes, because we set both the degree of the polynomial and the
number of nodes equal to n. We choose n = 13 to ensure that residuals
are at least 5 orders of magnitudes below the solution values on the [0:1; 0:9]
interval.

B5 Robustness checks

We computed two variations as a further robustness check. In the �rst
variation, young agents select the current tax and receive all of the surplus,
but have to compensate the old generation to ensure that the latter�s welfare
does not fall below a default level. This default level equals their welfare
under the tax chosen in the previous period. The rationale for this model is
that inertia favors the existing tax, and that young agents have to compensate
the now-old agents to persuade them to change the tax that the latter chose
when they were young. For this experiment we set � = 1. We �nd that
this variation results in a tax policy very close to, but slightly lower than
the policy under the previous formulation with � = 1. We conclude that
our results are not sensitive to changes in � or to moderate changes in the
structure of the political economy model.
In the second variation, motivated by Proposition 5 and the comments

following it, � = 0. Here, the old in the �rst period to propose a transfer rate
�. Conditional on this choice, the old and the young each propose a constant
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tax. Due to inertia, society chooses the smaller of these two taxes. We
then con�rmed numerically that this tax is time consistent. Future young
generations would like to lower the tax and future old generations would
like to increase it, but the welfare gain that either achieves is insu¢ cient to
compensate the other. Therefore, no proposed change achieves consensus.
The belief in the initial period that the tax will be constant is therefore
con�rmed by the equilibrium. The steady state stock is about 2% higher
than in the political economy framework (with � = 0) and 10% lower than
under the social planner.
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