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Abstract

When current decisions affect welfare in the far-distant future, as with climate change, the use of a declining pure rate of

time preference (PRTP) provides potentially important modeling flexibility. The difficulty of analyzing models with non-

constant PRTP limits their application. We describe and provide software (available online) to implement an algorithm to

numerically obtain a Markov perfect equilibrium for an optimal control problem with non-constant PRTP. We apply this

software to a simplified version of the numerical climate change model used in the Stern Review. For our calibration, the

policy recommendations are less sensitive to the PRTP than widely believed.
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1. Introduction

The pure rate of time preference (PRTP) is a component of the discount rate, and as such plays a
(potentially) important role in dynamic policy decisions. A model with non-constant pure rate of time
preference (NCPRTP) is useful for reconciling observations on medium term market discount rates with
ethical considerations relevant to the distant future. The optimal solution to such a model is typically time-
inconsistent; a subgame perfect (and therefore time consistent) solution requires the solution to a dynamic
game. Numerical methods have proven useful in many areas of economics, both to solve old problems and to
suggest new ones. Numerical methods can be similarly useful in NCPRTP models. We introduce and apply a
numerical package that solves a fairly general NCPRTP model.

We use the software to study an aspect of the climate change debate that has recently received a great deal of
attention. The Stern Review of Climate Change [26] uses a constant 0.1% per annum pure rate of time

ARTICLE IN PRESS

www.elsevier.com/locate/jeem

0095-0696/$ - see front matter r 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jeem.2007.11.004

�Corresponding author. Fax: +6568280833.

E-mail addresses: tfujii@smu.edu.sg (T. Fujii), karp@are.berkelely.edu (L. Karp).



preference and an elasticity of marginal utility equal to 1. Some commentators, including [4,23,29], think that
these values lead to unreasonably low social discount rates, and thus call into question the Stern Review’s
policy recommendations. The Stern Review defends its discounting parameters on ethical grounds. It is
difficult to satisfy both ethical criteria and to obtain a social discount rate that reflects medium term market
rates, using a single PRTP. Karp and Tsur [18] discuss the role of NCPRTP in reconciling these two objectives
in a model that focuses on low probability catastrophes.

We construct a simple model of climate change that is consistent with the orders of magnitude of costs and
benefits in the integrated assessment model used in [26]. Our most surprising finding is that for this calibration,
the PRTP is much less important than has previously been thought. The explanation is that a modest level of
expenditures produces major gains, but much larger expenditures are worth little, and may even be
counterproductive. Therefore, the optimal level of expenditures with a 3% PRTP is not much smaller than the
level under a 0.1% discount rate. Of course, this result is model-specific.

The rest of this Introduction explains why NCPRTP may be an important feature in economic problems,
and we explain what we mean by the ‘‘solution’’ to such a model. Groom et al. [12] provide a recent review of
much of this literature.

The resurgence of interest in NCPRTP is due largely to behavioral economics’ use of hyperbolic
discounting, a particular form of NCPRTP in which the PRTP decreases. Hyperbolic discounting models have
been used to explain anomalies such as apparent reversals in an individual’s preferences [25]. These models use
a relatively short period of time, such as the life of an individual. However, NCPRTP is also important for the
study of long-lived environmental problems, such as greenhouse gasses (GHGs), where it is reasonable to use a
very long or infinite horizon.

Our interest in NCPRTP arises from natural resource/environmental problems. Constant discounting at a
non-negligible rate makes the possibility of extremely large damages in the far-distant future irrelevant to
current actions. Constant discounting at a negligible rate causes current generations to save too much for
(possibly richer) future generations (or, for example, to spend too much on GHG abatement). NCPRTP, with
a discount rate that approaches a very low level, provides a balance that takes into account legitimate reasons
for impatience in the near to middle term, while still giving non-negligible weight to welfare in the distant
future [2,21,14].

The PRTP measures our willingness to trade utility between (for example) two successive generations.
A constant rate implies that our willingness to exchange utility between the current and the next generation is
the same as our willingness to exchange utility between two successive generations in the far-distant future.
Introspection and survey data [3] suggest that many people do not have such preferences. We can distinguish
between the current and the next generations and therefore might exhibit impatience when thinking about
transferring utility between the two, leading to a positive PRTP in the near term. However, two generations in
the very distant future are indistinguishable to us, suggesting that the PRTP in the distant future might be
close to zero. The longest financial instruments mature within 30 or 40 years, so we cannot rely on markets to
reflect a declining discount rate over long spans of time.

Two other circumstances produce models that are formally equivalent to a model with NCPRTP. In the
first, there exists a ‘‘correct’’ constant discount rate, but the decision-maker has only a probability distribution
for this parameter. Moreover, the decision-maker either obtains no information about this parameter or is
unable to act on that information. If the decision-maker maximizes the expected value of a payoff, using the
subjective distribution of the discount rate, the resulting maximization problem involves a discount rate that
falls over time [1,6,28]. Second, if the decision-maker maximizes a convex combination of the payoffs of two or
more agents with constant discount rates, the discount rate to the resulting problem falls over time [11].

Some decision problems, such as those that involve a large sunk cost, can be modeled as consisting of a
single choice. Once a nuclear power plant is built, it is unlikely to be de-commissioned before its lifetime
has expired. The undiscounted future costs of disposing of spent fuel may be of the same order of magnitude
as the current construction costs, so the discount rate(s) are critical in determining the cost–benefit ratio of
the construction project. However, once the trajectory of discount rates is chosen, the computation of the
cost–benefit ratio is standard.

Other problems require a sequence of decisions, leading to a sequence of costs and rewards. Efforts to
control climate change involve abatement costs and possible benefits (from reduced climate-related damages)
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over many periods. NCPRTP qualitatively changes these kinds of dynamic problems (rather than simply
complicating a computation), because of the time consistency issue. With NCPRTP, the current decision-
maker’s willingness to transfer income (or costs, or utility) between two future time periods depends on how
far distant those periods are from the current period. That distance decreases with time, so decision-makers’
willingness to make the transfer changes with calendar time: the choice that is optimal from the standpoint of
the current time is not optimal at a future point in time.

If the current decision-maker were able to commit to a future sequence of policy rules (the ‘‘full
commitment equilibrium’’), the time-consistency problem would disappear. However, it is not reasonable to
think that today’s decision-maker can make binding decisions for generations more than a century in the
future. Therefore, the full commitment equilibrium is implausible. This equilibrium is also of questionable
normative interest, because it gives special status to the first generation, eliminating the ability of subsequent
generations to make their own choices. In some circumstances the first generation is more selfish in the full
commitment equilibrium, relative to the Markov perfect equilibrium (MPE) [16]. Thus, away from the steady
state, some future generations may be better off (i.e. have a higher present-discounted value of future payoffs)
in the MPE than in the full commitment equilibrium (because they might inherit a worse state variable in the
former equilibrium).

Although unable to directly choose successors’ policies, the current decision-maker in our setting is able to
influence the environment that future generations inherit, thereby affecting the decisions that they choose to
make. By using a game theoretic model and adopting a MPE as the solution concept, we strike this balance:
the policy-maker in each period chooses the action or decision rule for that period, understanding the effect
their decision has on future policy-makers.

The game theoretic model leads to a continuum of steady-state candidates, making it difficult to identify an
equilibrium [17]. A similar feature arises in differential games [27,5]. In an equilibrium or optimization
problem with unique (or ‘‘isolated’’) steady states, local analysis (in the neighborhood of a steady state) can
be accomplished using only the Euler equation and the equation of motion. This analysis enables us to
learn something about the problem without obtaining the full solution to that problem. In contrast, where
we have a continuum of candidate steady states, there is no criteria for selecting the specific point around
which to conduct local analysis. (It is possible to provide a local analysis around an arbitrarily selected
candidate steady state, but the arbitrariness of the selection makes that exercise of dubious value.) This
difficulty increases the importance of a numerical solution: without such a solution, we learn little about
the model.1

There is an enormous literature on the term structure of interest rates. The time-profile of returns on assets
with different maturities typically is non-constant, due to uncertainty over future consumption or growth rates
[8–10,30]. In the absence of market imperfections, the private interest rate and the social discount rate are
equal. Thus, with uncertain future consumption paths, the social discount rate is typically non-constant even
when the PRTP is constant. If the social discount rate is non-constant due to this type of uncertainty, the
environmental policy problem should be solved as a stochastic control problem; the issue of time-inconsistency

does not arise. The situation is different when the social discount rate is non-constant because of changing pure
rates of time preference, and the PRTP is ‘‘stationary’’, i.e. the discount factor used to compare utility in two
contiguous future periods depends on the number of periods in the future—not on calendar time. In this
case, the time-inconsistency is central, and the environmental policy problem should (arguably) be modeled
as a dynamic game. Both sources of the non-constant social discount rate are important in environmental
problems, but in order to have a tractable model, we consider only non-constancy arising from a changing
PRTP.

The reader who is interested only in the economic results, not in the methods, can move directly to the
application in Section 4, skipping Sections 2 and 3 without significant loss of continuity.

ARTICLE IN PRESS

1Phase plane analysis leads to some qualitative insights in the case of differential games (where there also exists a continuum of steady-

state candidates). The MPE to the problem with NCPRTP has a different structure, either eliminating or severely reducing the possibility

of using phase plane analysis. In this sense, numerical methods are arguably more important for studying NCPRTP models than

differential games.

T. Fujii, L. Karp / Journal of Environmental Economics and Management 56 (2008) 83–101 85



2. Numerical methods

This section presents a method to numerically solve a non-stochastic discrete time dynamic programming
problem with NCPRTP. We derive a quasi dynamic programming equation (QDPE) for the control problem.
The modifier ‘‘quasi’’ reminds the reader that in order to obtain a MPE to the control problem under
NCPRTP, we need to solve that problem as a dynamic game amongst a sequence of decision-makers. Then we
describe the numerical algorithm used to solve the QDPE. For the software to implement this algorithm, see
[7] and the online appendix available through the journal’s archive for supplementary material, which can be
accessed at hhttp://www.aere.org/journal/index.htmli.

2.1. The optimization problem

It is instructive to consider first a standard autonomous optimal control problem in a discrete time,
continuous state setting. Suppose that a decision-maker wants to maximize an objective functional by
choosing a control variable xt 2 O � R for each period t. The payoff in each period is given by the reward

function f ðxt;StÞ, where St is the state variable for time t and St 2S ¼ ½S;S� is the state space. The state
variable obeys the equation of motion Stþ1 ¼ gðxt;StÞ; g is the transition function. Both the reward function
and transition function are bounded over S � O.

The decision-maker maximizes the following function by choosing fxtg1t¼0:X1
t¼0

ytf ðxt;StÞ s.t. St ¼ gðxt;StÞ; S0 ¼ S, (1)

where yt is the discount factor for utility in period t. The discount rate associated with yt is the PRTP, i.e. the
‘‘utility discount rate’’, for period t. The sequence ðytÞ is exogenously given. In the standard setting, the PRTP
is a constant, so that we can write yt ¼ dt for 0odo1. Defining the maximum value of the above summation
as V ðSÞ, we write the dynamic programming equation under constant discounting:

V ðSÞ � max
fxtg1t¼0

X1
t¼0

dtf ðxt;StÞ s.t. St ¼ gðxt;StÞ; S0 ¼ S

" #

¼ max
x0
½f ðx0;SÞ þ dV ðgðx0;SÞÞ�. (2)

Now we relax the assumption that the discount rate is constant. Set the current time to t ¼ 0 and let the one-
period discount factor for time t40 be st so that

yt ¼
Yt
t¼1

st.

We define y0 � 1 and require that the one-period discount factor becomes a positive constant after a finite time
T. That is, st ¼ do1, 8tXT , so that yt ¼ yTd

t�T , 8tXT . By choosing T large, this model approximates a
model in which the discount rate approaches a constant only asymptotically. The standard problem
corresponds to the case where T ¼ 0. With quasi-hyperbolic discounting T ¼ 1 and s1 ¼ bd where 0obo1;
the current generation discounts the next generation’s utility by the factor of bd, but each successive
generation is discounted at a constant factor d.

Under NCPRTP, the trajectory of plans that are optimal for a decision-maker in a particular period is not
time-consistent in general. The value of control variable xt for t40 that is optimal for the decision-maker at
time 0 does not in general equal the value of the control variable that the decision-maker in a subsequent
period would want to choose. This inconsistency stems from the non-constant discounting. In our model,
time-inconsistency arises only if the preferences of decision-makers at two different points in time are different.
For example, fix the current calendar time to t. The decision-maker at time t evaluates a trade-off between
utility in periods tþ t and tþ tþ 1 using the discount factor stþ1; the decision-maker in calendar time tþ 1
evaluates the same trade-off using the one-period discount factor st. When stastþ1 the two decision-makers
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have different preferences; in this case, the policy that is optimal for the decision-maker at calendar time t is
typically not time-consistent.

We obtain a MPE by solving this problem as a game amongst a succession of generations of policy-makers.
Each generation’s payoff depends on the sequence of future rewards, but not on past rewards. Generation t

ranks outcomes using the objective function

X1
s¼0

ysf ðxtþs;StþsÞ.

No generation can directly choose actions taken in the future, but each generation can influence future actions
by changing the value of the state variable that it leaves to future generations. This situation can be viewed as a
sequential game. We consider a symmetric Nash equilibrium, in which each generation chooses a control rule
that is the best response to future generations’ control rules. Generations are symmetric: each takes the current
state variable as given and is followed by an infinite sequence of future generations. Since the functions f ð�Þ
and gð�Þ are time-independent, we look for a stationary equilibrium control rule. In the equilibrium, the
problem of time-inconsistency is resolved because each generation understands how its action affects future
actions, via changes in the state variable. We obtain the necessary equilibrium conditions to this problem using
a straightforward generalization of the methods in [13], who considered the case where T ¼ 1.

The Introduction explained why we do not explicitly study the full commitment equilibrium. However, we
note that the steady state in that equilibrium is the same as the steady state in the model where the decision-
maker has a constant PRTP equal to the lowest value under NCPRTP [17]. Our section on climate change
calculates this steady state. Thus, our numerical results permit comparison of the MPE and the full
commitment equilibrium steady states.

2.2. The algorithm

We search for a differentiable control rule w : S! O. The control rule is an equilibrium control rule if no
decision-maker in the infinite sequence of decision-makers wants to deviate from it.

Definition 1. An equilibrium control rule w satisfies the following relationship 8S:

wðSÞ ¼ argmax
x0

X1
t¼0

ytf ðxt;StÞ s.t. S0 ¼ S; Stþ1 ¼ gðxt;StÞ; xt ¼ wðStÞ 8tX1. (3)

Eq. (3) states that wðSÞ is the current decision-maker’s best response, under the belief that future decision-
makers will use the rule wðSÞ. This equation embodies the Nash equilibrium assumption.

We write the value function as W wðSÞ; the subscript emphasizes the dependence of the value function on the
(possibly non-unique) equilibrium control rule, w. The following result is the basis for our algorithm.

Proposition 1. Assume that there exists a differentiable Markov perfect control rule wðSÞ and a differentiable

value function W wðSÞ. An equilibrium control rule wðSÞ satisfies the QDPE

wðSÞ ¼ argmax
x0

f ðx0;SÞ þ
XT
t¼1
ðyt � dyt�1Þf ðwðStÞ;StÞ þ dW wðS1Þ, (4)

where the value function W wðSÞ satisfies

W wðSÞ ¼ max
x0

f ðx0;SÞ þ
XT
t¼1
ðyt � dyt�1Þf ðwðStÞ;StÞ þ dW wðS1Þ

" #

with S0 ¼ S given and Stþ1 ¼ gðwðStÞ;StÞ for tX1. (5)
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Proof. We obtain the equilibrium payoff W wðSÞ by evaluating the payoff in expression (1) at x ¼ wðSÞ:

W wðSÞ �
X1
t¼0

ytf ðwðStÞ;StÞ s.t. S0 ¼ S. (6)

Treating x0 as a choice variable, and setting xt ¼ wðStÞ 8tX1 we write the maximization problem in
Definition 1 as

max
x0

f ðx0;S0Þ þ
X1
t¼1

ytf ðxt;StÞ
" #

¼ max
x0

f ðx0;SÞ þ
XT
t¼1

ytf ðwðStÞ;StÞ þ
X1

t¼Tþ1
dyt�1f ðwðStÞ;StÞ

" #

¼ max
x0

f ðx0;SÞ þ
XT
t¼1
ðyt � dyt�1Þf ðwðStÞ;StÞ þ d

X1
t¼0

ytf ðwðStþ1Þ;Stþ1Þ
" #

.

We use the definition in Eq. (6) to replace the third term in the last line of the above equation. Evaluating W w

at S ¼ S1, we obtain Eq. (5). Eq. (4) is an immediate consequence of Eq. (5) and Definition 1. &

The QDPE, Eq. (5), is similar to Eq. (2) except that the former has an extra term, the summation on the
right side. The collocation method and function iteration provide a means of solving the QDPE. To see how
this method works, it helps to review the standard setting with constant discounting. We start by guessing the
value function V ðSÞ, and denote the initial guess by V ð0ÞðSÞ. Consider a particular value of S0. Solving the
maximization problem in Eq. (2) yields the maximizing value of the control variable x�0 at S0. We can use this
to ‘‘update’’ the value function. That is, we let V ð1ÞðS0Þ  f ðx�0;S0Þ þ dV ð0Þðgðx�0;S0ÞÞ. In principle, if we do
this for each possible value of S0, we would have V ð1ÞðSÞ. Hence, we would be able to use V ð1ÞðSÞ on the right-
hand side of Eq. (2) to again update the value function. We repeat this process until V ðrÞðSÞ and V ðrþ1ÞðSÞ are
close enough, where r denotes the round of iteration.

In practice, we cannot evaluate the value function at every possible value of S0. Instead, we apply the
collocation method, in which a set of K prescribed points s1; . . . ; sK called the collocation nodes is used to
evaluate V ðrÞðsiÞ for 1pipK in a fixed domain ½S;S� [15,22]. The values of V ðrÞ outside the collocation nodes
are approximated by a linear combination of NpK known basis functions fnðSÞ, so that the approximant has
the form of

V̂
ðrÞðSÞ �

XN
n¼1

cnfnðSÞ;

the basis functions must be linearly independent at the collocation nodes. The N coefficients c1; c2; . . . ; cN are
determined by minimizing the residual at the collocation nodes using (for example) ordinary least square.
When N ¼ K , the approximant V̂

ðrÞ
takes the same value as V ðrÞ at the collocation nodes.

The collocation nodes could be evenly spaced over this domain, but the method works better with
Chebyshev nodes; this method places more nodes closer to the boundaries of the domain. Depending on the
nature of the function to approximate, we can use different types of approximants. Section 4 uses Chebyshev
nodes and cubic splines. Cubic splines tend to perform well when approximating a function that has a portion
that may not be smooth, and when the order of the approximant is high. The program allows the user to select
Chebyshev polynomials as an alternative.

The collocation method and function iteration described above do not directly apply to Eq. (5), because of
the presence of the middle term. We need two approximants in our algorithm, one for wð�Þ and the other for
W ð�Þ. Our approach starts by guessing the control rule at the collocation nodes. Let sk be the kth collocation
node with skoskþ1 for all koK . The initial guess of the control rule consists of x

ð0Þ
1 ; . . . ;xð0ÞK . Given a choice of

basis functions for the control rule, we can then find the approximant ŵð0Þ that exactly or approximately
satisfies ŵð0ÞðskÞ ¼ x

ð0Þ
k .
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Because we do not knowW, we also need to guess this function. However, W ð0Þ must be consistent with ŵð0Þ.
To obtain W ð0Þ we replace the infinite sum in Eq. (6) by a finite sum from 0 to time Tw, where Tw is a large
number (i.e. much greater than T). Letting st be the value of the state variable at time t when the initial state is
st ¼ sk and the control rule ŵð0Þ is used, our guess of the value function at the collocation nodes is

W ð0ÞðskÞ  
XTw

t¼0
ytf ðŵð0ÞðstÞ; stÞ s.t. s0 ¼ sk; stþ1 ¼ gðŵð0ÞðstÞ; stÞ.

Given the choice of basis functions for the value function, we then choose the coefficients of the approximant
to (exactly or approximately) satisfy Ŵ

ð0ÞðskÞ ¼W ð0ÞðskÞ for all k. Having the initial guess ŵð0Þ and Ŵ
ð0Þ
; we

start the iteration. We begin each iteration with ŵðrÞ and Ŵ
ðrÞ

and update these functions during the iteration.
We can evaluate the control rule at each of the approximation nodes by maximizing the right-hand side of the
QDPE, Eq. (5):

wðrþ1ÞðskÞ  argmax
x

f ðx; skÞ þ
XT
t¼1
ðyt � dyt�1Þf ðŵðrÞðskt Þ; skt Þ þ dŴ

ðrÞðsk1Þ

s.t. sk1 ¼ gðx; skÞ; sktþ1 ¼ gðŵðskt Þ; skt Þ for tX1.

We choose new coefficients of the approximant of the control rule to obtain the approximant ŵðrþ1Þ. Likewise,
we can get Ŵ

ðrþ1Þ
by evaluating the value function at the collocation nodes with the following equation, and

finding the coefficients for its approximant:

W ðrþ1ÞðskÞ  max
x

f ðx; skÞ þ
XT
t¼1
ðyt � dyt�1Þf ðŵðrÞðskt Þ; skt Þ þ dŴ

ðrÞðsk1Þ

s.t. sk1 ¼ gðx; skÞ; sktþ1 ¼ gðŵðskt Þ; skt Þ for tX1.

The iteration continues until wðrþ1Þ and wðrÞ are close enough, andW ðrþ1Þ andW ðrÞ are also close enough. Our
convergence criterion is

max
sk
fwðrþ1Þ � wðrÞ;W ðrþ1Þ �W ðrÞgptol,

where tol is a small positive value, the tolerance level. See [7] and the online appendix for further details.

2.3. The steady state

We are often interested in the characteristics of the steady state S�. We can numerically find the steady state
by solving for S in gðŵðSÞ;SÞ ¼ S, where ŵ is the converged approximant of the control rule. The value of the
control variable at the steady state is simply x� ¼ ŵðS�Þ. Here, in order to find the steady state we first need to
approximate the solution to the entire problem.

In control problems with constant discounting, analysis of the steady state is much simpler. There, we use
the transversality condition limt!1d

tV 0ðStÞ ¼ 0 to conclude that the state variable must converge. Providing
that it converges to an interior steady state (as is the case for a broad class of problems), we then use the Euler
equation and the equation of motion, both evaluated at a steady state. These are two algebraic equations, so
their analysis, using numerical or qualitative methods, is straightforward (and does not require the solution to
the control problem). Even if there are multiple solutions to these two algebraic equations, those solutions are
‘‘locally unique’’.

The same approach leads to an interval (or possibly several intervals) of candidate steady states in the case
of NCPRTP. With NCPRTP, we show in the Appendix that the Euler equation evaluated at a steady state is a
Tth order polynomial in w0�:

f �x þ g�xðf �xw0� þ f �s Þ
XT
t¼1
ðyt � dyt�1Þðg�xw0� þ g�s Þt�1 þ dðf �s g�x � f �xg

�
s Þ ¼ 0. (7)
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In Eq. (7) the subscripts x and s denote the partial derivatives, and � denotes the value at the steady state. For
example, f �x is qf ðx; sÞ=qx evaluated at ðx; sÞ ¼ ðwðS�Þ;S�Þ.

Eq. (7), together with the steady-state condition of the equation of motion, S� ¼ gðx�;S�Þ, comprise two
equations in three unknowns, x�;S�, and w0�. In contrast, with constant discounting (T ¼ 0), the summation in
Eq. (7) vanishes, eliminating the unknown value w0�. With constant discounting we have the standard Euler
equation evaluated at the steady state

f �x þ dðf �s g�x � f �xg
�
s Þ ¼ 0. (8)

Eq. (8) and the steady-state condition S� ¼ gðx�;S�Þ comprise two equations in two unknowns, which can be
solved to identify steady-state candidates. Thus, under constant discounting, analysis of the steady state
requires only that we analyze two algebraic equations, without actually needing to solve the optimization
problem.

The necessary condition for asymptotic stability,

jg�xw0� þ g�s jo1, (9)

can be used to restrict the range of candidate steady states under NCPRTP. However, the two algebraic
equations and the inequality identify a continuum of candidates, rather than a unique candidate or isolated
(i.e. ‘‘locally unique’’) candidates.

The economic explanation for the lack of even ‘‘local’’ uniqueness of the steady state is essentially the same
as in the differential game literature. There, the cause of the indeterminacy of the steady state is referred to as
an ‘‘incomplete transversality condition’’. In the steady state, the current decision-maker needs to consider
how a change in her decision, and the resulting change in the state in subsequent periods, would change
subsequent decisions, and the effect that these changes would have on her payoff. The subsequent decisions do
not maximize the payoff of the current decision-maker, so the envelope theorem cannot be invoked, as is done
in control problems with constant discounting. Each decision-maker’s optimal choice depends on how that
choice will alter the decisions of her successors. This dependence holds at every point, including at the steady
state. Thus, the value of the steady state, S�, depends on w0ðS�Þ, as Eq. (7) shows.

We can obtain an analogous equation for the higher-order derivatives of the control rule evaluated at the
steady state. The online appendix gives the second derivative of the control rule at the steady state, w00�. We use
this value to check the performance of the approximant, but it does not assist us in identifying a finite set of
candidate steady states. In principle, we can also use these higher-order derivatives to construct a Taylor
approximation of the control rule that drives the state to a particular steady state. Krussel et al. [19] implement
this procedure in the special case of quasi-hyperbolic discounting.

The approximated control rule may appear much smoother than the function actually is. For example,

consider a function hðzÞ ¼ zþ � sinðz=�2Þ where � is a small positive number; ĥðzÞ ¼ z approximates f ðzÞ well
because jhðzÞ � zj never exceeds �. However, ĥ

0ðzÞ does not approximate h0ðzÞ well, because jh0ðzÞ � ĥ
0ðzÞj ¼

ð1=�Þj cosðzÞj can be very large. The QDPE does not explicitly involve the derivatives of the control rule.
However, we can use the Euler equation and its derivatives, evaluated at the steady state, to improve or to
validate the approximant, as discussed in the following section.

3. Testing the software

We conducted extensive tests of this software, since we know from earlier work that models with quasi-
hyperbolic discounting (a simple form of hyperbolic discounting) sometimes do not converge [20]. For our first
tests we chose the parameters to give a constant discount rate, and confirmed that the solution is equivalent to
that obtained using the packages provided by Miranda and Fackler.

We then tested the software using a linear-quadratic model with quasi-hyperbolic discounting. This
specification is convenient, because it admits a closed form solution for the linear equilibrium, given in terms
of a solution to a cubic equation [16]. We can compare the solution returned by the program with this closed
form solution in order to test the algorithm and the code. To check the robustness of the results, we used
Chebyshev polynomials in addition to cubic splines.
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Use of the linear-quadratic model also provides insight into the question of multiple equilibria, arising from
the indeterminacy of the steady state. We can identify the interval of candidate steady states using the
requirement of asymptotic stability, Eq. (9). For general functional forms, it is a simple matter to determine
this interval numerically. For the linear-quadratic problem we can determine the interval analytically. The
steady state to the linear equilibrium is a point in this interval.

For general functional forms there is an interval of values of the state that satisfy the necessary conditions
for optimality at a steady state, and that are asymptotically stable. As noted in Section 2.3, it is possible to use
the derivatives of the Euler equation, evaluated at a steady state, to obtain higher-order derivatives of the
control rule at the steady state.2 This procedure provides no information about the domain over which that
particular control is defined. We therefore attempted to identify these equilibria directly.

To that end, we wrote the program so that the user has the option of specifying the steady state. The user is
able to pick a point Su in the interval of candidate steady states and require that this point be a steady state to
the equilibrium problem. By imposing the steady state condition gðwðSuÞ;SuÞ ¼ Su, we ensure that Su is the
steady state. In addition, the user has an option to impose the steady-state Euler condition, Eq. (7), that
specifies the (Markov perfect) equilibrium condition for the first derivative of the control rule. Further, the
user can check whether the (Markov perfect) equilibrium condition for the second derivative of the control
rule is approximately satisfied using a condition given in the online appendix.

Both the steady-state condition and the steady-state Euler condition can be expressed as a linear constraint
on the coefficients c

w
1; c

w
2; . . . ; c

w
N for the approximant of the control rule w. That is, from the steady-state

condition, we can find a value of the control rule xu that satisfies gðxu;SuÞ ¼ Su. Thus, the coefficients must
satisfy

xu ¼
XN
n¼1

cwnfnðSuÞ.

Likewise, the steady-state Euler equation (Eq. (7)) gives the value of w0 at Su. Hence, the coefficients must
satisfy the following linear constraint:

w0ðSuÞ ¼
XN
n¼1

cwnf
0
nðSuÞ.

When the user-specified conditions are imposed, the coefficients are found using constrained least squares.3

The user also has the option of not specifying the steady state. With this option, the program approximates
the equilibrium control rule without special consideration to the steady state. We then find the steady state by
solving gðŵðSÞ;SÞ ¼ S. We can then use the steady-state condition and the steady-state Euler condition to
validate the approximant.

That is, under both options (with and without a user-specified steady state) we use the steady-state condition
and Euler equation, Eq. (7). However, we use the second equation in different ways. That condition is imposed
with the user-specified steady-state option, and it is merely a diagnostic tool when the program chooses the
steady state. The derivative of the Euler equation, which involves second derivatives of the control rule, is used
as a diagnostic tool under both options.

We know that for the linear-quadratic problem with quasi-hyperbolic discounting, the linear equilibrium is
defined over the entire real line [16], but we have no information about the domains of other equilibria.
Therefore, if the user imposes a steady state other than the value corresponding to the linear equilibrium, it is
necessary to experiment with the state space. It might be the case that a particular non-linear equilibrium is
defined over only a small interval in the neighborhood of the steady state corresponding to that equilibrium.
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2It is in theory possible to obtain higher derivatives of the control rule for the entire state space by solving higher-order derivatives of the

Euler equation. However, numerical solutions are difficult to obtain because the expression generally involves the value of the state

variable for the future periods.
3It is also possible to impose the equation involving second derivatives (in the online appendix), but we dropped this option for two

reasons. First, the higher-order derivatives directly derived from the approximants are in general not very reliable. Second, the additional

linear constraints make it more difficult to obtain reliable numerical results using constrained least squares.
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Consequently, in order to try to identify non-linear equilibria, it is necessary to experiment with different (e.g.
small) definitions of state space.

To reiterate, the purpose in writing the program with the option of a user-specified steady state was to see if
the algorithm returns a unique solution, or whether it can return many solutions, each of which corresponds
to a particular steady state. When the user does not specify the steady state, the program always returns the
linear equilibrium, independently of the starting values that we use in the algorithm, and of the choice of
the basis function. If the user specifies the steady state to the linear equilibrium, the program returns the linear
equilibrium. If the user specifies a steady state within the candidate set (i.e. the points that are asymptoti-
cally stable), but not equal to the steady state corresponding to the linear equilibrium, there are two
possibilities. If the user does not impose the steady-state Euler condition (Eq. (7)), the program converges
to a highly non-linear control rule. However, if the user specifies the steady state and also imposes the steady-
state Euler condition (as is appropriate, since this conditions must hold in a MPE), the program fails
to converge.

In summary, if the user specifies the steady state, the algorithm does not converge unless the user happens to
get the ‘‘right’’ steady state, or unless the user neglects the steady-state Euler condition. The algorithm
converges when a steady state is not imposed upon it. That is, for these experiments, we find that our
algorithm identifies a unique equilibrium. Perhaps this outcome should not be surprising. First, the linear
equilibrium is the only equilibrium function within the class of finite polynomials in S that is defined over the
entire real line.4 Second, recent years have seen the development of algorithms to obtain MPE in dynamic
games (e.g. [24]) which are designed to be used to estimate parameters in Industrial Organization models.
When authors of these and related papers mention uniqueness, they note that although there may be multiple
equilibria to the games they study, they report that for their experiments their algorithm obtains a unique
equilibrium. We know of no theory that explains why these kinds of algorithms return unique equilibria.

We repeated searches for multiple equilibria employing the user-specified steady-state option and using
other functional forms for which we are not able to identify any closed form equilibrium. We did not find
multiple equilibria. Thus, our algorithm has not proved useful for exploring the multiplicity of equilibria.
However, the fact that in our experiments it returns a unique equilibrium, and that this equilibrium is the
‘‘natural’’ one (i.e. the linear equilibrium of the linear-quadratic problem) makes the algorithm well suited for
policy experiments. Hereafter, we allow the program to identify the steady state; that is, we do not employ the
user-specified steady-state option. An earlier version of this paper describes extensive experiments with a
fishery model using the Schaefer growth function.

4. The application to climate change

We use our QDPE solver to determine the MPE under NCPRTP in a model of climate change based on the
Stern Review [26]. We want to investigate the sensitivity of the optimal policy to different levels and forms
(constant versus non-constant) of discounting. We explain how we calibrate the model, then discuss steady
states, and then provide comparisons of policy functions and equilibrium trajectories.

4.1. Model calibration

We use runs from the PAGE model, reported in [26], to calibrate a simple deterministic model with one state
variable.5 We select the Stern Review runs that use their baseline climate scenario and economic impacts
inclusive of market impacts, risk of catastrophe and non-market impacts. The Stern Review takes into account
uncertainty using repeated simulations, but we use only the mean estimates to calibrate our deterministic
model.
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5Our model cannot reproduce the complicated dynamics that can arise with multi-state variable models, particularly features that

capture the inertia in the climate system. We merely use the PAGE results to calibrate a model that captures the ‘‘orders of magnitude’’

implicit in that model.
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We assume that in the absence of the climate change (i.e. no damage occurs even under the business-
as-usual (BAU) scenario), the output per capita (GWP) y grows at a constant rate g. We also assume that
under BAU the saving rate s is constant so that (per capita) consumption at time t is ct ¼ ð1� sÞyt.
We normalize y so that the base year consumption is equal to unity. Hence, ct ¼ ð1þ gÞt in the absence of
climate change.

The state variable in our model, Pt 2 ð�1; 1�, is the fraction of GWP lost as a result both of climate change
and past efforts (e.g. re-directing savings) to reduce that change. With this notation, ð1þ gÞtð1� PtÞ is the
fraction of GWP available for consumption. The control variable, xt, is the fraction of this amount that is
diverted from consumption to spend on climate change mitigation and avoidance in the current period;
current consumption is ct ¼ ð1þ gÞtð1� PtÞð1� xtÞ.

The solid lines in Fig. 1 show three Stern Review trajectories for Pt (which they call the ‘‘output gap’’) when
x is held constant at 0%, 1% and 4%. The Stern Review provides the values of P under these three scenarios
for eight years, 2010, 2020, 2040, 2060, 2080, 2100, 2150 and 2200. We use these 8� 3 ¼ 24 ‘‘data’’ points for
our calibration.

Initially, the graph of P is higher under 4% expenditures than under either 1% or under BAU, illustrating
the possibility that large current expenditures on mitigation and avoidance can actually reduce future GWP.
The Stern Review does not explain this feature of the model. One explanation for it follows from the
observation that expenditures on climate-related policy are financed by both a reduction in consumption and a
reallocation of savings (which in our setting is a constant fraction of output); these two sources are likely to be
positively correlated. A larger value of x reduces current consumption. If x is positively correlated with the
fraction of the total amount of savings devoted to climate policy, then a large x reduces investment in non-
climate-related projects. The loss in future production due to the reduction in future capital may be greater
than the gain in future production due to lower climate-related damage. For our purposes, the important
consequence of this feature is that it puts an upper bound on the optimal level of x, regardless of the discount
rate.

Under BAU, P rises to about 0.13; in this case, climate change reduces consumption by over 13% by the end
of the next century. The solid curves in Fig. 1 turn down because of the Stern Review’s assumption that
damages end at year 2200. We adopt a calibration in which damages eventually level off.
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To this end, we use a discrete time version of the standard ‘‘S-shaped’’ adoption–diffusion model. In the
absence of control, this model implies that the growth equation for P is

Ptþ1 ¼
Pt þ a1

a2Pt þ a3
.

Based on convenience and goodness of fit with our calibration points, we chose the following functional form
for including the effect of control, x:

Ptþ1 ¼
Pt þ a1 þ b1xtPt=ðx2t þ b2Þ þ b3xt

a2Pt þ a3
¼ gðxt;PtÞ. (10)

The dashed lines in Fig. 1 show the values of P using our calibration, for the three scenarios (constant
x 2 f0; 0:01; 0:04g). Table 1 reports the values of the parameters that minimize the sum of squared residuals at
the data points.

Our calibration almost exactly reproduces the evolution of Pt in the Stern Review model (solid line) under
BAU. The fit for the mitigation scenarios (1% Control and 4% Control) is not as good, but this is due to our
decision to use a model in which damages do not fall (when x is held constant). However, our calibrated
trajectories lie well within the 90% confidence interval for the Stern Review estimates of damage (not shown,
to avoid clutter).

In a steady state, Pt and xt are constant, so GWP and consumption grow at the rate of g. The Stern Review
assumes that the economy grows at a constant rate of 1.3% per annum after year 2200. We use the same
growth rate; taking one period to be a decade, we set g ¼ 0:13787.

We define D ¼ 1� ð1� PÞð1� xÞ, the aggregate consumption loss due to mitigation expenditures and
remaining climate-related damage. Hereafter we evaluate this function only at a steady state. Fig. 2 shows the
graph of D in the steady state. With our calibration, this function reaches a minimum at x ¼ 0:00845, where
D ¼ 0:022. These are the optimal steady-state values in the limiting problem in which the constant discount
rate approaches 0. Here, society spends slightly more than 0.8% of its income on climate policies, maintaining
a constant level of climate-related damage such that the aggregate consumption loss equals 2.2% of the level
absent all climate-related effects. Any problem with a positive discount rate leads to a steady state at a lower
level of x and a higher level of D. The graph of D falls rapidly for very small levels of x, where a small increase
in expenditures leads to a large fall in steady-state damages. Thus, our calibration represents a world in which
small expenditures yield large future benefits—the situation described in [26].6

As in [26], we assume that welfare in period t depends only on current consumption, and the utility function
is isoelastic:

UZðctÞ ¼ c
1�Z
t � 1

1� Z
ðZa1Þ.

ARTICLE IN PRESS

Table 1

Calibrated parameter values

Parameter Value

a1 3.8746� 10�4

a2 1.9700

a3 0.73819

b1 �1.8241� 10�2

b2 3.1511� 10�4

b3 0.21807

6Our calibration implies that the steady-state cost of doing too little is much greater than the cost of doing too much. If we were to

extend this model by including uncertainty, and if (in the interest of simplicity) the goal were to maximize the expected steady-state flow of

welfare, it would be optimal to set x40:00845.
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For Z ¼ 1, we define U1ðctÞ ¼ ln ct. The present-discounted utility W when Za1 is

W ¼
X1
t¼0

ytUðctÞ ¼
X1
t¼0

yt
½ð1þ gÞtð1� PtÞð1� xtÞ�1�Z � 1

1� Z
¼

X1
t¼0

~yt
½ð1� PtÞð1� xtÞ�1�Z � 1

1� Z
,

where ~yt ¼ ytð1þ gÞtð1�ZÞ is the utility discount factor accounting for growth. The PRTP can be variable, with
yt equal to the utility discount factor (exclusive of growth).

4.2. Steady states

We consider two benchmark cases with constant PRTP equal to either 0.1% per annum (yt ¼ 0:99005t) and
3% per annum (yt ¼ 0:74409t). Ref. [26] uses a PRTP of 0.1% and other integrated assessment models use a
3% rate. (Recall our comment in Section 2.1 that the steady state corresponding to a constant PRTP of 0.1%
is also the steady state of the ‘‘full commitment’’ equilibrium to the problem with NCPRTP.) We also take two
values of Z 2 f1; 2g. Ref. [26] used Z ¼ 1; some authors state that Z ¼ 2 is a better choice. For the non-constant
discounting (NCPRTP) scenario, we use 3=ð100þ 145tÞ for the per annum PRTP, which declines from 3% in
t ¼ 0 (Year 2000) to the terminal rate of 0.1% in t ¼ 20ð¼ TÞ (Year 2200). We use Chebyshev nodes and cubic
splines, and set both the number of collocation nodes ðKÞ and the number of basis functions for the
approximant ðNÞ equal to 200.7

The first two lines of Table 2 show the steady-state values of P and x for various combinations of a
(constant) PRTP and Z; the third line shows these values under NCPRTP. We solved all models using our
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Fig. 2. The graph of D in the steady state using parameters in Table 1.

Table 2

The values of the state variable P�, the control variable x�, and the loss in consumption D in the steady state under different discounting

schemes

PRTP Z ¼ 1 Z ¼ 2

P� x� D P� x� D

Const. 0.1% 0.0137 0.0084 0.0220 0.0147 0.0076 0.0222

Const. 3.0% 0.0165 0.0068 0.0232 0.0185 0.0062 0.0246

NCPRTP 0.0151 0.0074 0.0224 0.0171 0.0066 0.0235

7Neither our solver nor the CompEcon toolbox converged even under constant discounting, when we used Chebyshev polynomials

(rather than cubic splines) for the basis functions. The polynomial is not able to approximate the kink in the control rule. Our results are

not sensitive to the choice of K and N:
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QDPE solver. We found that defining carefully appropriate bounds for Pt and xt was crucial for obtaining
convergence, because the approximated values of W and w are generally not reliable when they are
extrapolated to outside the range of the evaluation nodes.

Consider first the steady states under constant discounting. The steady-state levels of expenditure are
moderately sensitive to the discount rate. With Z ¼ 1, increasing the constant annual discount rate from 0.1%
to 3% decreases the level of expenditures by ðð0:0084� 0:0068Þ=0:0084Þ100 ¼ 19%. (The levels of the state and
control are small fractions of a very large number—GWP; therefore, it is more informative to speak of the
percentage changes in these values, rather than the difference in levels.) The steady-state measure of climate-
related damage is considerably smaller (in percentage terms) at the lower discount rate. However, the two
effects nearly offset each other, so that the aggregate steady-state loss increases by only ðð0:0232�
0:0220Þ=0:022Þ100 ¼ 5% when we increase the discount rate. Thus, the steady-state climate-related costs are
quite insensitive to the discount rate.

The steady-state costs are also quite insensitive to Z, and the direction of the change is as expected. The
growth-inclusive discount rate is d�1ð1þ gÞðZ�1Þ � 1, so a larger value of Z has an effect similar (but not
identical) to an increase in the PRTP. For the 0.1% constant discount rate, the growth-inclusive discount rate
rises from 0.1% to 1.40% as Z increases from 1 to 2. This change reduces the steady-state level of expenditures
by ðð0:0084� 0:0076Þ=0:0084Þ100 ¼ 9:5%. Due to the offsetting increase in P, the flow of damages increases
by (ð0:0222� 0:0220Þ=0:0022Þ100 ¼ 9:1%.

Not surprisingly, the steady-state levels under NCPRTP lie between the levels with the constant discount
rates. Again, there is a moderate difference in the level of the control variable and the state with different types
of discounting, and a smaller difference in the steady-state flow of damages.

Fig. 2 provides the key to understanding these results. Moderate levels of expenditure (levels less than 0.5%
of income) produce very large gains relative to BAU, so it is optimal to spend at least a moderate amount,
even under fairly high discount rates. In the neighborhood of the minimum of D, even a significant (percent)
change in the level of expenditures leads to a small change in welfare. Therefore, the flows of welfare are quite
insensitive to changes in the discount rate (within the range of 0.1–3%).

The Stern Review estimates that spending 1% every year would almost completely eliminate the damage
from climate change. Our steady-state estimates suggest that a 0.6–0.7% expenditure in the steady state is
optimal. Since our deterministic model considers only a moderate damage scenario, and does not account for
(very) low probability catastrophic events, our recommendations are in line with [26]. This relatively low level
of expenditures reduces total losses from over 13% (under BAU) to about 2.3–2.6%.

In order to test the sensitivity of these steady-state results with respect to our calibration, we first increased
and then decreased each of the six parameters in Eq. (10) by 5%, holding all other parameters constant. The
largest change in D occurred when we decreased a3, causing a 12% increase in D relative to the baseline (from
0.0232 to 0.0260). Most of the changes were much smaller. The full set of sensitivity results is in the online
appendix. These results suggest that the results are reasonably robust to changes in the calibration: the
elasticity of D with respect to any of the parameters is bounded by 12

5
¼ 2:4.

4.3. The control rules and trajectories

Fig. 3 shows the graph of the control rule for Z ¼ 1 as P ranges between 0% and 3%, under the three
discounting scenarios (discount rates of 0.1% and 3% and a non-constant discount rate ranging between these
two levels). The control rule for Z ¼ 2 is qualitatively similar. In all cases it is optimal to wait until the state
reaches a threshold level until beginning to spend on climate policy.8 A lower discount rate lowers the
threshold and increases the optimal level of expenditures when these are positive. The control rule under non-
constant discounting lies between the two rules for constant discounting.
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8The use of a single state variable means that our model does not capture the complex dynamics that actually arise with climate change,

particularly the role of inertia. The use of a deterministic model means that the model does not adequately deal with (very) low probability

catastrophic events. For both of these reasons, we reject the model’s prescription to wait until the state has reached a threshold before

acting.
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Figs. 4 and 5 show the time evolution of the state and control variable under the three discounting schemes
when Z ¼ 1. The qualitative nature of these graphs is similar when Z ¼ 2: The broken line in Fig. 5
corresponds to the case of the BAU (no control). In our model, the optimal (or equilibrium) control policy—
just like the steady state—is not very sensitive to the choice of discount rate. In all cases, no control is taken
until around Year 2050 (t ¼ 5). After that, expenditures are phased in and reach almost the steady-state level
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by around Year 2100 (t ¼ 10). In the BAU scenario, the output gap (the vertical distance of the broken line) is
already sizable by Year 2100, and continues to grow until Year 2300, at which time it is close to its steady-state
level. Under the optimal control policy, the state is close to the steady state by 2200. Therefore, our model
prediction is consistent with the Stern Review assumption that consumption grows at a constant rate after
2200 in the presence of control.

By substituting the steady-state values of S;x into Eq. (8) and solving for d we obtain a constant discount
rate that supports the steady state obtained under NCPRTP. We refer to this value as the steady-state-
equivalent (SSE) discount factor. For our discounting function, the per annum SSE discount rate is 1:79% for
Z ¼ 1 and 2:05% for Z ¼ 2. We computed the control rule under the SSE discount factor and compared it to
the MPE control rule under NCPRTP. By construction, these rules are equivalent at the steady state, but they
are also virtually indistinguishable even outside the steady state. We obtained a similar result for the fishery
example used to test the software, although in that case the difference between the two control rules was
slightly larger. This evidence suggests that we can obtain a good approximation to the MPE under NCPRTP
by using a constant discount rate between the short-run and the long-run rates under NCPRTP. This result
was not a foregone conclusion. The introduction of non-constant discounting not only involves a change in
the discount rate, but also a change in the nature of the equilibrium—from an optimization problem to a game
amongst a succession of regulators.

5. Summary and discussion

Models with non-constant discount rates are potentially useful in studying environmental and resource
problems where current actions have long-lived effects. These models make it possible to include non-
negligible pure rates of time preference for the near and middle term, while allowing the long-run rate to
become small. This flexibility satisfies ethical criteria, giving the future a non-negligible weight. It reflects the
view that the current generation does not differentiate (much) between two generations in the distant future—
even if it does differentiate between the current and the next generation. At the same time, this flexibility
enables us to calibrate a social discount rate that matches observed short and medium term market rates.
Despite the importance of this model in environmental and resource problems, it has seldom been applied,
owing largely to the difficulty of analyzing subgame perfect equilibria.
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We developed and programmed a method to find a MPE when the decision-maker has non-constant PRTP.
The procedure uses the standard collocation method and function iteration, but requires that we iterate with
both the value function and control rule. An important objective of this paper is to describe and publicize this
software. We think that its availability will promote further applied research that uses non-constant PRTP.

The program can be applied using any finite sequence of non-constant PRTP, followed by an infinite
sequence of constant rates. In our model, the PRTP approaches a constant in finite time, a parameter in the
model; by allowing that parameter to be large, we approximate the model in which the PRTP approaches a
constant only asymptotically.

Previous theoretical results show that there is a continuum of candidate steady states that are asymptotically
stable and that satisfy the equilibrium conditions at the steady state. In experiments using three functional
forms (the linear-quadratic model, the fishery model, and the climate change model) and a range of parameter
values our program returns a unique equilibrium. For the linear-quadratic case, this equilibrium is linear in the
state. It is the equilibrium to the limiting problem, obtained by taking the limit of the finite horizon problem,
letting the horizon approach infinity. In this respect at least, the program returns the ‘‘natural’’ equilibrium.

We used our numerical package to address the current controversy over the role of discounting in
determining socially optimal climate change policy. This controversy arises because in some circumstances
optimal policy is very sensitive to the choice of the PRTP and the elasticity of marginal utility. Moreover, the
choice of these parameters depends on value judgments. In some cases, however, the optimal policy may be
quite insensitive to the social discount rate. We constructed a model that is consistent with the orders
of magnitude for abatement costs and environmental damage used for the numerical policy recommendations
in [26].

In our calibration damages fall very rapidly with small expenditures, and then flatten out and then rise with
larger expenditures. In this circumstance it may be optimal to be near the bottom of the damage curve under a
broad range of discount rates. Lowering the discount rate lowers the equilibrium level of damages by a small
amount in the neighborhood of the minimum of the damage curve. Because it is possible to eliminate most
damages with moderate expenditures, and larger expenditures do little good, the optimal policy is quite
insensitive to the discount rate.

We solved the model for a constant 0.1% and a 3% per annum PRTP (leading to a standard control
problem) and under a PRTP that falls from 3% to 0.1% (requiring the solution to an equilibrium problem,
and the use of our software). The MPE with non-constant discounting lies between the optimal solutions with
the two constant discount rates. Moreover, it is possible to approximate the MPE using a constant discount
rate between the two exogenously given rates. This result means that for applied work there may be little cost
in using a constant moderate discount rate to approximate a problem with a non-constant discount rate.

Our results do not imply that ‘‘the discount rate does not matter very much’’ in general. The results do show
that in some circumstances the discount rate may not be as important a parameter as is commonly believed. In
those circumstances, the choice between constant and non-constant discounting may also be relatively
unimportant.

It is simple enough to vary the constant PRTP in complex integrated assessment models. For a model in
which the discount rate is very important, a non-constant discount rate is useful for capturing both the short-
run and long-run objectives. However, it is not straightforward to obtain a subgame perfect (e.g. Markov
perfect) equilibrium to complex models with non-constant discounting. By using a simple model that captures
some features of the complex integrated assessment model, we can at least get an idea of the level of the
constant discount rate that reflects both the short- and long-run objectives. That constant rate can then be
used in the original integrated assessment model, to obtain an approximation of the problem with non-
constant discounting.
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Appendix A. Derivation of Euler equation

Here, we derive the Euler equation corresponding to Eq. (5). First, by differentiating Stþ1 ¼ gðwðStÞ;StÞ with
respect to St, we have

dStþ1
dSt

¼ gxðwðStÞ;StÞw0ðStÞ þ gsðwðStÞ;StÞ,

where the partial derivatives are denoted by subscripts. With a little abuse of notation, we denote
gðtÞ ¼ gðwðStÞ;StÞ. We use similar shorthand notation for f and the derivatives. Also, we denote wðtÞ ¼ wðStÞ.
Then, we have

dSt

dS1
¼ dSt

dSt�1
� dSt�1
dSt�2

� � � dS2

dS1
¼

Yt�1
t¼1
½gxðtÞw0ðtÞ þ gsðtÞ� ðtX2Þ

and

dS1

dx
¼ gxð0Þ.

Using the notation above, we can write Eq. (5) as

W ðSÞ ¼ max
x

f ðx;SÞ þ
XT
t¼1
ðyt � dyt�1Þf ðtÞ þ dW ðS1Þ

( )
.

The first-order condition is

f xð0Þ þ
XT
t¼1
ðyt � dyt�1Þðf xðtÞw0ðtÞ þ f sðtÞÞ

dSt

dS1
þ dW 0ðS1Þ

" #
gxð0Þ ¼ 0. (11)

By the envelope theorem,

W 0ðSÞ ¼ f sð0Þ þ
XT
t¼1
ðyt � dyt�1Þðf xðtÞw0ðtÞ þ f sðtÞÞ

dSt

dS1
þ dW 0ðS1Þ

" #
gsð0Þ.

Applying the first-order condition, Eq. (11), we obtain

W 0ðSÞ ¼ f sð0Þ �
f xð0Þgsð0Þ

gxð0Þ
.

Then, advancing one period, we have

W 0ðS1Þ ¼ f sð1Þ �
f xð1Þgsð1Þ

gxð1Þ
.

Substituting this expression into the first-order condition Eq. (11), we have

f xð0Þ þ
XT
t¼1
ðyt � dyt�1Þðf xðtÞw0ðtÞ þ f sðtÞÞ

dSt

dS1
þ d f sð1Þ �

f xð1Þgsð1Þ
gxð1Þ

� �" #
gxð0Þ ¼ 0. (12)

Eq. (12) is the Euler equation for the QDPE Eq. (5). In a steady state, we have gð0Þ ¼ gð1Þ ¼ � � � ¼ g�. Using
similar notation for other functions and variables, we have

dSt

dS1

����
ðwðS�Þ;S�Þ

¼ ðg�xw0� þ g�s Þt�1.

Substituting this expression into Eq. (12) and arranging the terms, we obtain Eq. (7).
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